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Flame Transfer Function
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 Input function, X(f): Inlet velocity or fuel flow rate fluctuations

 Output function, Y(f): Overall rate of heat release fluctuation
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Actual gas turbine combustors are based on multi-nozzle annular or 
multi-nozzle can combustors, where both transverse mode and 
longitudinal mode instabilities have been observed 

Our current understanding of combustion dynamics in lean premixed gas 
turbine systems is primary limited to longitudinal-mode instabilities in 
single-nozzle combustors operating on natural gas. 

To what extent is the understanding that has been obtained from studies 
of longitudinal-mode instabilities in single-nozzle combustors relevant to 
these multi-nozzle combustors? 

This project builds on our current understanding and extends it to the 
case of longitudinal and transverse-mode instabilities in multi-nozzle 
combustors operating on high-hydrogen fuels. 

Motivation
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Author(s) Year
Exp.
or 

Comp.

Nozzle 
Configuration

Lam 
or 

Turb

PM 
or 

PPM

Stable 
or 

Self-Exc
Results 

T. Poinsot, A. Trouve, D. 
Veynante, S. Candel,

and E. Esposito
1986 E Multi-Slot Burner Turb PM Self-Exc

Schlieren, phase averaged 
images, stability maps

J. Hermannm, A. Orthmann, 
S. Hoffmann, P. Berenbrink

2000 E
Annular 

Multi-Nozzle
Turb PPM Self-Exc

Active/Passive 
Combustion Control

G.A. Richards and
E.H. Robey

2008 E Duel Nozzles Turb PPM Self-Exc
Active/Passive

Combustion Control
G. Staffenbach, L.Y.M. Gicquel, 

G. Boudier, and T. Poinsot
2010 C

Annular 
Multi-Nozzle

Turb PPM Self-Exc
LES, temperature and 

pressure fields
D. Fanaca, P.R. Alemela, 

C. Hirsch, and T. Sattelmayer
2010 E

Annular 
Multi-Nozzle

Turb PM Stable
PIV with and w/o flame

OH* Chem Flame Images 
F. Boudy, D. Durox, 

T. Schuller, G. Jomaas,  and 
S. Candel

2010 E
Perforated Plate 

Burner
Trans 
/ Turb

PM
Forced and 

Self-Exc
Flame Transfer Function

C. Fureby 2010 C
Annular 

Multi-Nozzle
Turb PPM Self-Exc LES, reacting flow field

Previous Multi-Nozzle Research

 Several instability studies of multi-nozzle annular combustors have been published.

 No instability studies of multi-nozzle can combustors have been reported.  

 No flame transfer function calculations or measurements in a multi-nozzle  
combustor have been reported.



Objectives (PSU)

1) To experimentally determine the air-forced flame transfer function of 
a multi-nozzle can combustor operating on high hydrogen content 
fuels. 

2) To identify and characterize the instability driving mechanisms 
through which velocity fluctuations result in heat release fluctuations 
in a multi-nozzle  combustor.

3) To characterize the role of flame-flame interactions in the air-forced 
flame response of a multi-nozzle combustor.
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Five-Nozzle Can Combustor



Measurements

 P across the swirler in each nozzle

 Mean velocity in each nozzle 

 Dynamic pressure measurements at several locations in each nozzle 
and the combustor

 Characterize acoustic field in nozzle and combustor

 Two-microphone method

 Inlet velocity fluctuation in each nozzle

 OH*, CH*, CO2* chemiluminescence intensity measurements

 Characterize the temporal fluctuation of the heat release

 Global CH* (OH*) chemiluminescence imaging (time-averaged and 
phase-synchronized)

 Chemiluminescence imaging to characterize flame structure and heat 
release distribution

 Absorption measurements

 Temporal fluctuation of the equivalence ratio at the exit of each nozzle 
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Flame Length in Multi-Nozzle Combustors?

Line-of-sight 
chemiluminescence

flame image

Abel 
Inversion

Center of
Heat 

Release

Flame Length in Multi-Nozzle combustor?
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Axial Heat Release Distribution

 The axial location of the greatest chemiluminescence intensity is defined as the flame length.
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Test Conditions             (Capabilities of the rig)
•Velocity (m/s) 15 – 30 (15 - 35)
• Equivalence Ratio .6 - .7 (.45 - .7)
• Inlet Temperature (C) 200 (20 – 250)
• Forcing amplitude (u’ / umean) 5% - 10% (5%-25%)
• Forcing Frequencies (hz) 100 – 400 (100 – 450)

Inlet Temp.
(C)

Velocity
(m/s)

Equivalence Ratio
Forcing 

Amplitude
200 15 0.6 5.00%
200 15 0.6 10.00%
200 20 0.6 5.00%
200 20 0.6 10.00%
200 25 0.6 5.00%
200 25 0.6 10.00%
200 30 0.6 5.00%
100 25 0.65 5.00%

Operating Conditions
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 The axial location of maximum heat release shows little change with velocity,   
but increases noticeably with decreasing equivalence ratio. 
 The change in equivalence ratio changes the convective time by changing the

flame length.
 The change in velocity changes the convection time directly.
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Axial Heat Release Distribution
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Comparison of SNF to MNF – effect of equivalence 
ratio

MNR 25 m/s

SNR 25 m/s
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Flame Transfer Function
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 Input function, X(f): Inlet velocity or fuel flow rate fluctuations

 Output function, Y(f): Overall rate of heat release fluctuation
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Multi-Nozzle Flame Transfer Function - Gain



*Gain = (Q’/Qmean)/(V’/Vmean)
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 = 0.65, MNR
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Flame Transfer Function - Gain



Multi-Nozzle Flame Transfer Function - Gain
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Vmean

Forcing 
Amplitude (%)

St = facoustic/fconvective

The presence of minima and 
maxima correspond to 
constructive and destructive 
interference between two 
instability mechanisms 

 What are these mechanisms?
 Are the same mechanisms
responsible for different  
operating conditions?

 Are the mechanisms the same for 
each nozzle?



Characterizing the Instability Mechanisms
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The flame structure is key to understanding the affect of different instability mechanisms 

A number of flame imaging techniques will be used to identify and characterize  the 
instability mechanisms

10” 6”

6”

Phase-Synchronized Chemiluminescence Images



Downstream Imaging
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•By using a mirror positioned outside of a window in the downstream 
duct work we can visualize all 5 flames

•This will allow us to look at the spatially resolved heat release of each 
flame individually 



Downstream Imaging
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• We can now visualize the flame interaction region

•This will allow us to look at the spatially resolved heat release of each 
flame individually 


