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Mineral Sequestration

• Fixation of carbon dioxide in carbonate minerals 
brought via dissolution of silicate minerals

OH2SiO2MgCO3CO3)OH(OSiMg 22324523 ++=+

Mine TailingsUltramafic Aquifers Industrial Reactors



Greenhouse Gas Fixation within Mine Tailings



Magnesium Flux
• Rate dictated by cation (Mg) flux: commonly adopted 

rate laws are derived from laboratory bench top 
experiments
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Typical Data
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Early stage transient dissolution explained as a sample 
preparation artifact



Chrysotile Steady-State 
Mg-Flux

log RMg = -0.3*pH - 9.3
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Non-Steady-State Rate Laws
• Samson & Eggleston (1998, 2000) proposed that 

transient dissolution reflects inherent surface process, 
not preparation artifacts.

• Transient dissolution is inherent property that is 
predictable, reproducible and can accelerate cation 
release.

• Transients may result from changes in:
– solution composition
– pH
– Temperature
– And other external forcings



pH-Jump Experiment
Chrysotile

pH 4.4 pH 2.0



Accelerated Dissolution

Equals ~45 Extra Hours



Modeled Dissolution Responses

τ
−

τ
++=

∂
∂

= − outintk
o,exexC

out
C

CCeCkR
t

CF exC

Zeroth Order Reaction + First Order Transient 
Single Pass Flow Thorugh

)e1(RC /t
out

τ−−τ= [ ]τ−− −
τ−

τ
= /ttk

C

o,exC
out ee

k1
Ck

C exC

ex

ex

Integrating the Differential Equation*  

Steady-State* 

RCout τ=



pH-Jump Experiment
Chrysotile

pH 4.4 pH 2.0



Table of Fit Coefficients
Steady-State

pH
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(mol•m
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4.4
2.0

-5.93 -3.93 -10.73
-4.73 -5.28 -9.94



First-Order Transient Rate 
Constants
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Conclusions
• The steady-state Mg flux for chrysotile is:  

log R(molMg/m2/s)  = -0.3*pH - 9.3
• Transient surface effects are reproducible and 

predictable and accelerate cation release
• pH cycling can increase cation release rates 

over steady-state conditions.
• We are building a new rate law for the 

transient-non-steady-state dissolution 
phenomena, initial results encouraging
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