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Technical Objective

FE49539 examined the recovery of CO2 from pulverized-coal-fired power plants retrofitted for flue-gas recirculation 
(Oxyfuel).  The project focuses on the application Oxyfuels across the existing fleet of domestic PC boilers.  

An engineering assessment of Oxyfuels using ASPEN® was linked to cost assessment using the AMIGA (All-Modular 
Industry Growth Assessment) macroeconomic model.  A strategy of retrofitting for Oxyfuels and then converting over 
the power station site to IGCC also was examined looking at the sensitivity to the timing of policy, price of electricity, 
cost of CO2, and timing of the retrofit.  This transitional strategy looked at the Net Present Value of retrofitting to 
Oxyfuels, followed by the later retirement of the system and a repowering of the site for IGCC showed marked 
benefits with the implementation of Oxyfuels.

The full energy cycle was considered, including mining, coal transportation, coal preparation, power generation, existing 
environmental regulations, facility water use, pipeline CO2 conditioning, and pipeline transport of CO2 to sequestration.  
Process design conditions and retrofit cost calculations and other criteria used to rank options, including sensitivity 
AMIGA model runs using these criteria were determined. We examined capacity expansion needed to meet load 
growth, retirements, and to replace capacity that has been de-rated. In this task we provide fuel demands (gas, coal 
types), emissions, and investment requirements for the entire power sector.  
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The Chicago Energy Initiative is an interdisciplinary research 
program devoted to the study of the economic, environmental 
and geopolitical impacts of energy use (Total Funding ~$2 MM) 
http://research.chicagogsb.edu/energy/index.aspx
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Current Project: Evaluation of CO2 Capture and Sequestration 
Using Oxyfuels with AMIGA Economic Modeling (FE49539 – Tim Fout)
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Use ASPEN to model Oxyfuels retrofit across the existing fleet of 
domestic PC boilers as a CO2 Capture and Sequestration (CCS) 
strategy
Cost-Engineering for Oxyfuels based on ASPEN
Recognize that Oxyfuel investment may be a transitional strategy to 
Integrated Gasification Combined Cycle with CCS
Link to an ongoing effort with the AMIGA (All-Modular Industry Growth 
Assessment) as the Computational General Equilibrium (CGE) 
macroeconomic, sector, & energy model
Study the sectoral impacts of Oxyfuel CCS with AMIGA
Limited consideration of site specific issues such as CO2 transport and 
water availability 



ASPEN: Oxyfuels – Gas Side (with comparison against base)
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ASPEN: Oxyfuels – Steam-side simulation; also CO2 
condensing; waste heat chilling

