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Gas Turbine Need

• Lean premixed technology is critical for DLN combustion performance

• Use of high hydrogen fuels

– Very low fuel/oxidizer density ratios

– High diffusivity

• Application of CFD and other design tools for premixer?

Air

Fuel

Premixer Mixture Combustor

jet in cross flow

spokes, vanes

Mixture Character is critical  for low emissions (and operability )
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Motivation

• Common simulation techniques 
for standard fuels valid for 
hydrogen?

– Need “fast turnaround” for design 
screening

• Accurate and reliable 
measurement and simulation 
techniques need to be established

• Experimental data for the 
validation of simulation 
techniques is critical
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Project Goals

• Experimental Study

– Capture instantaneous and time averaged fuel distribution downstream of 
fuel injection in well defined geometries

• Establish and apply reliable, accurate measurements 

• Numerical Study

– Evaluate effectiveness of computation fluid dynamics (CFD) to represent 
mixing of hydrogen and high hydrogen content fuels in representative gas 
turbine premixer geometries 

• Role of modeling approach and coefficients on the overall accuracy, 
efficiency, and reliability

– Look for trends relative to strategies giving best agreement with experiments

• Capture the synergy of parallel experimental/numerical work 
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Tasks

1. Project Management

2. Experimental Studies

2.1  Module Development

2.2  Diagnostics Evaluation/Selection

2.3  Detailed Data Acquisition

2.4  Analysis

3. Numerical Studies
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Tasks

Schedule

Start Date:  1 Oct 2008 contract, 1 Jan 2009 technical start
Target completion date:  31 Dec 2010
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Task 2 Results

2. Experimental Studies

– 2.1  Module Development

includes Matrix Development

– 2.2  Diagnostics Evaluation/Selection

– 2.3  Detailed Data Acquisition

– 2.4  Analysis
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Leverage Previous Hardware

• 35kW axisymmetric combustor

• Modular in Design

• Parameters that can be varied:

• Fuel Injection Type

• Fuel Injection Rate

• Fuel Composition

• Air Flow Rate

• Injection Height

• Flow Swirl

• Flow Turbulence

• Quarl Contraction
Air PlenumCenter body

(threaded)

Swirler 

Module Swirler 

Plate 

(Optional)

Straight

Quarl

Task 2.1  Module Development

Center body 

Cap
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Task 2.1 Matrix Development

Experimental Test Matrix Development

• D-Optimal Statistical Design Option

– Fixed

• Air pressure drop (4%)

– 2 categoric factors

• Swirl (0 or 45)

• Injection (radial or axial)

– 1 numeric factor

• Fuel/Air Momentum

– Fuel Components

• H2/CH4, mixtures

– 3 axial planes + CL traverse

– Time Avg and Inst. Measurements

• 70+ cases
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Task 2.1  Matrix Development

• Focus on 4 configurations for present analysis

– H2, axial, no swirl

– H2, radial, no swirl

– CH4, axial, no swirl

– CH4, radial, no swirl

• Cases done but finishing analysis

– H2, axial, swirl

– H2, radial, swirl

– CH4, axial, swirl

– CH4, radial, swirl

– Mixture, axial, swirl

– Mixture, radial, swirl

Air PlenumCenter body

(threaded)

Swirler 

Module Swirler 

Plate 

(Optional)

Straight

Quarl
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Task 2.2  Diagnostics

• Concentration

– PLIF (after observations about role of momentum flux ratio)

• Instantaneous and Average

– Microprobe

• Time average

• Velocity

– DPIV

• Instantaneous and Average

– Pitot-Probe

• Time average
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Task 2.2  Diagnostics

Acetone PLIF

TIME RESOLVEDMEAN + HIGHER MOMENTS
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Task 2.2  Diagnostics

• Schematic of experimental setup for isokinetic needle probe

• Gas chromatograph (Agilent MicroGC)—hydrogen/mixtures

• Flame Ionization Detector (Horiba FIA)--methane

Gas Chromatograph/FID
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Task 2.2  Diagnostics

• Particle Image Velocimetry (PIV)-LaVision

YAG Laser

Programmable
Timing Unit

Imager

Frame Grabber & Computer
YAG Laser Power and Cooling Unit

Optical Lenses

Air + Seed Beam Dump
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Balance of Task 2

• Task 2.3—Data collection—90% complete

• Task 2.4—Analysis—underway

• Will present results in combination with numerical studies
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Task 3.0  Numerical Studies

Approach

• Computation Fluid Dynamics (CFD) simulations using Fluent

– Common commercial code with collection of models/methods available

• Three major models being evaluated along with key “constants”—
emphasis on “near term” tools

– RANS/k-ε model

– RANS/Reynolds Stress Model (RSM)

– URANS

– Large Eddy Simulation

• Objectives Include:

– Finding model coefficients for each modeling strategy to provide accurate 
predictions of real flows

– Identifying the strengths and weaknesses of the modeling techniques 
relative to major flow conditions such as the swirl level
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Task 3.0  Numerical Studies

• Mass conservation

• Momentum conservation

• Species conservation
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Task 3.0  Numerical Studies

• RANS:  Time-averaged governing equations
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Task 3.0  Numerical Studies

• Need to Model Terms introduced by decomposition

– Eddy viscosity model for the Reynolds stress

– Eddy diffusion model for the turbulent scalar flux
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Task 3.0  Numerical Studies

• Turbulent species transport:  Schmidt number
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Turbulent Sc number is a “constant” which has a 
significant impact on the turbulent mixing 
modeling with RANS approach.  

