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ABSTRACT

Current methods of materials development, relying mostly  on experimental tests, are slow and 
expensive. It often takes over a decade and costs many millions of dollars to develop  and certify 
new materials for critical applications. With evolving constraints being placed on the use of 
materials arising from concerns with energy and materials resource sustainability, new 
approaches for materials development is essential. Moreover, it is increasingly important for 
materials development to be integrated into overall product design and development, allowing 
for optimal use of materials as well as enhancing our ability to recycle and reuse. In this paper, 
we discuss a new program in which we link methodologies developed over the past few decades 
in computational materials science to a modern computational design platform (VE-Suite) to 
enable the multiscale design of materials. Development of such multiscale design platforms is 
essential for the successful implementation of integrated computational materials engineering 
(ICME), an emerging discipline within materials development. We will present the basic 
framework of our program and discuss progress to date.

INTRODUCTION

Throughout history, humans have used materials effectively  in products without knowing about 
the fundamental science that governs the material properties. For example, the smith that made 
swords out of Damascus steel knew the process that  had to be followed, but  not how the strength 
and toughness of the steel depended on its underlying microstructure. In many ways, the 
situation has not changed significantly when it comes to materials used in specific product 
development. The materials engineer is given a range of properties needed for the final product 
along with constraints such as cost and manufacturability and then typically uses standard sets of 
materials tables to define the options of materials that could be used in the product. New 
materials are rarely developed specifically  for an application because of the cost and time to 
develop and certify them for use. Thus, in many ways materials engineering has become 
divorced from materials science.

A recent study1 by the National Academy argues that there needs to be an improved way to 
develop new materials that  speeds their development and lowers their costs. This report  focused 
on the notion that computational materials engineering can be integrated with experimentation to 



accelerate materials development and lower cost. This emphasis on computational materials 
design arises from increases in the availability of both computer hardware and advanced 
software. Many of the basic issues as well as the potential benefits were discussed by  G. B. 
Olson over a decade ago.2  Since that time, the basic tenants of ICME have begun to be adopted 
by industry as a means to decrease the cost and time of materials development.3,4  

The ICME report also suggests that there is a need for a new type of design in which the 
materials are designed and optimized concurrently  with the product, which will enable better 
products and more effective use of materials. The goal of this work is to put in place a 
computational framework that will enable both of these goals.

CONCURRENT DESIGN 

Figure 1 shows a schematic view of 
concurrent design based on a recent paper 
by McDowell and Olson.5 The top right 
shows the current approach to designing 
products in which information flows down 
from the assembled system level to provide 
constraints on the design of individual 
parts, and up from the parts to determine 
the properties of the system. As Fig. 1 
indicates, the current approach typically 
stops above the diagonal line, with the 
parts selected from a known set of 
possibilities. In concurrent design, the 
materials themselves are included in the 
design process. The challenge is that  the 
same type of information exchange that  is 
available in our current design processes is 
not generally  available for materials 
design. Materials modeling, in which we 
include modeling derived from experiment, may include a linkage of scales, a building up of 
details and accuracy from one scale to the next. We generally  do not have, however, a way to 
inform the materials modeling of the overall design. This lack originates in the limited 
availability of inverse models in which one can describe properties at a finer scale based on 
information from a larger scale. This inability to exchange information between different scales 
is a major challenge for concurrent design.
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Figure 4: Calculated electron localization function for the ground state R3c structure of BiAlO3. The Bi

ions are in black, the Al ions in blue, and the O ions red.

and Bi-O distances of 2.30 and 3.74 Å. Again, the computed structure is not predicted by

consideratino of the tolerance factor, which suggests antiferrodistortive rotations for the

ground state.

4.3 Calculated electronic properties

We find that the ferroelectric properties of both ground state structures are very favorable.

For BiAlO3, we calculate a change in ferroelectric polarization from the centrosymmetric

structure of 75.6 µC/cm2 along the [111] direction, and a piezoelectric stress constant[43]

along [111] of 320 ± 10 µC/cm2. (The clamped ion contribution is -57.0 ± 0.5 µC/cm2).

The corresponding numbers for BiGaO3 are 151.9 µC/cm2 along [100] for the polariza-

tion, and -165.4 ± 1.2 µC/cm2 for the piezoelectric constant along [100] (the clamped ion

value is 56.5 ± 0.1 µC/cm2). The polarization value of 151.9 µC/cm2 is, to our knowl-

edge, the largest value ever predicted for a perovskite ferroelectric, and reflects the large

displacements of the Bi and Ga ions from their centrosymmetric positions.
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Figure 1:  Concurrent design. The current design 
process, shown in the upper right,  is coupled to 
materials design on the bottom left, as described in 
the text. Adapted from McDowell and Olson.5



APPROACH

The fundamental challenge of computational materials design is that the physical phenomena 
that determine materials behavior span many orders of magnitude in length and time scales. A 
further challenge is that these phenomena may  be quite different depending on the materials 
properties under consideration. Thus, there is no single path for understanding and predicting 
materials behavior.6  