7

503

2422

4412663

0.00FW21

663

2412

4412663

0.90ST1

663

2410

442772

0.00FW22

663

2410

3969891

1.00ST2

482

2440

4014093

0.00FW20

663

2432

398494

0.00FW19

1000

2400

3969891

1.00ST3

681

607

3969891

1.00ST4

1000

546

3616571

1.00ST5

856

285

3616571

1.00ST6

761

180

3508074

1.00ST7

583

68

3106049

1.00ST8

583

68

3019079

1.00

ST8A

509

44

3019079

1.00ST9

509

44

2828877

1.00

ST9A

330

13

2828877

1.00ST10

330

13

2724209

1.00

ST10A

227

6

2724209

1.00ST11

227

6

2587998

1.00

ST11A

109

1

2587998

0.98

ST12

109

1

2751475

0.00

CNDSATE

109

257

2751475

0.00

CNDSATE2

105

256

2751475

0.00

CNDSATE3

166

6

518032

0.27ST1C
159

256

2751475

0.00

FW1

155

6

518032

0.00CNDSATE4

227

6

136210

1.00ST11B

155

270

518032

0.00FW1B

158

255

3269506

0.00

FW1A

155

5

518032

0.00

CNDSATE7

201

12

381835

0.29ST10D

168

12

381835

0.00

ST10C

196

255

3269506

0.00

FW2A

330

13

104668

1.00ST10B

5

0

CNDFLASH

268

40

277170

0.77ST9C
262

255

3269506

0.00

FW3

206

40

277170

0.00

CNDSATE8

509

44

190202

1.00ST9B

583

68

86969

1.00ST8B

582

63

86969

1.00ST8C
290

255

3269506

0.00

FW4

272

63

86969

0.00

CNDSATE9

WWALLS

Q=2525666861

STDRUM

Q=0

M1

HEAD

W=22

SUPRHTR

Q=1429507927

HPTURBN

W=-190237

REHTR

Q=652776788

IPTURBN1

W=-97426

IPTURBN2

W=-61654

LPTURBN1

W=-101536

LPTURBN2

W=-40674

LPTURBN3

W=-90693

LPTURBN4

W=-49758

LPTURBN5

W=-72938

CONDNSR

Q=-2788939308

CNDPUMP

W=962

FWHTR1

Q=146379691

EXT6

MFW1

PFW1

W=211

FWHTR2

Q=122527570

EXT5

CNDCOOLR

Q=-10777759

CNDFLASH

Q=0

MST1

FWHTR3

Q=217883632

EXT4

MST2

EXT3

PRDROP2

FWHTR4

Q=94131426

MST3

Temperature (F)

Pressure (psi)

Mass Flow Rate (lb/hr)

Vapor Fraction

Q Duty (Btu/hr)

W Power(hp)

DEAERATE

Q=0

EXT2

761

180

3269525

1.00

ST7A

761

180

238549

1.00ST7B

369

171

5125

1.00

ST7C

369

171

4014093

0.00

FW5

STMBFP
761

180

3106049

1.00ST7E

BFWTURB

W=-18516

761

180

163476

1.00ST7D

130

1

163476

1.00

ST7F

BFWPUMP

W=14104

FWHTR5

Q=133085492

374

2450

4014093

0.00

FW5A

406

2445

4014093

0.00

FW6

EXT1

856

285

3508074

1.00

ST6A

856

285

108497

1.00ST6B

379

270

461810

0.00

CNDSAT10

PRDROP3

410

275

461810

0.31

ST6C

FWHTR6

Q=334307859

681

607

3616571

1.00ST4A

EXT0

681

607

353320

1.00ST4B

416

572

353320

0.00CNDSAT11

PRDROP4

678

577

353320

1.00ST4C

BDFLASH

Q=0

663

2410

398494

0.00

FW22A
BDSPLIT

663

2410

44277

0.00

BD1

390

220

18832

1.00BD2

390

220

25446

0.00

BD3

HTRECV

Q=7776955

70

200

30570

0.00

MAKEUP

90

220

25446

0.00

BD4

322

200

30570

0.00

BD5

Blow down

Make up

Water-walls Super-heater Economizer

Deaerater vent



Simulation to validate Kalina
(OMMI Vol. 1, Issue 2; August 2002; “Testing and Operating Experience of the 2 MW Kalina 
Cycle Geothermal Power Plant in Húsavík, Iceland,” Mirolli)
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FGD requires special consideration: Electrolytes were modeled
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Reaction Type Stoichiometry
1 Equilibrium 2 H2O  <-->  H3O+  +  OH-
2 Equilibrium CO2  +  2 H2O  <-->  H3O+  +  HCO3-
3 Equilibrium HCO3-  +  H2O  <-->  H3O+  +  CO3--
4 Equilibrium SO2  +  2 H2O  <-->  H3O+  +  HSO3-
5 Equilibrium HSO3-  +  H2O  <-->  H3O+  +  SO3--
6 Equilibrium CAOH+  <-->  CA++  +  OH-

CASO3(S) Salt CASO3(S)  <-->  CA++  +  SO3--
CASO3*HM Salt CASO3*HM  <-->  CA++  +  SO3--  +  0.5 H2O
CA(OH)2 Salt CA(OH)2  <-->  CAOH+  +  OH-
CACO3(S) Salt CACO3(S)  <-->  CA++  +  CO3--

To prevent Argon and N2 from 
infiltrating the desulfurized
product gas, the ASPEN was 
run with the electrolyte suite 
feature and the Forced 
Oxidation system to examine 
forced oxidation and Oxygen 
mixed with an Oxy-fuel-derived 
CO2 stream. 



