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Increasing the efficiency of power 
generation system is the goal 

- Current fleet average:~550°C 
- “Ultra”-supercritical in 
construction: ~610-620°C 
- Advanced Ultra-supercritical 
Goal: 760°C   
 

Coal-fired boilers: 
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Great potential for high efficiency 
systems using FeCrAl-ODS alloys 

-  Oxide Dispersion Strengthened FeCrAl alloys exhibit 
excellent creep and oxidation properties at T>1200ºC.

  

 Prototype 
HT Heat exchanger 
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Power systems with an ODS High 
Temperature Heat Exchanger 

British Gas demonstrator 

25 mm dia. x 4 m long 
ODS FeCrAl Alloy 751 

EERC prototype 
1100°C 

ODS NiCrAl  alloy 754 and FeCrAl alloy 956 

1150°C 
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FeCrAl ODS alloys microstructure 
TºC>900ºC 

Large grain structure  

PM2000 PM2000 

HT creep = nano precipitates obtained 
by mechanical alloying  + 

Recrystallisation at HT for large grains 
Ex: PM2000: 1h@1380ºC 

GAR>30 
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1 batch Bar

1 batch Sheet Long.Multi batches Sheet Long.

Multi batches Bar

Brochure Sheet Trans.
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Significant variation of creep 
performance in the literature 

- High anisotropy+ Batch process + 
very sensitive to fabrication processes

  

 

PM2000 
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New supplier: Qualification of a new 
commercial ODM751 ODS alloys  

-  No commercial ODS alloy supplier: Major concern 
for end users + new context = high efficiency systems 

- Collaboration with Dour Metal Sro. to develop a new 
commercial ODM751 alloy and fabricate tubes  
(200kg) with an “onion skin”  grain structure with high 
hoop creep strength 

25 mm 
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Characterization of ball milled powder 
fabricated by Dour Metal 

-  3 batches of ODS powder provided by Dour Metal 
-  Very good powder mixing during ball milling 
- Satisfying Y2O3 precipitates dispersion but  many 
large particles due to impurities level 

  Fe-10Cr-8Al +0.5 Y2O3 
KAZ1 powder  

Fe-10Cr-9Al +0.5 Y2O3 
KAZ3 powder  



9   

200nm 

Extrusion of bars performed at ORNL 
-  Kaz3 (7kg powder) = bar, 1inch in dia, 6 feet long 
-  Recrystallisation was not achieved due to high level 
of impurities  

  

Fe-10Cr-9Al +0.5 Y2O3 
KAZ3 powder  3mm 

5µm 

Kaz3 bar 
Kaz2 extruded 

Kaz3 
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Basic characterization of Kaz3 

-  Oxidation  behavior: 
Kaz3 exhibits higher 
mass gains than 
PM2000 but  looks 
like alumina scale 
formation 

  

 
- Low creep properties due to high level of impurities 

  
Kaz3, 1250ºC 

Kaz3, 1100ºC 

PM2000, 1250ºC 

PM2000, 1100ºC 
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Kaz4: New batch of ODS powder ball 
milled under low vacuum 

- improvement of the ball milling facility to control the 
environment.  

  low impurities content expected 
- 2 cans have been Hipped and tubes will be extruded 
in the coming months 

  



12   

Selective Laser Melting of ODS alloys 
 
- SLM to apply coatings  
 

  

 
- Rapid prototyping to manufacture 
near net shape solid components  
- reduction of fabrication cost 
 

  



13   

Effective bond between PM2000 
coating and Ni-based IN939 substrate  
 

  

- Characterization of the 
interdiffusion zone is on-going 
 

  

mm 

Ni 

Fe 
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Gas Atomization Reactive Synthesis to 
eliminate or decrease ball milling time 

Alloy Charge  

Gas Flow 

Oxygen 

Formation of 
Oxide Shell 

Nascent Particles 

HIP 700ºC 

HT 1200ºC 

O diffuses and reacts with Y 

Ames Lab, I. Anderson, JR Rieken 
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Gas Atomization Reactive Synthesis to 
eliminate or decrease ball milling time 

Alloy Charge  

Gas Flow 

Oxygen 

Formation of 
Oxide Shell 

Nascent Particles 

 
- Consolidation of GARS powder 
with and without ball milling 
- Decrease of ball milling time  
  - decrease of cost 

 - impurities control 
 - continuous process 

- Compromise between properties 
and cost like Sandvik APMT: 

 - ideal particle/sieving size? 
 - ball milling time? 

- incorporation of Al during the ball 
milling step  
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2010 workshop on the role and future 
of Fe-based ODS alloys 

 http://www.netl.doe.gov/publications/proceedings/10/ods/index.html 

Objective: to promote end users interest in ODS alloys 

Participants:  potential users, previous and current 
suppliers of ODS alloys, component manufacturers and 
R&D experts  

Presentations and discussions focused on: 
 -ODS alloy availability 
 - Current state of development of ODS alloys: 
 microstructure, durability (creep, oxidation), weldability 
 - Past major evaluations of ODS alloys  

 - Technical and economic issues attendant to wider 
 commercial use of ODS alloys.  
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2010 workshop on the role and future 
of Fe-based ODS alloys 

 http://www.netl.doe.gov/publications/proceedings/10/ods/index.html 

- Major issues have been discussed: cost, database, 
ductility,  tailored component application versus straight 
substitution!, in light of current state of ODS development 

- Suppliers have been approached by potential customers  

- Presentations are still available on the website and have 
been intensively downloaded (586 downloads in March) 

 renewed/enhanced interest in ODS alloys 
- Interaction with Nuclear people 
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Common Interests / Issues 
 between  NE and Fossil 

Fe20Cr5Al+ Y2O3 (Ti,Mo) 

Fossil  Nuclear  
Fe-9-14Cr+ Y2O3 (Mo,Ti,W) 

- Need commercial suppliers 
- fabrication of cheaper, more reproducible alloys 

-  Non fusion joining techniques to 
preserve the ODS structure 

- Creep resistance TºC>900ºC 
Large grain structure  

900ºC>TºC>600ºC 
Nano grain structure  

Oxidation resistance up to 1200ºC 
in aggressive environments  

(H2O, CO2, SO2!) 

