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Introduction
Availability of high fidelity chemical kinetic models to describe real fuel oxidation/combustion at practically relevant 
conditions is the limiting challenge in the design of advanced engines and fuels to meet energy efficiency and clean 
combustion demands in a world constrained by fossil fuel depletion.

Jet fuel composition is prohibitively complex to model as real fuel, 
=> jet fuel composition varies markedly with, geographical source, refining method and end use operating condition.
=> must model with a simple mixture of less than approximately six components, a surrogate fuel.

1st challenge becomes the identification of a suitable surrogate mixture,

=> must be simple in composition but emulate complex combustion behaviour exhibited by real fuel.

Difficulty increases when fuel-to-fuel variability is considered, different fuels have different chemical components.

Capability to incorporate emerging alternative fuels: Synthetic Paraffinic Kerosene (SPK) and Hydrotreated Renewable 
Jet (HRJ) fuels, bio or fossil derived, can differ in composition considerably from crude oil derived fuels.

Strategy to Jet Fuel Kinetic Modelling and Surrogate Formulation
For a surrogate to emulate the combustion chemistry of a real fuel, critical fuel properties which 
manifest in important practical combustion behaviour of the target fuel must be identified and be 
easily measureable: 
•Adiabatic flame temperature 

•Local air fuel stoichiometry

•Enthalpy of combustion 

•Flame velocity 

•Fuel diffusive properties 

•Global chemical kinetics/ Overall radical production

•Sooting tendency 

Surrogate mixture must emulate these parameters, but how?
Thesis: Interaction of distinct molecular functionalities in radical generation is manifested in real 
fuel combustion behaviour.
For a surrogate mixture to successfully emulate real fuel behaviour,  upon oxidation surrogate 
components should form the same distinct chemical functionalities as the real fuel. 
• for petroleum derived fuels => n-alkyl, iso-alkyl and aromatic.
 Get surrogate distinct chemical functionalities and proportions correct, then get real fuel 
combustion behaviour correct!

Ratio of hydrogen to carbon (H/C)

Molecular Weight (MW)
Derived Cetane Number (DCN),

Threshold Sooting Index (TSI),  

1st Generation Surrogate Shows Concept Works1

 The variability of real fuels in terms of chemical composition means surrogate formulation must be,  
at least to some degree, on a fuel-specific basis. 
 Experiments conducted on an average Jet-A (POSF 4658) show expected complex combustion 
character. 
 Our 1st generation surrogate1 is comprised of n-decane/iso-octane/toluene and matches Jet-A (POSF 
4658) H/C and DCN only.  Overall,  excellent emulation of real Jet-A POSF 4658 chemical kinetic 
combustion properties is achieved for: ignition delay, heat release rate, diffusion flame extinction.
Table 1: Jet-A POSF 4658 Surrogate Formulations
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Kinetic Models
 Surrogate component palette is assembled with careful consideration to state of 
kinetic model development, Table 2.
1st generation surrogate kinetic model assembled from n-decane6, iso-octane7

and toluene8 chemistries, on top of a common sub model2-5, as these are the best 
characterised and understood required representative chemical functionalities.
 2nd generation surrogate kinetic model is assembled from n-dodecane6, iso-
octane7, 1,3,5 trimethyl benzene (mesitylene)9 and n-propyl benzene10 chemistries 
but these components are less well characterised and more poorly understood.
Effect of cycloalkane chemistries11,12 on 1st generation surrogate  can also be 
tested.

2nd Generation Surrogate Shows Better Emulation
 1st generation surrogate emulates Jet-A POSF 4658 combustion chemistry vey well but any mixture 
of n-decane/iso-octane/toluene can not match Jet-A POSF 4658 threshold sooting index (TSI) and 
average molecular weight (MW) simultaneously => larger aromatic components are required.
A 2nd generation surrogate mixture of n-dodecane/iso-octane/1,3,5 trimethyl benzene/n-propyl
benzene matches Jet-A POSF 4658 DCN, H/C, MW and TSI.
Gas phase experiments show that 1st generation surrogate and 2nd generation surrogate  share 
almost identical chemical kinetic combustion behaviour and both are very similar to Jet-A POSF 4658.
=> conclusively proves concept.

 Provisional 2nd generation surrogate kinetic model reproduces experimental data quite well, 
improved relative to 1st generation surrogate kinetic model.
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Remaining Challenges for Surrogate Formulation
Our philosophy is based on identifying the distinct chemical functionalities formed by oxidation of a 
real fuel, if distinct functionalities vary from fuel to fuel then so must surrogate components.
=> important when considering synthetic fuel where no aromatics are present.
Cycloalkanes can be present in jet aviation fuels up to approx. 25-30%, analysis11 of Jet-A POSF 4658 
shows approx 25% cycloalkanes, but do cyloalkanes form distinct chemical functionalities?
With the 1st generation surrogate kinetic model as a base, two additional Jet-A POSF 4658 surrogates 
are formulated where the n-alkane fraction has been replaced with cyclohexane and methyl 
cyclohexane up to 25 mole% => all mixtures share same DCN, H/C, MW and TSI.
Table 3: Jet-A POSF 4658 Surrogate Formulations to Examine Effect of Cycloalkanes.
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Test effect of cycloalkane addition 
to surrogate by adding 
cyclohexane12 and methyl 
cyclohexane13 chemistries to 1st

generation surrogate kinetic model.

 Kinetic model simulations do not 
show pronounced perturbations 
due to cycloalkane addition relative 
to 1st generation surrogate.
=> indicating reduced signifigance 
of the cycloalkane functionality.

Ignition delay times, φ= 1.0 in air at ~20 atm for POSF-
4658, 1st generation POSF-4658 surrogate and 1st

generation POSF-4658 surrogate kinetic model simulations,
showing potential effect of cycloalkane addition to 1st

generation surrogate as per Table 3.
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Conclusions
A working strategy for the formulation of surrogate 
fuels to emulate the gas phase combustion chemistry of 
complex real fuels has been demonstrated.

 Four simply determinable parameters (DCN, H/C, MW 
and TSI) are used to constrain mixtures of 3-4 components 
to precisely emulate real fuel behaviour.

Surrogate formulation strategy and “a priori” kinetic 
modelling shows that predictive capability of real fuel 
combustion chemistry is within sight. 

Based on the identification of distinct chemical 
functionalities that when oxidised impact the radical pool, 
the surrogate formulation strategy is derived from group 
additivity and may therefore be extended to other fuel 
classes such as gasolines, diesels and bio-derived 
oxygenated fuels.  

Ignition Quality Tester (IQT)

Flow reactor oxidation data for conditions of 12.5 atm, 0.3%
carbon, φ= 1.0 and t =1.8s, for POSF-4658 and 1st generation
POSF-4658 surrogate kinetic model simulations, showing
potential effect of cycloalkane addition to 1st generation
surrogate as per Table 3.CO2/H2O omitted for clarity

Table 2: Proposed surrogate palette
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