Lower values will increase apparent dispersion.

Sct is treaded as a constant usually ranging from 
0.2~1

Eq.10

Eq.11
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Task 3.0  Numerical Studies

Summary of High Level Model Features

• k-ε model (2 equation model)

– Time averaged approach

– Most widely used, “common” for design screening

– Strengths: Simple, non computer intensive, can provide “good” results

– Weaknesses: not suitable for complex flow conditions

– X computational effort

• Reynolds Stress Method (7 equation model)

– Time averaged approach

– Less commonly used

– Strengths: “More accurate” than k-ε, can, in principle, deal with more 
complex flow conditions and parameters

– Weaknesses:  Computer intensive, coupling of equations, convergence issues

– ~5X computational effort
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Task 3.0  Numerical Studies

Summary of High Level Model Features

• Large Eddy Simulations

– State of the art modeling technique

– Key idea is to solve “large scales” directly and model very fine scale eddies 
where isotropy is a more valid assumption 

– No averaging over most of the turbulence scales

– Strengths: Transients modeled, high accuracy, no loss of information due to 
time averaging

– Weaknesses: Requires very fine meshes, computer and time 
intensive for solutions

– ~600X Computational Effort
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Task 3.0  Numerical Studies

• SolidworksGambitMesh

• Fluent 6.3 solver

• Solution Platform

– 8 node Beowulf Cluster

– 1MB Cache/CPU

– 4GB RAM/node

– AMD Opteron
2.6GHz CPUs

– Redhat LINUX
64 bit OS
GigE Nortel switch
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Task 3.0  Numerical Studies

• Grid Treatment

– Quarter Symmetry

– Full 3D structured

– Full 3D unstructured

• Refinement about fuel jets, walls to match treatments

• Grid optimized for each simulation approach (grid independence study)

• ~100,000  >3M cells depending on treatment

• Turbulence Treatments

– RANS

• Realizable k-e (best suited for jets) , RSM

– Unsteady RANS

– LES (10 s step, 5 residence times, 0.3 sec flow time)

• Turbulent Schmidt # (t / Dt)

– 0.2 to 0.7
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Task 2.3/3.0  Conditions

• Non-swirling, radial and axial jet cases

Injection Type and # Axially at Centerline 1.19 mm diameter
Radially Outward 1.19 mm diameter, 8x

Jet Spacing (Radial) 9.97 mm (45° on 25.4 mm diameter 
centerbody)

Quarl Module Straight Barrel, No Contraction

Injection Height 50.4 mm Below Top of Quarl

Flow Swirl None: Flow Straightener Used

Case CH4 into Air H2 into N2

--Air 1.116 kg/min --

--Nitrogen -- 1.116 kg/min

--Methane* .00864 kg/min --

--Hydrogen* -- 0.00301 kg/min

*Flows set to match momentum flux ratio 2
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Task 2.3  Measurement Locations/Results

• Radial jet Injection

TecPlot
Surface

Meshing
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Task 2. 3  Measurements/Results

TecPlot
Surface

Meshing

• Radial jet Injection
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Task 2.4  Comparison

• Radial Injection: Orientation for
Planar Comparison

– Methane/Air

– Sc,t = 0.7

LES Experiment

URANS RSM
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Task 2.4  Comparison

• Radial Injection
Effect of Sc,t: Methane 0.7

0.4 0.2

Exp

k-e RSM
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Task 2.4  Comparison

• Radial Injection 
Effect of Sc,t:  Hydrogen

RSM

0.7

0.4 0.2

Exp

k-e
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Task 2.4  Comparison

• Radial Injection:  Example Radial Profiles

– Z2

Methane Hydrogen

R/D
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Task 2.4  Comparison

• Radial Injection:  Effect of Fuel Type:  152.6 mm downstream
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Task 2.4  Comparison