Consider, as an example, the 
mechanical behavior of a metallic 
structure, as shown schematically in 
Fig. 2, adapted from a recent ICME 
study.3,7 The structure of interest is an 
engine block with a size on the order 
of a meter. Fundamentally, however, 
the properties are determined by  the 
alloy from which the block was made. 
The properties of the alloy  are atomic 
in nature with a length scale on the 
order of many Å (10-10 m). The 
mechanical properties of the engine 
block, however, are also affected by 
the microstructure of the material (i.e., 
t h e s t r u c t u r e o f t h e d e f e c t 
distributions, which may include grain 
boundaries, second-phase particles, and dislocations). These defects manifest themselves at a 
series of scales, so a complete description of the properties at a meter scale depends on a 
sequence of scales down to the Å level.

Figure 2 also lists the various modeling methods that could be employed to describe the material 
properties at each scale. Much progress has been made in our ability to model phenomena at 
each of the scales listed. Many of the methods used in such modeling have been reviewed 
recently.8 We note that these methods are very different from each other in length and time 
scales, approach, algorithms, accuracy, and computational needs. Moreover, they are generally 
done by  different research groups. We will not discuss any of these methods in this paper, but 
will focus instead on how the information is passed between the models, building a multiscale 
materials description which is the basis for much of this project.  

The most common means of transferring information from one scale of length and time to 
another is through the use of reduced-order models based on the results of the finer scale. These 
models may be phenomenological in nature and could be based on experimental data rather than 
simulation, or they  could be derived from a direct homogenization of finer-scale calculations. 
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Figure 2:  Scales of the mechanical properties and 
modeling approaches for an engine block. Adapted from 
Allison.7



Ultimately, however, calculations at  a scale are done independently, based on some type of 
representation of finer-scale physics. This approach to passing information is often referred to as 
a “handshake” or as “message passing.” It  reflects a loose coupling between scales in that  what 
goes on at a finer scale is largely independent of the behavior at a larger scale.

There are a number of critical issues that arise in a message passing approach. For one, it  is an 
inefficient use of information. The simulations at each scale typically involve a great number of 
variables, most of which have little or no informational value at a larger scale. For example, in 
describing plasticity, one focuses on the behavior of curvilinear lattice defects called 
dislocations. To calculate the properties of dislocations in an atomistic simulation, one typically 
includes many more atoms than are needed to describe the dislocations but that are needed to 
reduce simulation error. Thus, much of the computation time is “wasted” on the calculation of 
variables (e.g., positions and momenta of atoms) that are not specifically relevant to the 
dislocation process. Overcoming this issue is complicated because we do not know a priori 
which variables have critical information content. As a result, we typically determine more 
information than is needed. If we create a reduced-order model from that information, we cannot 
be sure that we have captured the appropriate critical information, which adds uncertainty to the 
models.

Another major complication of message passing is that it ignores non-linearities and overlaps 
between scales. For example, the blocks of phenomena in Fig.2 are artificial but reflect the types 
of models that we currently have available. If the physics cannot be separated into those blocks, 
then we cannot pass information in a sequential way and will have a tight, rather than a loose, 
coupling between scales. Another outcome of the loose coupling between scales is that there are 
few inverse models to enable predicting the behavior at a finer scale from the properties at a 
larger scale. The lack of inverse models was discussed above as a major challenge in concurrent 
design. These issues need further development, as will be discussed later in this paper.

If we are to use the type of modeling described in Figure 2 in a concurrent design process, we 
need to have a measure of uncertainty and, more importantly, risk. Uncertainty can arise from 
many factors, such as the use of models, a lack of experimental data, or computational 
approximations. Uncertainty only matters, however, if it adversely  affects the final conclusions 
in a design process (i.e., if it creates the risk that the final design will be of poor quality). Thus, 
we need to reduce uncertainty only to the point that we reduce that risk.

MULTISCALE DESIGN 

A number of developments are needed to create a multiscale concurrent design process.5 
Advances in the materials models used to describe the response at each scale may be better 
physics or more computationally efficient algorithms or both. Better experimental data at each 
scale may be required to validate those models, especially experiments that better define the 



microstructure-property  relations. However, these developments are the standard focus of 
materials science and engineering and are not the specific thrust of this work. 

Developments in information science—by which we mean the science of how we collect, 
classify, store, retrieve, and disseminate knowledge—are important in the development of 
multiscale design. Practical applications of information science in the form of creating efficient 
databases of information and the use of informatics to best extract the information needed for 
materials design9 is the primary focus of this work. An important task is to develop the means to 
manage information across scales, by which we mean the identification of critical information 
and the analysis of the uncertainty  that arises from the use of incomplete information. Finally, we 
need a computational platform in which we can link materials design to the overall process 
design by performing multiscale optimization across scales. Fortunately, we have such a 
computational framework in VE-Suite, which will provide the basis of the computational 
platform needed to make concurrent materials design a reality.

