Fourth Annual Conference on
Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the
Knowledge, Science and Experience to Date

Capture and Separation- Oxyfuel Combustion

CO, Compression Units for Oxy-Fuel Combustion

Kourosh E. Zanganeh, Ahmed Shafeen, Carlos Salvador, Murlidhar Gupta, and Bill
Pearson

Fossil Fuels and Climate Change Group,CANMET Energy Technology Center, Natural

Resources Canada, 1 Hannel Drive, Ottawa, ON, K1A 1M1, Canada
May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

= ' USDA US Climate Changeg-.2
N L —_— Science Program
R ren o TEmciit AN S R TR TN _

uuuuuuu




Outline

Fuel combustion and CO, capture pathways
Oxy-fuel Combustion

CO, compression and capture processes
— Once-through process

— Autorefrigeration (Fluor process)

— Novel CETC process

Pretreatment and moisture separation
Process modeling and simulation
Results

Conclusions
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Novel CETC Process

* Proprietary process

e Some process simulation results will
be presented
o Comparison between the results:

— CETC Compression process versus Fluor
Autorefrigeration/separation Process



Assumptions for Simulation

e Same baseline design conditions
* Inlet pressure and temperature

— 1 bar, 40 °C
 Vent pressure and temperature

— 6 bar; above dew point

* Product pressure and temperature

— Optimum pressure Is derived from the
simulation at -5 °C
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ar

Flow Rate kg/hr 181.0 181.0 181.0
Composition Mole Fraction Mole Fraction  Mole Fraction
CO, - 0.7443 0.800 0.8467

H,O - 0.0667 0.070 0.0667

O, - 0.0335 0.030 0.0304

N, - 0.1355 0.0845 0.0519

SO, - 0.0012 0.005 0.0014

Ar - 0.0183 0.010 0.0024

NO - 0.0005 0.0005 0.0005

NO, - 0.0001 0.0001 0.0001




Pretreatment and Moisture Separation

* The extent of pretreatment depends on:

— Design considerations( ice formation, corrosion, metal
properties, etc.)

— Cost (cleaning cost, additional energy penalty, material
cost, etc.)

— Application (EOR, Storage, ECBM, etc)
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— Both processes were modeled in HYSYS

— Same initial feed gas characteristics and final product
conditions.

— Product CO, purity equal or above 95%

* Processes Optimization
— CO2 recovery
— Energy requirement
— Stage pressure and recycle ratio
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Conclusions

Many factors impact the design of a CO, compression
unit for oxy-fuel combustion

The impact of impurities in the process design Is an
open area for research

The once-through CO, compression process is well
established and easy to implement.

Autorefrigeration process performance Is superior to
the once-through compression process

Process simulation results shows that CETC process
offers significant improvement over Autorefrigeration
Process.

— Improved energy efficiency at product purity above 95%

— Lower liquid product pressure before the pumping module
— Higher recovery rates