• Axial Jet



19 October 2009 35/48 

Task 2.4  Comparison

• Axial Injection
Effect of Sc,t: Methane

RSM

0.7

0.4 0.2

Exp

k-e
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Task 2.4  Comparison

• Axial Injection
Effect of Sc,t: Hydrogen

RSMk-e

0.7

0.4 0.2

Exp
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H2CH4

Task 2.4  Comparison

• Axial Jet:  Example Radial Profiles

– Z2 Plane



19 October 2009 38/48 

Task 2.4  Analysis

• Five Factor Generalized Factorial Design Used

Study Type Factorial Runs 96

Design Type Full Factorial Blocks No Blocks

Center Points 0

Design Model 2FI Build Time (ms) 1.2921

Factor Name Type Subtype Low Actual High Actual

A Turb Model Categoric Nominal K-E RSM Levels: 2

B Fuel Categoric Nominal Methane Hydrogen Levels: 2

C Plane Categoric Nominal 0.3125 1.875 Levels: 3

D T-Sch Categoric Nominal 0.2 0.7 Levels: 4

E Injection Type Categoric Nominal Axial Radial Levels: 2

(to be added:  swirl—yes/no)
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Figure 1- normalized averaged fuel/air differences between experiment and 

numerical cases over the planes (methane) for axial injection configuration 

Task 2.4  Analysis

• Response—Average magnitude of difference between simulation and 
experimental results normalized by mean measured F/A in each plane. 
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Analysis of variance table [Classical sum of squares - Type II]

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 3.664 25 0.147 11.438 < 0.0001

A-Turb Model 0.504 1 0.504 39.322 < 0.0001

B-Fuel 0.088 1 0.088 6.896 0.0106

C-Plane 0.053 2 0.027 2.075 0.1332

D-T-Sch 1.162 3 0.387 30.224 < 0.0001

E-Injection Type 0.520 1 0.520 40.566 < 0.0001

CD 0.237 6 0.040 3.085 0.0097

CE 0.475 2 0.237 18.524 < 0.0001

DE 0.467 3 0.156 12.136 < 0.0001

CDE 0.159 6 0.026 2.065 0.0684

Residual 0.897 70 0.013

Cor Total 4.561 95

• Values of "Prob > F" less than 0.0500 indicate model terms are significant.  

• In this case A, B, D, E, CE, DE are significant model terms.  

• Values greater than 0.1000 indicate the model terms are not significant.  

Task 2.4  Analysis
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Task 2.4  Analysis

• Predicted vs. Actual, Fuel Effect

H2

CH4

R2 = 0.8
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Design-Expert® Software

LocalNormDiff

X1 = B: Fuel

X2 = E: Injection Type

Actual Factors

A: Turb Model = Average
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Task 2.4  Analysis

• Fuel Type

– Relatively small
effect

– H2 less
accurate
than CH4

Axial Injection

Radial Injection

Methane Hydrogen
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Design-Expert® Software

LocalNormDiff

X1 = D: T-Sch

X2 = E: Injection Type

Actual Factors

A: Turb Model = Average

B: Fuel = Average

C: Plane = 0.3125

E1 Axial
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E: Injection Type
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Axial Injection

Radial Injection

Task 2.4  Analysis

• Injection Type/Sc

– Axial Injection
sensitive
to Sc

– Radial injection
insensitive
to Sc
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Design-Expert® Software

LocalNormDiff
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1.2 Axial Injection

Design-Expert® Software
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1.2 Radial Injection

Task 2.4  Analysis

• Sensitivity of Injection Type
to Turbulence Model
and Sc

• Axial Injection:  more sensitive to Sc
• RSM consistently superior
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Design-Expert® Software

LocalNormDiff

X1 = C: Plane

X2 = D: T-Sch

Actual Factors

A: Turb Model = Average

B: Fuel = Average
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Task 2.4  Analysis

• Sc/Axial Plane Interaction:  

– Less Sensitivity
to Sc for 
Near Plane

– Generally
minor
plane
effect

0.7

0.4

0.3

0.2



19 October 2009 46/48 

Axial Injection

Radial Injection

Task 2.4  Analysis

• Sensitivity of Injection Type
to Axial Plane and Sc

– Interaction Noted

• Axial Injection:  Sc sensitivity
depends on plane—higher values
less accurate in near field, more
accurate in far field

• Radial Injection—less sensitivity
to plane and Sc 
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Conclusions from ANOVA—non-swirling flows

• Turbulence Model is important
– RSM consistently superior to k-e

• Effect of fuel type minor
– Implies H2 is not “inherently more difficult” to simulate for these non-swirling 

conditions (expected to see stronger diffusive behavior)

– Actual profiles for H2 and CH4 very similar!

• Turbulent mixing dominates these flow vs diffusion

• Axial Plane dependency not significant on average
– However, injection type interacts with plane and Sc

• Axial Injectionbetter agreement downstream with high Sc

• Axial Injectionworse agreement downstream with low Sc

• Radial Injectioninsensitive to Sc

• Turbulent Schmidt # value important for axial injection
– Higher values give better agreement for axial injection

– Radial injection is dominated by turbulence (no Sc dependency)

• Other general observations
– Convergence and run time longer for H2 compared to CH4
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Summary and Next Steps

• Results for swirling flow cases 90% completed

• Completion of Analysis

– Other “responses” 
(e.g., unmixedness from experiments 
and simulations)

– ANOVA for swirling cases

– Generalized analysis (include swirling results with non-swirling)

– Recommendations for simulation approaches for given flow classes

• Final Report

Thank You!


