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CO2 Capture and Storage (CCS)
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Main Obstacles in CCS
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Is it technical ready of CCS for China?
Due to low concentration, large quantity of CO2 gas,
Unacceptable energy penalty (7-15% points);

Resulting into additional 20% energy input,

Leading to energy problem more serious;

Not yet find suitable solutions from demonstrations Using the
existing technologies

Real understanding of innovative CCS technology?




Special issues of China for CCS
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What is speical issue in China?
» Huge amount of energy consumption;
» Rapid increasing of energy consumption;
» Heavily relying on coal (with high carbon)

If we adopt current CCS technologies,
Nearly billions of tce. per year will be paid for CCS

and thousands of Billions USD will be required for CCS.

Is it a sustainable development for China?

Real understanding of special issue of China!




Breakthrough in CCS

Innovative Energy Systems,

Instead of simple extension of the existing technologies
Focus on low even zero energy penalty,

Instead of zero emission with high penalty

Toward to resolving both energy and environments



To integrate chemical energy utilization with CO, capture
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Novel Cycle with Chemical Looping Combustion
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The principle of integration for polygeneration system

cascade conversion of material according to composition

I for chemical production 1 for power generation

integration of
clean fuel production 2

and pollutants control
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Professor F. Haber

Recycle the unreacted gas.

Highly improve the conversion ratio.

Main contribution on chemical production.
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New approach for polygeneration systems
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Performance comparison between three sequential
polygeneration systems
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Performance Comparison
Accounted NA/PC Accounted FA/OTM Accounted NA/OTM

Fuel Consumption 31415 28190 29077
(18148/13267) 26710 (13561/14629) 26710 (9576/19501) 26710
Work Output (kJ) 5824 5824 6422 6422 8561 8561
Methanol Production (kg) 0.3978 0.3978 0.2974 0.2974 0.2095 0.2095
Capacity Ratio 1.54 1.04 0.55
Efficiency(LHV, %) 43.9 68 43.9 48.9 43.9 49.9
Energy Consumption (LHV, GJ/t) 45.6 33.8 45.6 40.6 45.6 34.4
Conversion Efficiency (LHV, %) 43.6 58.9 43.6 49 43.6 58

Saving Ratio 15 53 8.1

Attractive performance improvement in new system



Novel polygeneration system with CO, recovery
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Improvement both in energy utilization and CO, recovery

Comparison of performance for single product processes and polygeneration system

Single Product Systems Polygeneration
IGCC Single Methanol System with CO,
ltems No Capture With Capture Product Process Capture
Fuel input (LHV kJ/kg-fuel) 26710
Network output (kJ/kg-fuel) 11718 9396 4694
Methanol production (kg/ kg-fuel) 0.586 0.368
CO, product (kg/kg-fuel) 1.89 1.79
CO, emission (kg/kg-fuel) 2.485 0.59 0.183
CO, emission rate (kg/kWh) 0.763 0.226 0.14
Recoveryratio (%) 76.2 72.1
Energy penalty for CO, recovery (kWh/kg-CO5) 0.341 None
Thermal efficiency (%) 43.9 35.2 47.3
Energy Consumption for Methanol (GJ/) 45.61

12.8

Energy Saving Ratio (%)

Instead of paying energy penalty
new system achieve better performance with CO, capture.
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Qualitative economic assessment
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Conceptual design of the MES system
Two specific features of the MES system
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Integration of H, plant and power plant
Synthetic use of NG and coal
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Synthetic use of coal and NG

Reaction of methane/steam reforming
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Synthetic use of coal and NG

Reaction of methane/steam reforming
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Synthetic use of coal and NG

Reaction of methane/steam reforming
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Synthetic use of coal and NG

Reaction of methane/steam reforming
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Synthetic use of coal and NG

Reaction of methane/steam reforming

CH,+H,0—->3H,+CO

Strong endothermic reaction
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Results and Discussion

& item?yStem Egz I’VeVI’IT:rCI)?IZI MES System Reféer\;]\/(l)t\lf/]afoz
Natural gas input 427.5 427.5 427.5
Coal input 214.6 214.6 214.6
Hydrogen output 304.0 344.0 304.0
Power output from NG 17.6 - 0.9
Power output from coal 82.8 - 44.8
Net power output 100.4 63.7 45.7
Power to physical abs. : 3.8 -
Heat to chemical abs. - 78.4 163.1
Power for CO, liq. - 13.4 16.7
CO, removal rate, % - 901 901
Overall efficiency, % < 630 63.2 54.5
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MES system has zero energy penalty for CO: removal!



Breakthrough in CCS technology
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Scenario for Different Technical Routes

Capicity of Electricity
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Scenario with Traditional Technologies
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Scenario with New Technologies
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Innovative technology for CO2 capture

Integration of energy use and CO2 capture
Breakthrough in principle and energy system
Super low energy penalty, low cost technology

Scenario suitable for Chinese development
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Effect foresee of new CCS technologies

_._ /K-) i
4 o /O/ /. 4 2100
()
O
o/ CoaT/ 800
41
2000 - p o
co v
1600 - O e g
/ - Coal
o’ e "
' e - 1 1200
o~ /o
1200 - / ‘ ° |
g “ o co
o2 ~ . o—C7H 900
/281114—89( n of MES tech.
800 : | : | : i =0 T '
1990 2000 7010 2020 2030 2040 2050
o ergy Consumptlon of MES
s Ypaﬁ
O

Post-Combus. MES system MES & Chemical Looping