VE-SUITE

The main purpose of VE-Suite is to create a space to enhance interactions between engineers and 
their design, with real-time interactions across a multitude of computational interfaces, by 
integrating modeling, analysis, and optimization with advanced visualization to create a design 
environment in which engineers can create and optimize products. To that end, it couples 
excellent physical-based modeling with information management and optimization. Numerous 
applications of VE-Suite have been made that show its capabilities.10 

VE-Suite’s visualization capabilities are unique through its ability  to visualize over 100 million 
points from any data source across any visualization and computational platform. It allows for 
both two- and three-dimensional projection and real-time manipulation of the images.

Various aspects of VE-Suite have won numerous awards, including R&D 100 Awards in 2006, 
2009, and 2010, as well as a National Excellence in Technology Transfer Award in 2009.

Using VE-Suite for Concurrent Design

One of the strengths of VE-Suite is its ability  to integrate various computational codes within its 
framework. To date these codes include, but are not limited to FLUENT, STAR-CD, EnSight, 
ABAQUS, ANSYS, Pro/E, JT, MSC/PATRAN, ASPEN, DYNSIM, and MSC/NASTRAN. It  is 
possible to add various, already existing computational materials models and simulation tools to 
the VE-Suite framework, which is vital to concurrent design. 



VE-Suite is designed around the creation and linkage of objects that serve as a set of building 
blocks for a multiscale simulation. Each object  represents a numerical representation of a 
physical process operating at some scale. It may, for example, represent the growth of grains in a 
metal. To define an object, one first needs to identify the physical process that it will represent 
and to create a physically based model to describe that process. For the grain growth example, 
the phase-field method might be sufficient. If there is more than one model in the object, the 
couplings between them will need to be defined and a common spatial frame established. Given 
the models that define the object, the information that is needed for that object—either from a 
global perspective (e.g., thermodynamic quantities) or specific information that may arise from a 
finer length or time scale (e.g., initial grain size, distribution of particles, etc.)—must be 
identified. Finally, the output of the model for serving as input for other objects needs to be 
defined. As noted above, a model may be phenomenological descriptions based on data. 
However, we also may employ a direct link to experiment by using the methods of materials 
informatics to extract critical information directly from the data, without the use of a model. 

Once one has defined a set of objects, it  is possible to create an object of objects to describe more 
complicated physical phenomena. For example, if one has an object to describe grain growth and 
another to model diffusion, creating a combined object enables a description of coupled growth 
and diffusion. Here, the first step will be to identify  the set of objects needed to model a physical 
phenomena followed by determining the various inputs and outputs and the coupling them in a 
computationally efficient way. 

The net result will be a set  of computational 
building blocks that can be linked together to 
describe a specific physical system. Assembling 
blocks in this way is similar to how we can use 
actual building blocks (e.g., LEGO®) to create a 
specific physical system. We show this 
schematically in Fig. 3, in which we indicate 
objects as blocks along the diagonal and the 
couplings between them as off-diagonal 
elements. The center block represents an object 
of objects, in which a series of objects are linked 
into one. The linkages between blocks will be 
through the information that is passed from one 
block to another. In the message passing model, 
this could be an averaged quantity from one scale (e.g., mean grain size) passed to a 
phenomenological model of strength.  

While reduced-order models may be appropriate for some of the scales shown in Fig. 2, in many 
cases the physical phenomena are complicated and may require direct simulations and, thus, 
large-scale computations. VE-Suite is designed to work across platforms. Moreover, it has a 
hierarchical structure that enables computations to be farmed out to various platforms, including 

Figure 3:  A schematic view of a set of 
objects linked into a unified structure, as 
decribed in the text.



high-performance computing, as needed. VE-Suite also includes a set of optimization tools that 
span across the objects and, hence, across scales. By directly coupling the scales in this way, we 
minimize, though not eliminate, the problem of the lack of inverse models. 

PROGRESS AND PLANS

The implementation of materials modeling within VE-Suite is proceeding in steps. Step 1 
involves the identification of the basic framework and an initial test problem. We are examining 
how to modify existing materials models to fit in the general structure of the VE-Suite objects 
discussed above. Step  2 will involve the creation of a series of materials objects designed to 
model a specific materials system, and which will be integrated within the VE-Suite framework.  
Step 3 will focus on predictions of materials response across scales, with no integration within 
the design process. Step  4 will couple a design of a simplified product with concurrent materials 
design, while in Step 5, we will move towards realistic products and materials.

A number of critical research efforts will be needed. Many  of these are computational, such as 
the need to systematize the creation of objects and their linkages, while some are conceptual, for 
example the identification of critical variables. The ultimate goal of the project is to create a 
platform that makes concurrent design a reality. Along the way, the project is likely to change 
how we view multiscale materials behavior.
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