CO2 leakage justifies O2 use for Forced Oxidation
Dilution of CO2 by non-condensable gases Argon, O2 and N2 lowers 
the temperature required for liquefaction to levels that may not be 
achievable with evaporative cooling towers alone.
The concentration of non-condensable gases may violate safe 
operating specifications for the pipeline.

Oxyfuel 2-tower SO2 FGD for Air-forced oxidation
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Economic scoping report for Oxyfuels – simple “Capital charge”
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Site-specific 300 MW Oxyfuel vs. Amine retrofit advantages for 
IGCC repowering Doctor, Molburg, et al, “CO2 Capture for PC-Boilers Using OXY-FUELS – A Transition Strategy,” GHGT-7 (Sept. 2004)

Green highlights – equipment that will retrofit for IGCC
Oxy-fuel Amine (MEA)

Air Separation Unit $101,000 

Amine Scrubber $67,992

Ducts/Dampers/Air heaters/Controls $2,571 $1,697 

Feed water Heater $395

O2 Heater $193

Seal Boiler for 1% in-leakage $22

Cooling Towers/Cooling Pumps $35,790

Flue Gas Desulfurization/Caustic $6,317 $8,423

Chemical Treatment $8,949

CO2 Conditioning and Compression $36,828 $33,145 

TOTAL DIRECT COSTSTOTAL DIRECT COSTS $147,326$147,326 $155,995 $155,995 

RETROFIT CAPABLE for IGCCRETROFIT CAPABLE for IGCC $137,828$137,828 $68,935$68,935



Current Project: Evaluation of CO2 Capture and Sequestration 
Using Oxyfuels with AMIGA Economic Modeling (FE49539 – Tim Fout)
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Use ASPEN to model Oxyfuels retrofit across the existing fleet of 
domestic PC boilers as a CO2 Capture and Sequestration (CCS) 
strategy
Cost-Engineering for Oxyfuels based on ASPEN
Recognize that Oxyfuel investment may be a transitional strategy to 
Integrated Gasification Combined Cycle with CCS
Link to an ongoing effort with the AMIGA (All-Modular Industry Growth 
Assessment) as the Computational General Equilibrium (CGE) 
macroeconomic, sector, & energy model
Study the sectoral impacts of Oxyfuel CCS with AMIGA
Limited consideration of site specific issues such as CO2 transport and 
water availability 



Preliminary results for Oxyfuels as a transitional strategy
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Doctor, R.D., J.C. Molburg, M.H. Mendelsohn, and N.F. Brockmeier, CO2 Capture for PC-Boilers Using Oxy-Fuels –
A Transition Strategy, Proceedings of the 7th International Conference Greenhouse Gas Control Technologies, Vol. II,
M. Wilson (ed.),  Elsevier (2005) p. 1205

Preliminary Results 2008-11; J.C. Molburg
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Future Work — ASPEN process design

Optimize on FGD operation including by-pass for reheat
Optimize “cold box” condensing using Low-pressure steam—
assure all CO2 pipeline specifications are met
Plant specific estimates for anticipated pipeline length to 
candidate reservoir
Estimate retrofit difficultly
Load results into detailed cost study 
These features and cost savings will be reported in our 
forthcoming paper: 8th Annual Conference on Carbon Capture and 
Sequestration.
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Our Analysis is in a Context of a Carbon Constrained World

Here we analyze a scenario with 
50% CO2 equivalent reduction by 
2050
A linear reduction implies 203 bmt 
cumulative cap from 2012-2050
See M.I.T. Global Change report 
#146, April 2007: “Assessment of 
U.S. Cap-and-Trade Proposals”
Full banking and borrowing is 
assumed
This scenario is the basis for the 
Stanford University Energy 
Modeling Forum (EMF-22) Study 
on climate transitions

CO2 Equiv. Emissions: MIT Outcome
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Additional Benefits of Oxyfuel Technology

