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Presentation Overview

• Background
– Carbon management
– Thermoacoustic instabilities

• Experimental Setup
– Swirl stabilized, atmospheric burner

• Results and Conclusions
– Changes in dynamic instabilities with varying EGR

• Summary and Future Steps
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Carbon Dioxide Management

• Pre-Combustion
– Coal-derived Syngas

• Non-Traditional Combustion
– Oxy-Combustion

• Products limited to CO2 and H2O
• Oxygen source

– Chemical looping
• No separate oxygen source required
• Products limited to CO2 and H2O

• Post-Combustion
– Amine solvent scrubbing
– Efficiency Penalty around 8% with nearly 85% of CO2

captured1

• May improve with EGR
1Botero, et al. (2009), Energy Procedia, 1, 3835.



4

The Cost of Carbon Capture

Estimated costs for NGCC plant with and without 
amine-based carbon capture2

Capital cost

LCOE3

No CCS

$ 554/kW

68 mills/kWh

With amine 
CCS

$ 1172/kW

97 mills/kWh

1 Finkenrath et al (2007).  Proc. ASME Turbo Expo 2007,  Paper GT2007-27764 
2 NETL Report DOE/NETL-2007/1281
3 LCOE:  20-year levelized cost-of-electricity

• CCS is expected to have significant capital cost 
and add to COE.
– Large capital cost due to the need to oversize clean-up system 

to deal with full volume of exhaust flow although low 
concentration of CO2..

• Recycling % of 
exhaust with EGR 
permits smaller 
capture system1

• Proven technology 
could offer near-
term pathway for 
incremental 
implementation.
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Exhaust Gas Recirculation 
and Impact on Combustion

• Experiments by GE show 
feasibility up to 35% EGR with 
few modifications to existing 
designs1

– EGR reduces NOx at a fixed flame 
temperature

• Effect of significant dilution on 
combustion process unknown
– Air stream diluted primarily by CO2 and 

N2
• H2O condensed out
• Reduced Flame Speeds

1ElKady, et al., Proc. ASME Turbo Expo 2008, GT2008-51152

– May impact blowoff/anchoring, combustion dynamics, emissions
– Similarity to potential issues related to “fuel flexibility”

• Objective of current study
– Investigate the influence of EGR on dynamic combustion instabilities in methane and 

methane/hydrogen blended fuels.
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Thermoacoustic Combustion Instabilities

• Closed-loop coupling relies on proper 
phase (time delay) between system 
acoustics and unsteady heat release.
– Time delay must be function of acoustic 

period (T)
– Acoustic disturbance must convect to 

flame “center of mass” (heat release).
– Governed by convective and chemical 

time scales which can vary depending on 
fuel composition1. 

τconv + τchem = f(T)

• Changes in fuel composition impact 
flame speed (τchem) and flame “center of 
mass” (τconv) . 
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1. Lieuwen et al., Proc. ASME Turbo Expo 2006, GT2006-90770
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Experimental Set-up
• Lab scale measurements of flame dynamics 

under EGR conditions
– Atmospheric, Swirl stabilized

• High Swirl S = 0.88
• Low Swirl S ~ 0.55

– Perfectly pre-mixed and choked inlet (no φ’)
– Simulated EGR: N2 and CO2 dilution

• Diagnostics
– Hot wire probe measures acoustic velocity 

perturbations.
– PMTs (OH*, CO2*) measures heat release 

perturbations
– ICCD captures time-averaged images of flame

Flow

Low Swirl High Swirl
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Fuel Composition

• Test Cases
– 100% CH4 and 75/25 CH4/H2 blend
– Operating conditions selected to maintain flame temperature 

(Cantera-GRI Mech 3.0).
– Dilution limited by blow-off
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Influence of EGR Composition on Dynamic Response
High Swirl Case

• Dynamic response of the flame as a 
function of flame temperature

– Same basic response across flow rates
– Distinct change in the dynamic response 

once some threshold temperature is 
reached

• Observed change in dynamic response 
at constant flame temperature with 
addition of CO2 or N2.

– 100% CH4 vs 10% CO2 and 10-20% N2
– Flames diluted with 20% N2 (Fuel D) had a 

response similar to that of the 10% CO2 
diluted (Fuel B) case.  

– Substitution of 25% H2 produced a more 
significant impact for CO2 dilution than N2.

