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Technical Issues
Ferritic superalloys compare to Ni-based superalloys
Advantages:
• Higher melting temperature
• Superior thermal conductivity
• Lower thermal expansion 
• Much less expensive than Ni-based superalloys 

Challenges:
• Limited creep resistance at high temperatures
• Brittle at room temperature (RT)

Currently used below 894K, but require increased 
temperature capability to 1,033K by 2020 [1,2]
[1] C. P. Dogan and I. G. Wright, “Materials for ultra-supercritical steam turbines,” paper presented at the 28th 
International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, March 10-13, 2003.  
[2] H. K. D. H. Bhadeshia, “Design of ferritic creep-resistant steels,” ISIJ International, 41, 626-640 (2001).



γ/γ′phases in a Ni-based alloy 
(Ni-22Cr-15Fe) (wt.%) [1]

β/ β′ phases in an Fe-based 
alloy (Fe-6.5Al-10Ni-10Cr-
3.4Mo-0.25Zr-0.005B) (wt.%), 
present work

N i c k e l - b a s e d  γ / γ ′
superalloys owe their 
excellent creep strength 
to the presence of a high 
vo lume  f r ac t i on  o f 
c o h e r e n t - c o p l a n a r 
ordered γ′ precipitates.

Like γ/γ′ systems, the 
body-centered cubic 
(bcc) Fe-matrix (A2 or 
β) and NiAl-type (B2 or 
β′) precipitates exhibit 
cube-on-cube or 
coplanar orientation 
relationship.

[1] Neal D. Evans, Philip J. Maziasz, and John J. Truhan, “Phase Transformation During Service 
Aging of Nickel Based Superalloy Pyromet 31V”.

Scientific Basis for 
Microstructural Design
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Objectives
• A steady-state creep rate of approximately 3 x 10-11 s-1

at a temperature of 1,033K and a stress level of 35  
MPa. 

• Ductility of ~ 10% at RT. 

• Good oxidation and corrosion resistance at 1,033K.

• An optimized design requiring slow diffusion in the 
ferrite matrix for stable microstructures and good creep 
resistance at elevated temperatures
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Computational Tools Used and to 
be Used in the Present Research
• Electronic Density-Functional Theory (DFT) code: Vienna

Ab Initio Simulation Package (VASP):
To calculate the total energy and electronic structure of 
many-body systems.

• Alloy Theoretic Automated Toolkit (ATAT):
To compute free energies for partially-ordered compounds 
and solid solutions.

• Thermo-Calc (TC): 
To predict phase stability and phase equilibria as a function 
of composition and temperature in multi-component alloys.

• DIffusion Controlled TRAnsformations (DICTRA):
To simulate diffusion-controlled transformations in multi-
component systems that involve multiple phases with simple 
geometries.



Alloy Design and Preparation
Ferritic Beta-Beta Prime (FBB) Alloy 

Compositions (in weight percent, wt.%)
Alloy Fe Al Ni Cr Mo Hf Zr B W

FBB-1 (HT1) 70 10 10
10
10
10
10
10
10
10

10
10

10 - - - - -
FBB-2 (HT1) 66.3 10 10 3.4 0.25 - 0.005 -
FBB-3 (HT1) 66.3 10 10 3.4 - 0.25 0.005 -
FBB-5 (HT1) 63.2 10 10 3.3 - - 0.005 3.5
FBB-6 (HT1) 65.6 10 10 1.7 - 0.25 0.02 2.5
FBB-7 (HT1) 68.3 8 10 3.4 - 0.25 0.005 -
FBB-8 (HT1) 69.8 6.5 10 3.4 - 0.25 0.005 -
FBB-9 (HT2) 71.3 5 10 3.4 - 0.25 0.005 -
FBB-10 (HT2) 71.2 6.5 10 2.0 - 0.25 0.005 -

FBB-12 (HT2) 72.3 4 10 3.4 - 0.25 0.005 -

Arc melt and drop cast, 12.7 × 12.7 × 76.2 mm
Heat Treatments:
HT1: 1,473 K/30 min.         973 K/100 h;  HT2: 1,273 K/30 min. 973 K/100 h



TEM Examination of FBB-8 (6.5Al)

Air-cooled Annealed at 973 K for 100 h

Fine NiAl-type precipitates are coherent with the matrix.

β′



Precipitate-Size Data

Alloy No. Air-Cooled 
(nm)

973 K/100 hours 
(nm)

V973/VAC

FBB-1 (Base)*

FBB-2 (0.25Hf)

FBB-3 (0.25Zr)

26095.7 ± 20.515 ± 3.1

24.4 ± 4.5 91.8 ± 31

22.8 ± 3.5 93.3 ± 22.1

53

69

*FBB-1: Fe-10Al-10Ni-10Cr

The ratio of the mean volumes of precipitates, V973/VAC
[ =(D973/DAC)3 ] , as a relative measure of coarsening resistance. 
Zr is as good as Hf, as far as imparting coarsening resistance.



