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Background Objectives Approach

e Combustion dynamics in gas turbines occur when there is closed loop e To characterize the air-forced flame response of a lean premixed e Air-forced flame response tests are performed in a new optically-
coupling between combustor pressure and heat release fluctuations. natural gas multi-nozzle can combustor over a range of operating accessible multi-nozzle can combustor.

e The mechani ible for the closed | i b conditions. . o . . |
€ Mmechanisms responsinie 1ot e closed 100p coupling can be e A siren-device is used to produce the air velocity fluctuations over a

associated with velocity fluctuations and/or equivalence ratio e To compare the multi-nozzle flame response to that of an identical range of frequencies and amplitudes.

fluctuations. single-nozzle combustor at equivalent operating conditions. o o
e The total flame chemiluminescence emission is used as a measure

* The forced response of the flame’s rate of heat release to velocity e To characterize the effect of flame-to-flame interactions in the air- of the time varying rate of heat release.
fluctuations and equivalence ratio fluctuations is expressed in terms forced flame response of a multi-nozzle can combustor

of the gain and phase of the corresponding flame transfer function. e Phase-locked chemiluminescence imaging is used to characterize

e Develop a methodology for applying single nozzle results to multi- the phenomenology of the flame’s response to inlet velocity

e To date there have been no forced flame response measurements in .
nozzle combustors. fluctuations.

multi-nozzle can or annular combustors reported in the literature.
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Measurements & Data Processing
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