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Overview 

• Introduction/motivation
• Applications of gas-solid flows
• Modeling particulate flow approaches

– Two fluid models
– Eulerian–Lagrangian
– Hybrid methods

• Modeling Dense phase  flow using 
Lagrangian models
– Volume fraction of particles
– Particle-particle interaction  
– Particle collision 

• Recap and conclusions
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Motivation

• Develop a modeling platform for a range of industrial applications 
using multiple modeling approaches:
– for multi-physics, 
– multi-component 
– multi-scale requirements for a range of industrial applications 

• Applications include 
– Particle Products

• Powders, granules
• Crystals
• Flakes, pellets
• Pastes, emulsions

• Matrix material
• Filled fibers
• Filled polymers
• Building materials

• Non-particulate
– Droplets and bubbles
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Focus on Particulate flows

• Modeling Gas –solid systems can include:
– Particle flows
– Particle size distribution
– Particle mechanics
– Surface and morphology
– Particle-particle interaction
– Turbulence and dispersion
– Geometry effects
– Particle attrition
– Homogenous and hydrogenous 

reaction
– Fluid forces and drag
– Cohesion
– Electrostatic  
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Modeling Multiphase Flows

• Ability to model Multiphase flows expanding
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Gas-solid flows

Courstesy: Prof. Martin Rhodes, Monash University, Australia. 

Group A: small size and density like FCC 
powder

Group B: Most common Material Like Sand

Group C: Cohesive  powder
Group D: Large and/or very dense particles
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Classification of granular flows

• Kinetic regime (diluted flow)
– grains randomly fluctuate and translate, these forms of viscous 

dissipation and stress is named kinetic effect. 

• Collisional regime (higher concentration)
– in addition to dissipation, grains can collide shortly, enhancing 

dissipation and stress, named collisional effect

• Frictional regime (typically ε >50%)
– grains starts to endure long, sliding and rubbing contacts, which 

gives rise to a totally different from kinetic and collisional, named 
frictional effect.
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Dilute vs. Dense Flows

• Average time between particle 
collisions:

• Dilute flow:
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Dilute vs. Dense Flows

Dilute disperse Dense disperse

One-Way Coupling Two-Way Coupling Four-Way Coupling

Inter-particle spacing

100 10 1

Volume fraction α

10-8 10-6                                             10-4                                              10-1 
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Common Multiphase Models 

• Modeling particulate flows has been of 
long-standing interest and commonly 
used models include:

– Lagrangian Models
• DPM for dilute phase (steady and 

time dependent)
• Macroscopic Particle Model (MPM) 

for large particles.

– Eulerian Models
• Euler-Granular with constitutive 

relations for particle stresses

– Hybrid Methods
• Dense Phase DPM for dense flows 

with large size distributions.
• Stress modeled on GKT
• Explicit contact
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Hybrid Models

• A general framework in which the continuous 
phase is solved on an Eulerian grid and the  
particulate phase in a Lagrangian frame.

• Accounts for the volume fraction of the 
particulate phase and particle size 
distribution.

• Provides cell-averaged information from 
Lagrangian to Eulerian frame.

• Accounts for particle-particle and particle-
wall interactions (GKT or explicitly).
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Transport equations for Eulerian 
granular flow
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Mass transfer

Solids Stress

Shared pressure Inter-phase terms

Continuity

Momentum

Note
Transport equations for fluid-fluid system and fluid-solid system differ 
only in the treatment of stress tensor and inter-phase terms
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Solids stress tensor

• Constitutive equations needed to account for interphase and intraphase interaction:

– Solids stress                                     
– Accounts for interaction within solid phase.  

Derived from granular kinetic theory
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Algorithm of the Dense Discrete 
Phase Model

Particle equation of motion, Collision force“

Kinetic theory

Cell based averaging

mass flux
vol. fraction s

pp
col Pa ∇−=
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Circulating Fluidized Bed
Investigation of Particle Segregation

T. Van den Moortel et. al. Chemical Engineering Science, Vol 53 (1998)

Particles

Gas
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Circulating Fluidized Bed
Investigation of Particle Seggration

Settings

Model Dense Discrete Phase, Multi Fluid

Drag Morsi-Alexander

Grids 2d: 64k cells
3d: 20k, 114k, 264k cells

Number particles 2d: 523k in steady state
3d: 314k, 1.57 mio, 3.14 mio

Time 60s
Time step 0.001s
Computing time for 
1000 time steps

160 min on 40 CPUs for fine mesh
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Circulating Fluidized Bed
Setup

Mesh

PDA measurement planes
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Circulating Fluidized Bed
Mesh

hexahedral mesh
in riser

Top of CFB

hexahedral mesh
at exit

tet mesh
for transition
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Circulating Fluidized Bed
Results Averaged for 30 Seconds

axial particle velocity particle volume fraction d10 diameter
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Circulating Fluidized Bed
Flow at Exit

particle velocity gas velocity particle volume fraction
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Circulating Fluidized Bed
Particle Accumulation at Bottom

particle volume fraction
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Summary of results

• Riser simulation:
– Validation of particle seggregation effects in circulating 

fluidized bed.
– DDPM predicts proper distribution of velocity profiles.
– Results clearly show 3-dimensional effects.

• Further studies needed to investigate 
– drag models,
– turbulence models,
– averaging procedures

• DDPM highly efficient for particle size distributions at 
all volume fractions.
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Modeling contacts explicitly

• An extension of the 
DDPM takes into 
account the explicit 
contacting of particles 
through collision 
detection.

• Soft sphere based 
models

Soil mechanics: Cundall 
and Strack (1979)

Fluidized beds: Tsuji, 
Hoomans (1998*)

Pneumatic conveying: 
Tsuji, Herrmann 
(1999*)

Parcel based approach: 
Joseph (2001)
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Current implementation

• Accounts for explicit contact of 
parcels 
– The forces at contact are 

determined by using a soft-
particle spring dashpot model 

– The contact law is 
customizable

– Ability to include more 
complicated physics 

• The framework is extendable to 
include heat transfer, reactions 
and is parallelizable
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Structure of the bed for various gas 
velocities

Particles colored by VOF of solids

Pressure at the inlet
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The fluidization curve
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NETL partnership - Gasification

• Gasification UDF for Euler-Granular 
model

– Developed under funding from NETL
– Based on the work reported by Syamlal

and Bissett (1992) and Wen et. al. 
(1982)

– H2 and CO combustion reactions also 
included

– Used heterogeneous stiff chemistry 
solver of Fluent12 to take care of the 
stiffness of these reactions
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NETL partnership – Carbon 
capture

• 5 m tall cylindrical domain
• Fluid bed height = 0.5 m

• Flue gas (12% CO2, 10% H2O, rest 
N2) moves upward through the 
limestone bed (all size distributions 
under one secondary phase).

• Particle Surface reaction takes 
place (gas temperatures 600-850 
C)

• CO2(g) + CaO (s) = CaCO3(s)
• Last picture shows start of 

limestone conversion to CaCO3 at 
the bottom.
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Conclusion

• ANSYS is committed 
to providing “best in 
class” technology for 
modeling dilute to 
dense granular flows.

• Continue to improve 
speed and fidelity 
through experimental 
validation of results.
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