
Center for Advanced Power Generation

Prediction of Combustion Stability 
and Flashback in Turbines with 

High- Hydrogen Fuel 

Santosh Hemchandra, 
Sai Kumar Thumuluru, 

Shreekrishna, Vigor Yang, 
Tim Lieuwen

Georgia Institute of Technology
School of Aerospace Engineering

Ben T. Zinn Combustion Laboratory

Kyu Tae Kim, 
Dom Santavicca

The Pennsylvania State University
Center for Advanced Power Generation
Department of Mechanical and Nuclear 

Engineering

Presenter
Presentation Notes
4 minutes



Center for Advanced Power Generation

Motivation

• Need: Gas turbines with sufficient flexibility to 
cleanly and efficiently combust high H2 fuels.

• Need: Combustion systems that can stably 
operate over a wide turndown range.

• Problem: Combustion instabilities have posed 
one of most significant issues encountered in 
low NOx gas turbines.

 Fuel variability poses significant challenges in 
developing stable combustors
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Objective and Approach

• Objective: Improve understanding of combustion 
dynamics in high H2 fueled turbines

• Approach: Parallel theoretical, experimental and 
computational investigations of 
– Flame response to fuel/air ratio and velocity 

oscillations
– Understand phenomenology and how it is influenced 

by fuel composition
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Research Objective

Key unsolved problem;
Very nonlinear relationship
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Turbulent Flame Response to 
Flow Perturbations
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Theoretical Framework
• Extensive prior work using level set based 

formulations to rigorously analyze laminar 
flame response to flow oscillations

– Current implementations assume that 
this can be generalized to turbulent 
flames by replacing SL by ST

• Study objective: Perform perturbation 
analysis of turbulent flame response to flow 
oscillations

• Approach:
– Consider flame response to 

superposition of broadband (turbulent) 
and narrowband flow oscillations

• Using asymptotic expansions to find 
solutions

– System of stochastic PDEs for the 
instantaneous flame shape.
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• Asymptotic expansion

• Typical PDE for coefficients

ζ r, t( )= ζo r( )+ εTζ1t r, t( )+ εT
2ζ2t r,t( )+O εT

3( ) 

+ εa ζ1c r, t( )+ εTζ2ct r, t( )+ εT
2ζ3ctt r, t( )+O εT

3( )  +O εa
2( )

 

Theoretical Framework

Advection along flame Local source (turbulence)

 Flame surface response is non-local
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Heat release response
• Transfer function

• Turbulence correction
– Non-zero
– decreases with 

increasing frequency

( ) ( ) ( ) 2
L T TF St F St F St ε= +

Ensemble averaged flame response different 
from laminar response – “Kinematic coupling”
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Analysis of Relationship Between 
Chemiluminescence and Heat 
Release in Oscillating Flames
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• Chemiluminescence routinely used as indirect 
indicator of unsteady heat release
– However, also sensitive to strain, fuel/air ratio, etc.
– Fuel/air ratio oscillations important mechanism for 

perturbing heat release 

• Research question: What is relationship 
between chemiluminescence and heat release 
in flow with oscillating fuel/air ratio?

Relationship between Chemiluminescence and Heat Release 
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Analysis Results

• Chemiluminescence transfer function

• Heat Release transfer function

– where 
• sL1 = normalized flame speed sensitivity to 

equivalence ratio fluctuations
• hR1 = normalized heat of reaction sensitivity to 

equivalence ratio fluctuations 

* effCH AF F mFφ= +

( )1 1 ,Q A L R effF F s h Fφ= + +
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Comparisons between OH*, CH*, CO2*, and Heat Release

• Heat release and 
chemiluminescence 
responses very similar at 
all but low Strouhal 
numbers 

• Different species yield 
qualitatively similar trends, 
but there are differences 

Axisymmetric V-Flame, half-angle = 14 deg., φo=0.6
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Interactions between Harmonic 
Excitation and Turbulence
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Background

• Flames being simultaneously disturbed by 
narrowband harmonic excitation, and 
broadband turbulent fluctuations

• Research Question: Do baseline 
turbulence characteristics (e.g., ST, flame 
brush thickness, u’) change in the 
presence of harmonic excitation?
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EXPERIMENTAL FACILITIES

• Pilot stabilized 
axisymmetric Bunsen flame

• Mie scattering
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Re =10,200, u’/uo =0.2

 Two behaviors exhibited by flame brush:
• Slow growth relative to unforced case
• Rapid growth across convecting vortex
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 Very slow growth relative to 
unforced case

 Step like increases across vortical 
structures

Re =10,200, u’/uo= 0.2
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Re =21,000 (Unforced)

• Gradual growth in flame brush thickness

Progress variable contours Instantaneous OH PLIF images

Results – Swirl flames
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Re =21,000, f= 130 Hz, u’/uo = 0.6

• Modulations in flame length.