Effects of Al wt.% on the RT Ductility

Alloys No. Bending Strain (%)

FBB-1 (Based) 0.47

FBB-3 (10Al) 0.50

FBB-7 (8Al) 0.45

FBB-8 (6.5Al) 0.94

FBB-12 (4.0Al) 1.47

Bending strain can be calculated by

Where εf = bending strain, D = maximum 
deflection of the center of the beam, d = 
thickness, and L = support span

Load-deflection curves of alloys with different Al%

Reducing the Al% results in increased 
ductility.



Effects of Hot Forging on the RT 
Ductility

• Experimental:
Size = 12.7 mm × 12.7 mm × 4 mm

Alloys No. Bending Strain (%)
(Before Forging)

FBB-8 (6.5Al + 
3.4Mo)

1.17 (0.94)

FBB-12 (4.0Al 
+ 3.4Mo)

5.02 (1.47) 

40% deformation at 1,173K

Recrystallized at 1,173K for 1 hour

Another 40% deformation at 1,173K

Hot forging can improve the ductility at room temperature, but its 
beneficial effect varies with alloy composition



Effects of Al wt.% on the Creep 
Property

Alloys No. Creep Rate (/s)
FBB3 (10Al) 8.0 × 10-8

FBB7 (8.0Al) 4.7 × 10-8

FBB8 (6.5Al) ~ 0
FBB9 (5.0Al) 2.6 × 10-8

FBB10
(6.5Al+2Mo)

7.5 × 10-9

FBB12
(4.0Al)

9.8 × 10-8

The optimal Al concentration is around 5 ~ 6.5 wt.%.
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Excellent Creep Resistance of FBB Alloys

• Assume 10% rupture strain with a creep rate 1×10-8/s at 140 MPa and 973K 
• Compare with heat-resistant high and low Cr ferritic steels

Larson-Miller Parameter (LMP) of FBB: 
tr = 2,778 h              T(20 + log tr) = 21,800 

NF616
(9Cr-1.8WMn)

Mod. T91
(9Cr-1Mo)

3Cr-3WVTa

(2.25Cr-1Mo)

(2.25Cr-0.1Mo)

FBB

[1] R. L. Klueh and A. T. 
Nelson, Journal of Nuclear 
Materials, 371, 37-52 
(2007).



Computer-aided Alloy Design

• Understand diffusion characteristics and coarsening 
mechanisms

• Optimize alloy compositions for creep resistance

-- Perform first-principles calculations of diffusivity



Experimental Diffusivity Results
Compilation of Published Data at T = 1,050K

• Wide Scatter in Published Data for Several Solutes
• Data Lacking for Most 5d Solutes (Impurities)
• Absence of Clear Slow Diffusers in Measured Data
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Model for Diffusivities
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First-Principles Calculations
• Vacancy Formation, Migration, and 

Binding Energies
– VASP, Projector-Augmented Wave

(PAW), Spin-Polarized Generalized 
Gradient Approximation (GGA)

– 128-Atom Supercells

• Entropies
– Harmonic vibrational contributions

• Direct force-constant approach using 
54-atom supercells

– Electronic contributions included

• Saddle-Point Geometry
– Mid-Point between Vacancy and 

Solute Neighbors Assumed
– Verified by Nudged-Elastic Band for 

W, Fe, and Hf

Vacancy

Solute

Fe
Fe

Fe

Fe

Fe
FeFe



• Magnetic Contribution in 
Ferromagnetic Phase: α

– α quantifies influence of 
magnetic ordering on activation 
energy, Q

– α measured for relatively few 
solutes (impurities)

Activation Energies: Magnetic Contributions

( ) ( )21F PQ T Q s T α⎡ ⎤= +⎣ ⎦
)0(/)()( MTMTs =

S. Takemoto, H. Nitta, Y. Iijima, and Y. 
Yamazaki, Phil Mag., 2007, v. 87, p 1619.

W-diffusion in α-iron , :  diffusion activation energy in 
a ferromagnetic, paramagnetic state
( ) :  a ratio of the magnetization, M,  at

T and zero temperature

F PQ Q

s T



– Calculate             for solutes 
with known α

– Develop a linear relationship:

– Predict α for other solutes

Semi-Empirical Model for α
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Fe Self Diffusion

Validation of Computational Approach

Present First-Principles
Calculations
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First-Principles Results 
for Other Solutes

Solute

kJ / mol kJ / mol kJ / mol
Fe 62.2 0 277.1

W 68.3 -13.1 283.2

Mo 51.8 -16.2 266.7

Zr 4.3 -78.4 219.2

Ta 42.4 -30.9 257.3

Hf 17.1 -62.9 232.0

Ti 31.1 -25.3 245.9

Imig
vH ,Δ bind

vHΔ
I
Fe

FQ



Conclusions
• Prototype Fe-based alloys containing β and β’ phases 

exhibit microstructures analogous to the classical Ni-
based γ/γ’ superalloys.

