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Technical Objectives

• To recover >90% CO2 from a flue gas stream 
containing 10~15vol% CO2 and produce a >99 
vol% CO2 product ready for sequestration.

• To maintain long-term stable performance of this 
membrane hybrid system when dealing with flue 
gas streams containing SOx, NOx, HCl and HF.

• To reduce the capture cost to $10~20/ton CO2
avoided.



Process Description

• This process is a modified facilitated transport 
membrane permeation process, i.e., a 
synergistic integration of simultaneous 
chemical absorption/stripping in one compact 
membrane device. 



ADVANTAGES compared to conventional 
alkanolamine-based absorption/stripping

• The energy consumptions from heating, 
cooling and solvent circulation are drastically 
reduced

• The footprint of the membrane-based system 
for CO2 capture is less than 30% of 
conventional absorber/stripper 



ADVANTAGES compared to membrane-based 
absorption/stripping (membrane contactors)

• This membrane hybrid process can drastically reduce 
the steam consumption, while membrane absorption 
cannot reduce the steam consumption for solvent 
regeneration

• This membrane-based capturing system has similar 
footprint as membrane absorber, while use of 
membrane absorber cannot lead to a drastic reduction 
of footprint of the entire device since conventional 
stripping device has to be used



ADVANTAGES compared to conventional 
physical and chemical membranes 

• This membrane process provides both higher CO2
mass transfer coefficient and CO2/N2 selectivity

• The membrane system is stable when the flue gas 
containing SOx, NOx, HCl and HF, when they are 
bulk-removed by conventional deNOx and deSOx
technologies

• Furthermore, the proper accumulation of anions such 
as SO4

2-, SO3
2-, NO3

-, NO2
-, Cl- in the membrane 

phase will lead to higher CO2 mass transfer 
coefficient and CO2/N2 selectivity 

• Excess accumulated anions can be effectively 
removed by an online regeneration system



Feed at high 
pressure

Permeate at low 
pressure

a. Solid facilitated transport (fixed-carrier) membrane

b. Stagnant-liquid facilitated transport membrane

c. Our developed facilitated transport membrane
Figure 1. Mechanisms for various facilitated transport membranes
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Figure 2. Influence of feed concentrations on the product purity and CO2
recovery (dry feed containing CO2 and 3vol% O2 balanced by N2; Pfeed-

in=1.10 atm, RHfeed-in = 40%, Qfeed-in= 400 cm3(STP)/min, Psweep-out= 0.3 
atm, Qsweep-in= 80~120 cm3(STP)/min)
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Figure 3. Influence of operating temperature on CO2 permeance (dry feed 
composition: 15vol% CO2, 3vol% O2 balanced by N2; Pfeed-in=1.05 atm, 
RHfeed-in = 40%, Qfeed-in= 100 cm3(STP)/min, Psweep-out= 0.3 atm, Qsweep-in= 

30 cm3(STP)/min)
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Figure 4. Influence of operating temperature on CO2 /N2 and 
CO2/O2 selectivity (See Fig. 3 for experimental conditions)
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Figure 5. Influence of impurity salts on CO2 permeance (dry feed 
composition: 15vol% CO2 balanced by N2; Tfeed-in=Tsweep-in=80 oC, Pfeed-

in=1.05 atm, RHfeed-in = 40%, Qfeed-in= 100 cm3(STP)/min, Psweep-out= 0.3 
atm, Qsweep-in= 30 cm3(STP)/min)
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Figure 6. Influence of impurity salts on CO2 /N2 and CO2/O2 selectivity 
(See Fig. 5 for experimental conditions)
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Figure 7. Variation of CO2 permeance with operation time (dry feed 
composition: 15vol% CO2, 1 - 3vol% O2 balanced by N2; Tfeed-in=Tsweep-

in=80 oC, Pfeed-in=1.05 atm, RHfeed-in = 40%, Qfeed-in= 100 cm3(STP)/min, 
Psweep-out= 0.3 atm, Qsweep-in= 30 cm3(STP)/min)
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Figure 8. Variation of CO2/N2 and CO2/O2 selectivities with operation 
time (See Fig. 7 for experimental conditions)
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Table 1. Use of utilities in conventional absorption/stripping and our 
membrane hybrid process

90 KWh/tonne CO290 KWh/tonne CO2Electricity used in 
compression section 
(from 1 atm to 150 
atm)

27 KWh/tonne CO245 -76 KWh/tonne 
CO2

Electricity used in 
separation section

32 - 46 m3/tonne CO241 - 160 m3/tonne CO2Cooling water

1.22 – 2.0 GJ/tonne 
CO2 (waste heat)

2.4 - 4.6 GJ/tonne CO2
(reboiler heat)

Thermal energy

Chembrane membrane 
permeation process

Conventional 
absorption/stripping



Table 2. Comparison of CO2 capture cost by chemical absorption/ 

stripping and Chembrane membrane hybrid process

12.2%

$13.5 ~ 20

1.27 ~ 1.80 cent/kWh

34.3%

22 ~ 29%

$42 ~ 55

3.7 ~ 5.2 cent/kWh

64 ~ 87%

Energy penalty for PC plant, %

Capture cost ($/t CO2 avoided)

Capture cost (cent/kWh)

Increase in cost of electricity 
with CO2 capture

Chembrane membrane
process

Conventional 
absorption/stripping



Summary

• Chembrane membrane-based hybrid process can 
produce a >99 vol% CO2 stream from a flue gas 
stream containing 10 to 15vol% CO2, with a 
recovery of >90%

• This process potentially provides high long-term 
operational stability when dealing with flue gas 
streams containing SOx, NOx, HCl and HF

• This process can drastically reduce the capture 
cost to $10~20/ton CO2 avoided.