• C vs E
• D vs F
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Velocity perturbation RMS versus adiabatic 
flame temperature for Q = 125 lpm.

Velocity perturbation RMS versus adiabatic 
flame temperature for Q = 150 lpm.
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Influence of EGR Composition on Dynamic Response
Low Swirl Case vs High Swirl Case

• Similar response to flame temperature as high swirl case
– Peak response almost double
– Trend independent of flow rate.
– Less dependent on diluent?

Velocity perturbation RMS versus adiabatic 
flame temperature for Q = 125 lpm (HSI)

Velocity perturbation RMS versus adiabatic 
flame temperature for Q = 125 lpm (LSI)

Low Swirl InjectorHigh Swirl Injector
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Flame Center of Mass
• Center of mass defined as the phase averaged 

center of the CH* intensity (recorded by ICCD)
– Abel Inversion of time-averaged (10) image.
– High Swirl: distance from the center-body tip to COM 

and an angle representing the flame orientation 
relative to the center axis

– Low Swirl: axial distance from COM to dump plane. 

a) Time-averaged image of unstable flame at
Q = 150 lpm, φ = 0.95, V’rms = 0.3; b) Abel
inverted image of the flame surface

Unstable flame oscillates around 
steady flame location.

a) Time-averaged image of unstable flame at
Q = 100 lpm, φ = 0.80, V’rms = 0.02; b) Abel
inverted image of the flame surface

HSI

LSI
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Effect of EGR on Flame Offset
• Addition of diluent increased flame length

– Addition of 10% CO2 equivalent to 20% N2 not 10% N2 for HIGH SWIRL
– Liu et al.1 suggest  effects due to:

• Variation of transport and thermal properties
• Possible direct chemical effect of CO2

• Enhanced radiation transfer by CO2
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1. Liu et al., Combustion and Flame V133, 495–497, 2003
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Effect of EGR on Flame Offset
• Similar outcome at constant flame temperature

– 10% CO2 dilution equivalent to 20% N2 dilution
– LSI: similar response regardless of dilution
– Addition of H2 reduced flame offset below baseline

Q = 125 lpm Low Swirl InjectorHigh Swirl Injector
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Effect of EGR on Time Delay
• Delay associated with convection of 

disturbances along the flame surface
– Convective time delay approximated from flame 

angle(HSI), bulk velocity and flame offset (COM).
• Regardless of fuel composition

– Unstable: τ < 5ms (HSI), τ < 2.5ms (LSI) 
– Marginal: 5 ms < τ < 5.5 ms (HSI), 2.5 ms < τ < 2.85 

ms (LSI) 
– Stable: τ > 5.5 ms (HSI), τ > 2.85 ms (LSI)

Q = 125 lpm

Low Swirl Injector

High Swirl Injector
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Time Delay and Flame Temperature
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Time Delay and Flame Temperature
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Diluent seemed 
to have less of an 
impact in Low 
Swirl Case
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Instability as a Function of 
Non-Dimensional Frequency

• Instability occurs in regions in which convective 
disturbance is in phase with heat release fluctuations
– Addition of diluent alters the time delay and flame length resulting 

in changes in the dynamic response
• Strouhal number 

– Non-dimensional frequency obtained by dividing convective time 
delay by acoustic period
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Summary

• EGR believed to be a viable option to concentrate CO2 in 
the exhaust stream improving efficiency in post-
combustion carbon capture schemes.

• High Swirl : Addition of EGR altered flame length and 
time delay disproportionately with 10% CO2 addition 
behaved similar to 20% N2 dilution.  

• Low Swirl varying dilution have little impact on time 
delay.

• At a fixed flame temperature, EGR addition increased 
time delay and flame length changing the dynamic 
response (High Swirl).
– Consistent with Strouhal Number correlations shown in previous 

studies.
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Next Steps

• Gain a better understanding of the Low Swirl Injector 
response.
– Why does diluent seem to have a greater impact on high swirl 

case compared to low swirl

• How high can the EGR rates go?
– 35, 40% or higher???

• Consider variable EGR as a control method for altering 
the dynamic response.
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Thank You!

Questions?

Contact Info:

Don Ferguson
National Energy Technology Laboratory – US DOE

donald.ferguson@netl.doe.gov
(304) 285-4192

mailto:donald.ferguson@netl.doe.gov
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