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Adapted from: Viswanathan, et al , 2005 and Swanekamp, 2002 

Increasing Efficiency

Subcritical: < 22 MPa
Supercritical (SC): > 22.1 MPa, 538 to 565 °C
Ultra Supercritical (USC): 565 to ~675 °C (advanced ferritic & austenitic steels required)
Advanced Ultra Supercritical (A-USC): > ~675 °C (nickel-base superalloys required) 
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US-DOE Advanced Power Systems: 
46%-48% efficiency from coal generation

Steam condition: 760 °C - 35MPa
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Materials Performance in USC Steam

• Steam oxidation resistance of cast alloys for USC 
steam turbines (FY10)

• Steam oxidation resource as more materials are 
developed (FY11+)

NETL Materials Development

• Unique capability close to coming on-line

Pressure Effects on Steam Oxidation

• Primarily a concern for rotating blades in HP turbine
• Further model and ramification development

Chromia Evaporation Issues

Last
Years
Focus

Brief
Update

Main 
Focus
of Talk
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A-USC Steam Autoclave

Construction Finished

• Control system checks 
• Mechanical inspections and leak checks
• Final facilities approvals 

Current Status

Aim for Shakedown Activities 
this Summer
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Dual Rated Flowing Steam A-USC Autoclave
• 5000 psig (34.5 MPa) at up to 704°C
• 3300 psig (22.7 MPa) at up to 760°C
• Haynes 230 used for autoclave and high T/P line material

3) Autoclave
1 liter volume
30 samples

2) Preheat
Furnace

4a) Tube-in-Tube
Heat Exchanger

7) Expansion 
Tank

5) Pressure 
Relief

1) Output 
from HP 
Pump

6) Pressure 
Bleed

4b) Water Chiller & 
Circulator
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A-USC Steam Autoclave Water Treatment
• Two tank system
• Dissolved oxygen, pH, and conductivity

Holding 
Tank

Mixing
Tank

HP Pump

DO, µ, pH Loop

DO, µ, pH Loop

N2 + xO2
Sparging
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Chromia Evaporation

• Brief overview

Model Developed in Prior Years

• Experimental status
• Results of work in progress
• Model implications

Current Tests to Further Examine 
Model

• Rotating disk experimental status

Upcoming Tests at Higher Velocities
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Chromia Evaporation Model—Brief Overview
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Holcomb, Journal of The Electrochemical Society, 156 9 C292-C297 2009.

½Cr2O3(s) + H2O(g) + ¾O2(g) = CrO2(OH)2(g)

•Thermodynamics data from Opila (2007)
•Boundary layer model of surface 
evaporation
•CrO2(OH)2(g) saturation in gas phase
•Cr diffusion and depletion in alloy
•Time to breakaway oxidation, t*

•Kinetics determines apparent surface 
chromia activity
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Chromia Evaporation Model—Brief Overview
• Hypothetical Steam Path

– Superheater, steam pipe, HP 
turbine

• Chromia activity of 0.05
• No issues below 650°C
• Very rapid breakaway oxidation 
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Chromia Evaporation Follow-up

Model predicts significant issues at the 
highest temperatures, pressures, and 
steam velocities
• These are A-USC HP steam turbine conditions
• Warrants examining model assumptions and sensitivity

Speculation about steam turbine alloys

• As chromia leaves the surface, Mn and Ti oxides may 
concentrate and reduce chromia activity

• A reduction of evaporation with Mn & Ti alloy additions
• At higher evaporation rates—self correcting?
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Chromia Evaporation Cyclic Tests

Chromia Evaporation Test Matrix
2000 hr, hourly cycles

Wrought H230, N263, H282, N105
Cast & Homogenized N263, H282, N105

Gas Velocity, cm/min
%H2O 6.25 25.0

19%
760°C 760°C
800°C 800°C

57%
760°C 760°C
800°C 800°C

Completed Tests
Ongoing Tests

Alloy Cr Al Ti Mn

N105 14.85 4.70 1.10 0.50

C&H 14.61 4.43 1.10 0.51

N263 20.00 0.35 2.10 0.50

C&H 19.68 0.40 2.04 0.50

H282 19.50 1.50 2.10 0.25

C&H 19.22 1.44 2.08 0.24
H230 22.00 0.35 0.70
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Cyclic Results

• Nimonic 263 showing too much spallation for 
evaporation analysis

• Nimonic 105 showing alumina formation and no 
detectible evaporation
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Haynes 282 and Surface Structure
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Elemental Spot Analysis—Spalled H282
• Larger grains 

with flats rich in 
Ti and O
– TiO2

• Smaller grains 
rich in Cr and O
– Cr2O3

• Localized TiO2
not very useful 
in chromia 
evaporation 
protection
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Apparent Chromia Activities
Alloys, conditions, and results for cyclic oxidation tests in moist air.  Gas flow 
rates are at temperature.  ke[Cr2O3] is the evaporation rate on a chromia basis.

Alloy
T, 

°C
PH2O

Flow Rate, 
m/s

ke [Cr2O3], 
kg/m2s

Time 
Range, hr

Apparent 
aCr2O3

Haynes 230 800 0.19 4.2×10-3 3.4×10-10 200-2000 0.06
Haynes 230 800 0.57 1.0×10-3 4.9×10-10 24-2000 0.14
Haynes 230 800 0.57 4.2×10-3 9.1×10-10 24-2000 0.11
Haynes 282 800 0.19 4.2×10-3 4.9×10-10 600-2000 0.12
Haynes 282 800 0.57 1.0×10-3 6.1×10-10 500-2000 0.21
Haynes 282 800 0.57 4.2×10-3 7.2×10-10 125-1000 0.07

• Increased evaporation 
• Decreased chromia activity

Increased flow rates 

• Increased evaporation
• Mixed chromia activity results

Increased water (from 19% to 57%) 
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Model Sensitivity
to HP Chromia 
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• Upstream 
saturation 
lowers driving 
force for 
evaporation

• Shows that t* is 
very sensitive to 
chromia activity 
differences
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Rotating Disk Experiments

• Want to examine
kinetics and surfaces 
with more aggressive 
evaporation

• Turbulent flow
• Tests started this 

week

Alloy  Fe Cr Ni Co Mo C Si Ti Al B ppm Mn W Other 

H230 1.5 22 Bal 2.5 2 0.1 0.4  0.3  75 0.5 14 0.02 La 
H282 0.75 19.5 Bal 10 8.5 0.06 0.075 2.1 1.5 50 0.15  0.15 Cu 
I617 1.5 22 Bal 12.5 9 0.1 0.5 0.3 1.15 30 0.5  0.25 Cu 
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Rotating Disk

Modify a high temperature 
erosion rig for steam oxidation 
with up to 40 m/s relative velocity

Samples of H230, H282 and 
IN617 are machined
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A-USC Implications
(Conclusions)

Increased flow rates can lower chromia activity in alloys 
with Ti and Mn
• Reduced chromia activity reduces equilibrium CrO2(OH)2(g) vapor 

pressures

Model is very sensitive to small decreases in chromia 
activity at the HP turbine
• Upstream partial saturation of the gas phase with CrO2(OH)2(g) can 

become nearly or fully saturated at the HP turbine
• Can radically change breakaway oxidation times from less than a year 

to never happening

Thus even small chromia activity reductions from Ti and 
Mn additions can make evaporation issues self-correcting
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