Search Publications

Search Publications


Back Button

Welcome to the Energy Analysis Search Publications page. Hundreds of Energy Analysis related publications can be found in this repository. To get started, begin filtering the results below by using the quick filters located on the Search Publications Landing Page or search within filtered results by using the search box below. 


Sort Preference:


Search Terms
Life Cycle Analysis: Wind

Power Systems Life Cycle Analysis Tool Report

Date: 6/1/2013
Contact: Justin Adder

The Power Systems Life Cycle Analysis Tool (Power LCAT) is a high-level dynamic model that calculates production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind (with and without backup power). All of the fossil fuel technologies also include the option of carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. Power LCAT is targeted at helping policy makers, students, and interested stakeholders understand the economic and environmental tradeoffs associated with various electricity production options.


Power Systems Life Cycle Analysis Tool (Model)

Date: 6/1/2013
Contact: Justin Adder

The Power Systems Life Cycle Analysis Tool (Power LCAT) is a high-level dynamic model that calculates production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind (with and without backup power). All of the fossil fuel technologies also include the option of carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. Power LCAT is targeted at helping policy makers, students, and interested stakeholders understand the economic and environmental tradeoffs associated with various electricity production options.


Role of Alternative Energy Sources: Wind Technology Assessment (Report)

Date: 8/30/2012
Contact: Timothy J. Skone, P.E.

This peer-reviewed analysis is one of a series of Technology Assessments of power production and evaluates the role of wind power in the future energy portfolio of the U.S. Wind power is evaluated with respect to resource base, growth potential, environmental profile, costs, barriers, risks, and expert opinions. Wind can be an important energy resource for the U.S., but as its contribution to total U.S. electricity generation increases, it will require a significant amount of fossil resources for backup power to maintain grid reliability. Wind power has exhibited significant growth over the last decade, but most of this growth was made possible through financial incentives such as temporary renewable energy tax credits. Technology advances that result in lower project costs and energy storage devices that enable better power reliability remain crucial research and development areas for the long-term integration of wind power.


Role of Alternative Energy Sources: Wind Technology Assessment Brief (Presentation)

Date: 8/30/2012
Contact: Timothy J. Skone, P.E.

This peer-reviewed analysis is one of a series of Technology Assessments of power production and evaluates the role of wind power in the future energy portfolio of the U.S. Wind power is evaluated with respect to resource base, growth potential, environmental profile, costs, barriers, risks, and expert opinions. Wind can be an important energy resource for the U.S., but as its contribution to total U.S. electricity generation increases, it will require a significant amount of fossil resources for backup power to maintain grid reliability. Wind power has exhibited significant growth over the last decade, but most of this growth was made possible through financial incentives such as temporary renewable energy tax credits. Technology advances that result in lower project costs and energy storage devices that enable better power reliability remain crucial research and development areas for the long-term integration of wind power.


Power Systems Life Cycle Analysis Tool (Power LCAT) Technical Guide

Date: 5/1/2012
Contact: Justin Adder

Power LCAT is a high-level dynamic model that calculates production costs and tracks environmental performance for a range of electricity generation technologies. This report summarizes key assumptions and results for version 2.0 of Power LCAT. This report has three goals: to explain the basic methodology used to calculate production costs and to estimate environmental performance; to provide a general overview of the model operation and initial results; and to demonstrate the wide range of options for conducting sensitivity analysis.