Resistance to radiation 
damage 

Corrosion resistance (Na!) 

- Anisotropic properties 
due to GAR 
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DIANA I: Workshop on dispersion 
strengthened steels  for advanced 

nuclear applications 
- Development of new FeCrAl ODS alloys with limited thermal 
ageing embrittlement  (475ºC)  
K4 (Fe–19Cr–4Al–2W–0.3Ti–0.3Y2O3) 

K3 (Fe–16Cr–4.5Al–2W–0.3Ti–0.37Y2O3) 

- Very high speed planetary milling process  
- Reduce impurities level   

 - ball milling parameters 
 - hydrogen reduction technique 

- HR TEM characterization 
- Friction stir  and resistance welding 
- In situ deformation of ODS alloys 
-  Fracture toughness measurement 

Y2Al4O9 

Core/Shell structure 
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ODS components durability depends on 
the alloy oxidation resistance 

-  High temperature creep and oxidation are expected 
to be the main mode of degradation 

-  Existence of a stress threshold at a given 
temperature below which deformation is minimum  

-  For a mechanically sound component, oxidation will 
determine the components durability 
-  Need  lifetime models for relevant environments ie 
containing species such as H2O and CO2 
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Breakaway oxidation is due to Al 
consumption to form Al2O3 

- Cb: critical Al content below which Al2O3 cannot form  
- Co initial Al concentration 
- FeCrAl models : lifetime = time to drop from Co to Cb 
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1200ºC
   O2

Alloy 956
1mm

Alloy 956 
1.75 mm

Alloy 2000
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Alloy 2000 
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Cyclic oxidation behavior and lifetime 
of ODS alloys 

Low mass change = growth and spallation of Al2O3 

Breakaway oxidation = fast formation of Fe-rich oxides
          !  end of life 
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Significant effect of H2O on mass 

gain curves 

- Decrease of time to rupture for MA956 
- Change in oxidation kinetics for PM2000 
 

Air + 10%Vol H2O 

1200ºC
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Significant effect of H2O on lifetime 

Slight effect of H2O/CO2 

Linear relationship between lifetime and thickness for all 
the specimens  
Significant decrease in lifetime in H2O  

PM2000 O2

MA956 O2

MA956 Air+10%H2O
MA956 50%CO2-50%H2OFoilsNu
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Breakaway oxidation is due to Al 
consumption to form Al2O3 

- Cb: critical Al content below which Al2O3 cannot form  
- Co initial Al concentration 
- FeCrAl models : lifetime = time to drop from Co to Cb 
 

! 

 V " #C

Al to form Al2O3 

Quaddakers et al.  
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How Al is consumed in the alloy? 

! 

1.125 " k " tb
n =  Cb #C0

100
" $ "

d
2

What about Al gradients from the specimen center to the surface? 
How does Cb change with T, cycles! 
 

What is Cb? Uniform 
consumption of Al? 
 

0.5 mm End 2 Center 

Fe-rich oxide 

Alloy 

End 1 

Fe-rich oxide 

 Microprobe profile to determine Al remaining after 
the onset of breakaway oxidation 
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Measurement of the remaining Al 

content 

- Significant difference in Al 
content at the ends and in the 
center of the specimen 
- What matters? concentration 
at the center or at the edge? 

0.5 mm End 2 Center 
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Alloy 

End 1 
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Effect of H2O on Al consumption 

1.444mm 1.728mm
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Effect of thickness and environment on Al 
concentration at the specimen center 

MA956, 1200°C, 1h cycles

50%CO2-50%H2O
Air+10%H2O

O2PM2000
O2

Al
 (a

t%
)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Thickness
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Center 

Alloy 

Optimization of the Al reservoir? 
 



  air-10%H2O
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Significant Al gradient  in air + H2O at the 
edge Fe-rich oxide 

End 1 

Lower lifetime with H2O because of Al diffusion change in the alloy? 
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Isothermal oxidation, 500hr at 1100ºC 
Thinner oxide scale with H2O 

O2 

air + H2O 

Ar + H2O 
50%CO2-50%H2O 

Different diffusion species through alumina? (OH-, H2O) 
Different trend in comparison with 1h 1200ºC testing 
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Ti and Y at GB interface. Only Y at 
metal interface 

air + H2O 

Ar + H2O 

Ti Y 

50%CO2-50%H2O O2 
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O2 

Ti Y Ti Y 

50%CO2-50%H2O 

air + H2O 

Ar + H2O 

Understanding segregation is key to a 
very protective alumina scale 
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Conclusions 
-  Tubes of ODM751alloy with low level of impurities  
and an onion skin grain structure will be extruded in 
the coming  months 
- Different approaches are under consideration to 
lower the cost of ODS components 
- ODS workshop was successful in boosting interest 
for ODS alloys 
More information: Google: “ODS workshop 2010” 
- Work is on going to improve the understanding of 
ODS alloys oxidation in complex environments 
(H2O, CO2!) and improve lifetime models 
- Need a better understanding of creep deformation 
and rupture at high temperature 
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