Early CO2 reduction from existing PC plants
Existing plant retrofits can be done in parallel with early penetration of 
IGCC and CTL/CBTL coproduction plants with CCS
The retrofit PC plants will provide a needed stream of CO2 for full scale, 
long- term experience with CO2 transport, injection, sequestration, sink 
reservoir behavior, and monitoring (building confidence in CCS 
technology)
When rapid capacity expansion of CCS technologies is needed to meet 
CO2 emissions reduction targets, carbon storage technology and related 
institution-building will be ready.
Co-benefits of the FGD in the retrofit: lower SO2, NOx, & mercury 
emissions
These features and cost savings will be reported in our forthcoming 
paper: 8th Annual Conference on Carbon Capture and Sequestration. 
We compare scenarios with and without oxyfuel capture technology
availability.
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The AMIGA Modeling System Integrates Energy Supply Systems 
and Environmental Emissions Within an Economy-wide Model
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The initial retrofits in the 2020’s decade help to bring Coal-fired 
Generation Technologies with CCS to the “nth” Commercial 
Plant Maturity by Year 2030

Technologies with CCS that we include in the AMIGA system
– Retrofit of existing plants with oxyfuels (based on unit inventory)
– IGCC
– CTL & CBTL
– Biomass co-firing with Texas A&M FASOM biomass  supply model

The economic choice for technology market shares depends on
– Price of coal (and plant efficiency)
– Technology cost and performance
– Relative Price of Oil / Price of Electricity 
– Stringency and implementation of a CO2 Cap, or
– Price path of CO2 in $ per tonne
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Plant Selection Process

Selected easily retrofitted units based on EVA study of FGD 
retrofit feasibility among large coal plants
For initial retrofit analysis, we select units without FGD, since the 
presence of an FGD will complicate retrofit process
Obtained current net capacity, heat rate, and fuel type from eGRID 
database
Obtained distance to closest sequestration site from Partnership
reports
Applied these values via retrofit cost model to obtain costs for
application in AMIGA model
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Power Plant: Gibson, Indiana

•Largest coal-fired plant in the region

•Sits almost directly on the deepest part of the 
Illinois Basin (i.e. short CO2 pipelines)

•Plant suffers from pollution issues that could 
benefit from retooling and sequestration
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Aggregate Capacity, MW, by State for Selected Oxyfuel Retrofits 
with Geologic Sequestration or Enhanced Oil Recovery
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Retrofit Cost Estimates

Capital Costs
– Air separation unit (ASU) sized to meet oxygen demand
– CO2 compression, condensation, purification, and pumping
– FGD addition
– Plant modifications, principally recycle loop

Retrofit Operating Costs are calculated in AMIGA
– Auxiliary power includes all retrofitted systems
– Net heat rate penalty
– Fuel, reagents, water, waste disposal
– CO2 transport and sequestration

Electric System Costs/Implications
– Retrofit units are high on dispatch loading order (low CO2 penalty)
– High emitting existing units are pushed down the loading order
– Replacement power impacts utilization, coal & gas demand, and new 

capacity builds
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An Oxyfuel Scenario:

Commercial construction begins in year 2020 (2 year construction, 6 mo down time)

In a fourteen year period, 28 units are retrofitted
19.8 GW of nameplate capacity is retrofitted
Units are refurbished for a 20-year life extension
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Under a Carbon Cap, Advanced Coal with CCS, Nuclear, Gas, 
and Renewable Electric Generation have a Role

U.S. Generation under a Cap, BkWh
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The Existing Plants Retrofitted with Oxyfuel and Carbon 
Capture Provide a CO2 Steam for Enabling Early CCS 
Deployment and Longer-term Experience

CO2 Capture and Sequestration
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Future Work — Economics and Energy Systems Analysis

Keep current with regional partnerships and power companies
– Plant selections for analysis of retrofits
– Sequestration sites, costs

Combine into regional and nation-wide analyses of electric power 
generation
Compare alternative incentive structures
Build a user-selected option into the integrated model on retrofit/new 
plant details within a scenario run
– Output reports by type of retrofit or new plant
– Detailed breakdown of engineering, fuel, and other inputs
– Project finance and performance within electric system
– Emission sequestration opportunities
– User friendly interface to select which units to examine with detail
– Keep current with cost analysis by technology (e.g. NETL, EPRI)



Good hopes — enhanced Process Design – AMIGA 
Global Economics – Climate Modeling (FE0049539)
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Thank you!
Questions?
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