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Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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Project Overview: H2-selective membranes for IGCC w/ WGSMR
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IGCC efficiency
Without CO2 capture: 46.7%
With conventional CO2 removal: 40.5%

With WGSMR and CO2 recovery: 42.8% based on 
35atm feed, 20atm permeate (15atm pressure drop)
330oC in the feed
hydrogen/carbon dioxide selectivity = 15
hydrogen permeability = 0.2 mol/m2-s-bar

Membrane Area Needed: 2,200 m2 (400MW)
Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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Table 1: More detailed summary of the findings in (Bracht, et al., 1997)
IGCC Configuration Net electric efficiency 

[%]
Overall CO2

recovery[%]1

No CO2 removal 46.7

Conventional CO2 removal2 40.5 88

WGS-MR + conventional gas 
cleaning

42.8 80

WGS-MR + dry gas cleaning 43.4 80

1: based on coal input; 2: CO2 removal by Rectisol wash

IGCC case
base-
case

Conventional CO2
removal

WGS-MR CO2 removal with 
conventional gas cleaining

CO2 recovery 1 88 80

CO2 state gaseous (1.3 bar, 
38 °C)

gaseous (1.0 bar 74 °C)

Net power [MW] 379 355 433

Net efficiency [% 
LHV]

46.7 40.5 42.8

Specific investment 2
[ECU/kW] 1560 1869 1594

COE3 (6000 h/a) 
[ECU / kWh] 0.0787 0.0867 0.0835

1: based on coal input; 2: European Currency Unit, 1ECU=.27 US$, 30 July 1996;
3: Cost of electricity generation.

Membrane operates stable at 500 C; Membrane H2/CO2 selectivity: 15; 
Membrane permeance: 0.1 mol/m2-s-bar (200 SCFH/ft2-100psi deltaP); 
Membrane tube length 2 m; Total membrane surface area 2176 m 2; Total number of 
membrane tubes 3300; Membrane tube diameter 10.4 cm; Total catalyst volume 25.3 m3; 
Estimated membrane cost (for proposed exfoliated zeolite membranes): ~$6,000,000
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Project Overview: Previous Work and Novel Approach

Synthesis of molecular sieve membranes by using thin anisotropic plate-like 
zeolite crystals and exfoliated zeolites dispersed in an inorganic (e.g., sol gel 
silica) or polymeric matrix was attempted for the first time with activities 
supported by DOE Award Number: DE-FG26-04NT42119 (08/01/2004-
04/30/2008)

The potential advantages of our approach compared to other technologies that 
are currently under development include:

No need to grow (hydrothermally or by chemical vapor/fluid deposition) the selective 
layer/film on the support.  The formation of the selective film is based exclusively on a 
coating process using pre-made components.

Potential for high selectivity and flux because, in the case of exfoliated layers or high 
aspect ratio nanocrystals, very thin layers (ca. 10 to 1,000nm respectively) can, in 
principle, be made.  

Potential for high stability since the selective components (zeolite layers) are crystalline 
and more hydrothermally stable than various amorphous oxides used in similar 
membrane applications. 
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Calcination 
540 °C

MCM-22(P) MCM-22

 Invented at Mobil1

 Crystallizes as a lamellar 
structure

1Rubin and Chu, US Patent 4954325, 1990

 High thermal stability

 Large sorption capacity

 Important for catalysis

Unique and unusual pore structure

 12-ring 6-ring cups 

 two dimensional sinusoidal 
channel

Prototype Material: MCM-22(P) A Layered Zeolite Precursor
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6-membered-ring (6MR) transport limiting apertures 

may allow access to hydrogen but will exclude carbon dioxide, nitrogen, 
carbon monoxide and possibly to a large extend water

siliceous material is expected to be hydrothermally stable

Prototype Material: MCM-22 Layers with H2-selective pores across
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MCM-22(P) and MCM-22 crystals are plates with aspect ratio of 10
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50-100nm thick MCM-22 crystals  50 6MR transport limited apertures

exfoliated single layers  1 6MR transport limited aperture
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Proof of Concept Demonstartion: Layer-by-Layer Deposition
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Covalent Attachment of MCM-22 Crystals
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Intermediate Silica Coatings
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5 times coated MCM-22 /silica film

