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@ Discussion of Certification Framework
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Certification Framework

Objective: to develop a simple framework to allow regulators to evaluate

leakage risk for certifying operation and abandonment of geologic CO»
storage sites.
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e Project funded by the Carbon Capture Project Phase 2 (CCP2). Pl's are Curt
Oldenburg at LBNL and Steve Bryant at UT Austin.
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Certification Framework

Definition
CO5 leakage risk is migration across the boundary of the storage volume
(3D region of the subsurface intended to contain injected CO5).

Risk is the probability that negative impacts will occur to:
@ Health, Safety, and the Environment (HSE)
@ Potable Groundwater (USDW)
© Hydrocarbon and Mineral Resources (HMR)
@ Emission Credits and Atmosphere (ECA)
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Example Cross Section
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Figure courtesy of Oldenburg
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Motivation for Certification Framework

@ [here is an urgent need for a framework to certify and permit CO»
injection and eventual closure of thousands of sites.

@ CF aims to develop a simple, transparent, and accepted basis for

regulators and stakeholders to certify that risks of CCS projects to
environment are acceptable.

Needs for Framework:

Q Simplicity: data will always be limited in subsurface systems.

@ Transparency: reservoir models are inherently complicated, not well
understood which leads to suspicion.

© Acceptance: regardless of inherent value, no framework will be used
unless it is accepted (by regulators, stakeholders and public).
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Fault Leakage Model Schematic

Supercritical CO5 is lighter than brine. Buoyancy becomes a driving force
(causing upward migration of fluid).
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Mathematical Modeling of Simple Fault Leakage

Fault is one-dimensional (vertical).

Single-phase flow (supercritical

fluid)
Fluid is only slightly compressible

Leakage into neighboring (lateral)
strata modeled by source term.

Fault initially contains water (initial
condition is hydrostatic).

Bottom boundary condition for fault
is higher than hydrostatic.

Value of bottom bc depends on
thickness of CO»> storage
compartment.
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Numerical Experiments

@ 1000 m long vertical fault

@ Fault properties: ¢ = .2; k =100 mD; c = 107° Pa—%; p = 733 kg/m’

@ Bottom BC for CO, storage compartment with 5 MPa pressurization.

@ Single leak between 800-850 m depth. Leakoff coefficient = —1.5 x 10~ *.

@ Blue curve is hydrostatic pressure. Red curve is pore pressure in fault.
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Numerical Experiments

@ 1000 m long vertical fault

@ Fault properties: ¢ = .2; k =100 mD; ¢ = 107° Pa™}; p = 733 kg/m’
@ Bottom BC for CO, storage compartment with 5 MPa pressurization.

@ Single leak between 800-850 m depth. Leakoff coefficient = —1.5 x 10~*.
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Numerical Experiments

@ 1000 m long vertical fault

@ Bottom BC for 500 m deep CO, storage compartment

@ [wo leaks: first between 100—150 m; second from 800—-850 m

@ Leakoff coefficient for both leaks of size —1.5 x 104
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Numerical Experiments

@ 1000 m long vertical fault

@ Bottom BC for 500 m deep CO, storage compartment

@ [wo leaks: first between 100-150 m; second from 800—850 m

@ Leakoff coefficient for both leaks of size —1.5 x 10~
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Numerical Experiments

@ 1000 m long vertical fault

@ Bottom BC for 500 m deep CO, storage compartment

@ [Two leaks: first between 100—150 m: second from 800—-850 m

@ Leakoff coefficient for both leaks of size —1.5 x 10~*
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Numerical Experiments

@ Most important leaks are those near source of CO» (aquifer).

@ Flux through the fault is not linearly related to size of leakoff
coefficient.
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Numerical Experiments

@ Percentage which attenuates (leaks off) is proportional to k/qjeak-
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Numerical Experiments

Pressing Questions:

@ How do we relate the leakoff coefficient to the geology on either side
of the fault?

@ What combinations of |leaks cause the fluids to attenuate completely
before reaching a compartment in our model such as a source of
drinking water?

@ How might mechanical deformation affect the leakage through faults?

>
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Conclusions

@ Carbon sequestration is the process of injecting CO, into the ground or
ocean to remove it from the atmosphere.

@ For carbon sequestration to be acceptable to regulators and the public,
underground storage sites will need to be certified. The sites must be
demonstrated to be able to contain the majority of the CO; for a few
hundred years.

@ The two primary pathways for leakage will be faults and abandoned wells.

@ A simple leakage model of a fault indicates that leaks closer to the storage
reservoir are the most important to fluid migration out of the container.

@ Nonlinear behavior has been demonstrated between the amount of fluid
which attenuates and the size of leakoff coefficient, the width of the leak,
the number of leaks, and their relative sizes.

@ For this model to be useful for the certification framework, we need to relate
the leakoff coefficient to geological properties of the surrounding rocks.
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Appendix: Fault Flow Model

Conservation of mass and Darcy's law give the single-phase flow equation:

J

9w PR,
5;(00) =V . (Vp—pgVD)+gq,

X €Q, t€ [ty T]

Where:
@ ¢ = porosity @ /1 = viscosity of fluid
@ p = density of fluid @ g — gravitational constant
® p = pore pressure @ D = depth vector
@ k = vertical permeability of ® g = source/sink term
fault @ ¢ = fluid compressibility
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Appendix: Fault Leakage Model

Using the Equation of State

we arrive at a single equation in one unknown (pressure).
Let p, denote hydrostatic pressure.

o Initial condition is p(z, to) = pz(2).
@ Top boundary condition is p(Ztop, t) = Pz(Ztop)-

below the fault.

@ Source term q(z.t) = qreak(2)(p(z. t) — pz(2)).

@ Bottom boundary condition is p(Zpottom t) = Pz(Zbottom) + X where
X is an additional pressure due to the CO, storage compartment
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Appendix: Numerical Solution of Leakage Model

If we discretize the spatial derivatives using Galerkin finite elements, then
we have the following variational problem to solve for pressure p:

(¢ k k
< (r’)p) : V> — — <—Vp, Vv> = <—pogVD, VV> + (Greak (P — pz): V)
ot {[Lc {Lc
Vv eV

Using piecewise linear basis functions W;, we look for a finite dimensional
solution p(z,t) = > 7, Lai(t)Vi(z) to
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Appendix: Numerical Solution of Leakage Model
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Using Backward Euler for the time discretization, we solve the following linear
system for each unknown coefficient «; at each time n:

@:}H = (M + AtK1 — AtK2) ol M + At(— Q1 + Q2 + Q3)] J

Note that term K2 (from the source) contributes to the stiffness matrix.
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