Re =21,000 (Unforced)

• Gradual growth in flame brush 
thickness

Results –Swirl flames
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• Re =21,000, f= 130 Hz, u’/uo = 0.6

• Modulations in flame length.
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Comments

• Turbulent flame dynamics clearly altered 
by harmonic forcing
– Flame brush growth suppressed, exhibits 

“step like” behavior
– Believed to be associated with oscillating, 

coherent flame stretching associated with 
convecting vortical structures.
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Flame Transfer Function Measurements

• Forced response to equivalence ratio perturbations: partially 
premixed flame response with fuel modulation

• Forced response to V’ and Φ’: partially premixed flame 
response with air modulation

• Forced response to velocity perturbations: premixed flame 
response

• Forced response to velocity perturbations: premixed flame 
response
– Steady-state flame structures
– Linear and nonlinear dynamics
– Effects of hydrogen enrichment
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Swirl Stabilized Lean Premixed Dump Combustor

• Variable location fuel-injection

• Optically-accessible combustor

• Variable-length combustor
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Quartz combustor

(ID = 109 mm, L = 335 mm)

Dump plane

Centerbody (D = 19 mm)
Axial swirler

PTs for two microphone 
method (TMM)
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Fuel injector (choked)
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Variable Location Fuel Injection
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• Dynamic pressure measurements
– Several locations in the mixing section and the combustor section

• Two-microphone method
– Inlet velocity fluctuation

– Calibration by a hot wire anemometer

• OH*, CH*, CO2* chemiluminescence intensity measurements
– To characterize the temporal fluctuation of the heat release

• Global CH* (OH*) chemiluminescence imaging
– Two dimensional imaging to characterize flame structures

– 3-point Abel inversion

• Infrared absorption measurements
– Temporal fluctuation of the equivalence ratio at the entrance to the 

combustor

Measurements
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Parameters Test conditions

pressure 1 atm

inlet temperature 200 °C

nozzle velocity 60, 70, 80, 90, 100 m/s

nozzle fuel split premixed (PM) and
partially premixed (PPM)

equivalence ratio 0.55, 0.60, 0.65, 0.70

fuel composition 8 cases

forcing frequency 100 ~ 400 Hz

forcing amplitude ~ 60%

# Natural Gas Hydrogen

1 100% 0%

2 85% 15%

3 70% 30%

4 55% 45%

5 40% 60%

6 25% 75%

7 10% 90%

8 0% 100%

Test Conditions for FTF Measurements
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 Flame length decreases with increasing Ф and XH2

Stable Flame Structure 
Inlet conditions: Tin = 200 C, Vin = 60 m/s
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• At XH2 = 0.60, the effect of 
differences in flame speed on 
changes in flame stabilization 
locations is relatively 
negligible.

• Varying the equivalence ratio 
does not affect changes in the 
convection time scale.
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Bifurcation of Flame Shapes

• XH2 < 0.30: dihedral “V” structure
• XH2 > 0.30: enveloped “M” structure
• Conical flames: the contribution of 

the flame tip to fluctuation of the 
flame area is very small.

XH2 = 0.00

XH2 = 0.15

XH2 = 0.30

XH2 = 0.45

XH2 = 0.60
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• LCH*max varies along a well-defined curve, as inlet flow conditions change.

• There is a demarcation point between “V” and “M” flames.
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• The gain and phase decrease with increasing XH2 due to 
decreased flame length.

• The gain is well-fitted by a second order oscillator model.
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Flame Response: Effect of Flame Length

• The gain of enveloped “M” flames is much smaller than that of “V” flames.

• The maximum gain is proportional to flame length.
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• Tin = 200 °C, Vmean = 60 m/s, Ф = 0.60, XH2 = 0.00, 0.30, f = 200 Hz.

• The response of M flames remains in the linear region, even at 
high modulation amplitudes.
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f = 200 Hz, V’/ Vmean = 25% 

Nonlinear Dynamics of Dihedral “V” flames

• The nonlinear dynamics of the natural gas/air premixed flame is 
governed by the flame-vortex interaction.

• The flame front bends toward the inner recirculation zone at φ = 270 .
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• Effects of hydrogen enrichment:
– Hydrogen enrichment results in a decrease in flame response 

(perfectly premixed).
– The response of perfectly premixed enveloped “M” flames 

remains in the linear region, irrespective of shedding of a vortex 
structure.

– When hydrogen-enriched flames are perturbed by V’ and Φ’, 
however, the nonlinear response was observed and it is related to 
local extinction.

Summary – FTF Measurements

• Forced response to V perturbations:
– The response of perfectly premixed flames is strongly dependent 

on stable flame structures.
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2008 UCR/HBCUMIC

Concluding Remarks
• Investigations contributing significantly to quantitative 

understanding of high H2 flame response to flow and 
fuel/air ratio perturbations.

• Strong graduate and undergraduate student involvement 
contributing to critical future clean energy workforce.

• Strong industrial interactions to ensure relevance and 
transition
– Summer internships
– Bi-weekly telecons
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