• The reduction of Al concentration and the introduction 
of hot forging are both effective to improve the ductility 
of FBB alloys at room temperature.

• The optimal creep resistance can be obtained while the 
Al concentration is about 6 wt.%.



Conclusions (Cont’d)
• Methods for calculating impurity diffusion coefficients 

in α-Fe based on 1st-principles calculations
– Calculations of vacancy formation, migration, and binding energies and 

entropies
– Semi-empirical correction for magnetic disorder

• Comparison with Experimental Data
– Results of calculations comparing favorably for Fe self diffusion and W 

impurity diffusion

• Calculated activation energies for selected 4d and 5d 
solutes
– General trend towards strong vacancy binding
– Except for W, migration energies lower relative to pure Fe

• Search for very slow diffusers continues…



γ/γ′phases in a Ni-based alloy 
(Ni-22Cr-15Fe) (wt.%) [1]

β/ β′ phases in an Fe-based 
alloy (Fe-8Al-10Ni-10Cr) 
(wt.%), present work

N i c k e l - b a s e d  γ / γ ′
superalloys owe their 
excellent creep strength 
to the presence of a high 
vo lume  f r ac t i on  o f 
c o h e r e n t - c o p l a n a r 
ordered γ′ precipitates.

Like γ/γ′ systems, the 
body-centered cubic 
(bcc) Fe-matrix (A2 or 
β) and NiAl-type (B2 or 
β′) precipitates exhibit 
cube-on-cube or 
coplanar orientation 
relationship.

[1] Neal D. Evans, Philip J. Maziasz, and John J. Truhan, “Phase Transformation During Service 
Aging of Nickel Based Superalloy Pyromet 31V”.

Scientific Basis for 
Microstructural Design



Wet-Chemical Analyses

Alloys # Fe Al Ni

9.84 9.97

10

10.05

10

10

9.81

10

Cr B Mo Zr Hf

FBB-2 66.53 9.88 0.005 3.37 - 0.25

Designed goal 66.3 10 0.005 3.4 - 0.25

FBB-3 66.57 9.88 0.005 3.37 0.25 -

Designed goal 66.3 10 0.005 3.4 0.25 -

Concentration of the alloying elements in FBB alloys (wt.%)

FBB alloys were successfully fabricated by arc-melting and drop into
the Cu mode with a dimension of 12.7 mm  × 12.7 mm × 76.2 mm



Fracture Surfaces of Bend-Tested 
Alloys: Brittle Cleavage

FBB-5 containing 10 wt.% Al FBB-8 containing 6.5 wt.% Al



Correlation Factors
• Correlation factors calculations

– Generalization of Manning’s 5-frequency 
model using a transition-matrix approach [1]

– Frequencies from first-principles calculated 
activation energies

• Correlation factor ratio found to be ~ 1 
for solutes at all temperatures.

><−
><+

=
)cos(1
)cos(1

θ
θf

Solute @ 1,050K

W 1.050

Mo 1.109

Zr 0.975

Hf 0.896

A
A

B
A ff /

[1] J. R. Manning. Diffusion Kinetics 
For Atoms in Crystals, 1968.

Impurity Atom
Vacancy

cos( ) :  average cosine angle between 
successive jumps of the impurity

θ



Excellent Creep Resistance of FBB Alloys

NF616

Mod. T91

• Assume 10% rupture 
strain with a creep rate 
1×10-8/s at 140 MPa 
and 973K 

• Compare with heat-
resistant high and low 
Cr ferritic steels

Larson-Miller Parameter
(LMP) of FBB: 
tr = 2778 h
T(20 + ln tr) = 21,800 
Highest!

[1] R. L. Klueh and A. T. 
Nelson, Journal of 
Nuclear Materials, 371, 
37-52 (2007).

steel C Si Mn Cr Ni Mo W V Nb B N Ta

T22 0.15 0.3 0.45 2.25 - 1.0 - - - - -

-

0.06

0.05

-

-

T23 0.06 0.2 0.45 2.25 - 0.1 - 0.25 0.06 0.003 -

NF616 0.07 0.06 0.45 9.0 0.25 0.5 1.8 0.2 0.05 0.004 -

Mod. T91 0.1 0.4 0.4 9.0 0.1 1.0 - 0.2 0.08 - -

3Cr-3WVTa 0.1 0.14 0.5 3.0 - - 3.0 0.25 - - 0.1
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