1µm 1µm
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Selective Membranes by Deposition of MCM-22 crystals Demonstarted!
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Membrane Microstructure and Separation Performance

• Target: 0.1 micrometer thick, 50-layer films with

• H2/CO2 selectivity of 100 and 

• hydrogen permeance of 0.1 mol/m2-s-bar at 500oC

• Achieved: 1 micrometer thick, 5-layer films with

• H2/CO2 and H2/N2 ideal selectivities of approximately 10 and 50, 
respectively, with an activated (i.e., increasing with temperature) 
hydrogen permeance of approximately 0.005 to 0.01 mol/m2-s-bar

• Proof of Concept Achieved. Exfoliation is needed to improve performance.
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Consider the membrane containing 200 layers of (2.5 nm) x (250 nm) exfoliated tiles 
The expected performance of these membranes at 500°C is H2/CO2, H2/N2 and H2
permeance of 800, 6,000, and 0.06 – 0.12 mol/m2-s-bar 
(100 – 200 SCFH/ft2-100 psi deltaP), respectively. 
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MCM-22(P)
Swollen Structure Exfoliated Layers

pH ~ 13.8, 
80 °C

Acidification
/sonication

Corma et al., Nature, 1998, 396, 353

Exfoliated Layers Can be Prepared: ITQ-2
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Current swelling procedures result in structural destruction
SwollenMCM-22(P)

Destruction of framework connectivity during swelling and exfoliation
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Along with exfoliated layers (ITQ-2) a disordered phase is present

Corma et al.,
NATURE |VOL 396 | 26 NOVEMBER 1998
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Milder conditions to swell MCM-22(P)

Swelling MCM-22(P) at Room Temperature instead of 80 C followed by repeated 
washing with water.

MCM-22(P) Swollen Structure

pH ~ 13.8, 80 °C
RT

Repeated washing with 
water to remove weakly 
associated surfactant
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Swelling MCM-22 at RT

Swelling without structural degradation

MCM22-P Swollen
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Deswelling by acidification

Swollen Acidified

Reversibility of swelling to give back starting material !!
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Combining XRD, TGA and TEM

XRD, TEM and TGA results are consistent with the following
picture:

Maheshwari et. al., JACS, 2008, 230, p1507

Swelling

MCM-22(P)

Swollen Structure

Acidification
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Local environment investigation by Si NMR

Q3Q4 Q2

Q3
T2 T3
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29Si MAS NMR
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TGA to investigate effect of washing and acidification
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Polystyrene nanocomposite by melt compounding

Polystyrene (Mn 45000) 
+

Swollen MCM-22(P) powder

Sample extruded from 
a circular die

Mixing of molten polymer and 
swollen zeolite layers

Separation of layers by 
combined effect of shear forces 
and polymer diffusion between 
the layers
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Preservation of pore 
structure of layers after 
exfoliation

Polystyrene nanocomposite by melt compounding
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20 nm20 nm
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XRD patterns of 
a) MCM-22 
b) Exfoliated nanosheets 
c) ITQ-2 
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MCM22-P Swollen

Exfoliated Layers
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We now have expertise in procedures that allow us to prepare high 
aspect ratio intact single layers in pure powder form. This is a 
breakthrough in the area of exfoliated zeolites and an enabling 
discovery for the realization of the proposed concept.

Maheshwari, Sudeep; Jordan, Edgar; Kumar, Sandeep; Bates, Frank S.; Penn, R. 
Lee; Shantz, Daniel F.; Tsapatsis, Michael.  Layer Structure Preservation during 
Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the 
American Chemical Society  (2008),  130(4),  1507-1516

Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S.; Koros, William J.  
Layered zeolite materials and methods related thereto. PCT Int. Appl.  (2009),     
58pp.  CODEN: PIXXD2  WO  2009108166  A2  20090903 
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Task 1. Synthesis of exfoliated MCM-22 layers and optimization of the process
Subtask 1.1. Synthesis of siliceous MCM-22(P)
Subtask 1.2. Swelling of MCM-22(P) with structure preservation
Subtask 1.3. Melt compounding optimization for high exfoliation yield
Subtask 1.4. Polymer removal and recovery of exfoliated MCM-22 layers

Task 2. Preparation of layer-by-layer coatings of the exfoliated MCM-22 layers
Subtask 2.1. Dispersion of MCM-22 exfoliated layers in water and alcohol
Subtask 2.2. Layer-by-layer coating process optimization
Subtask 2.3. Alternative deposition processes (if needed)
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Layer by layer assembly to make a multilayered coating on a support surface. 
In case of polyion-inorganic coating, polyions can be eliminated in the final step by calcination at high temperature.
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Task 3. Determination of membrane separation performance
Subtask 3.1. Membrane screening tests on flat alumina supports up to 220°C
Subtask 3.2. Tubular membrane testing using single gases up to 600°C
Subtask 3.3. Tubular membrane testing using simulated feeds up to 600°C
Subtask 3.4. High temperature, high pressure testing of tubular supports

Task 4. Determination of membrane stability in a water gas shift environment
Subtask 4.1. Stability tests in steam containing simulated feeds for exfoliated 
powders
Subtask 4.2. Stability tests in steam containing simulated feeds for alumina 
supported films
Subtask 4.3. Stability tests in steam containing simulated feeds for stainless steel 
supported films
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Schematic of the layer structure of the siliceous layered zeolite precursors a) RUB-18 and b) NU-6(1). 
Both, like MCM-22(P), contain 6MR transport limiting apertures. 
However, the SiO4 tetrahedra connectivity and the openings of the 6MR are different 
(see representative oxygen center to oxygen center distances depicted in the figure and compare with the 
corresponding 0.5nm distance in the 6MR of MCM-22 layers). Si atoms are yellow, O atoms are red. 
6MR are highlighted by pink color.
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Task 5. Evaluation of the other layered materials RUB-18 and NU-6(1)
Subtask 5.1. Synthesis, swelling and exfoliation
Subtask 5.2. Stability tests in water gas shift environment for powders 
Subtask 5.3. Layer-by-layer coatings
Subtask 5.4. Membrane separation performance in simulated dry feeds
Subtask 5.5. Stability tests in water gas shift environment for films
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Task 6.  Modeling, simulation and techno-economic evaluation
Subtask 6.1. Membrane reactor modeling
Subtask 6.2. Integration of membrane reactor model in IGCC process
Subtask 6.3. Techno-economic analysis and optimization
Subtask 6.4. Operability and control analysis
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6.1 – Reactor Modeling

Goal: correlate reactor performance and membrane performance as 
function of operating conditions (T,P, feed conditions)

Desired conversion and % recovery membrane surface   reactor cost

Optimization of reactor design

1-D plug flow model (initially)

2-D steady state model (later)

Isothermal (at mean T) vs. non-isothermal

Different flow configurations 

Effect of reactor design on reactor performance
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6.2 - Integration of reactor in IGCC process

Reactor boundary conditions, size: consistent with IGCC process 
specifications

Step 1: Systems level model of entire process (gasifier, membrane 
reactor, heat exchangers, air separation, turbines) in MATLAB

Assumptions: few basic components, lumped compartments in 
gasifier/turbines, static heat exchanger models, etc.

Benchmarking of overall steady state performance figures/targets

Step 2: Incorporate membrane model in ASPEN simulation of IGCC
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6.3 – Technoeconomic analysis and optimization

Optimization of process conditions to achieve desired carbon 
recovery and electricity demand  

Energetic and economic evaluation

Heat integration alternatives and impact

Preliminary optimization using MATLAB model

Optimization using detailed ASPEN model

Comparison with conventional options (additional reactor cost vs. 
cost of downstream separations)
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6.4 – Operability and control analysis

Use of systems level transient model to assess operability of IGCC process 

Study effect of integration on controllability

Develop control strategies for the membrane reactor and the entire 
integrated process

Evaluate performance for changes in power demand, feed conditions, 
membrane characteristics etc.
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