Wet Flue Gas Desulphurization (FGD) Optimization

Steve Piche, Ph.D.
Director of Applied Development
Pegasus Technologies

Delin (Daren) Zhang, Ph.D.
Manager of Operations and New Business Development
Pegasus Technologies (China)

Brad J. Radl
President & CTO
Pegasus Technologies
Outline

• Review of Wet FGD
• FGD Optimization
• Results
• Benefits
Power Plant Optimization Systems

- NOx Control
 - SCR Systems
 - SCONOx

- Burner Systems
 - LNCFS
 - TFS 2000™
 - Fuel Switching

- Boiler

- Ash Handling

- Pulverizer

- Particulate Control
 - Fabric Filter
 - Electrostatic Precipitator

- Flue Gas Desulfurization
 - Wet FGD
 - Dry FGD
 - FDA

- Substation Systems

- Steam Turbine and Generator
SO_2 + CaCO_3 + \frac{1}{2}O_2 + H_2O \rightarrow CaSO_4\cdot2H_2O + CO_2
Power Perfecter™ Implementation

DCS and Historian

Pegasus Data Interface

Global Optimizer

Optimizer Controller Scheduler

APC MVC Controller

Auto-Retune

Real-Time Feedback

Workstation
MPC Functionality

- **Advanced Process Controller:** Used to reduce variability on a high frequency (minute by minute or faster) basis due to external factors, thus, driving the manipulated variables to optimal settings.
Model Predictive Control

- Use first step of horizon
- MV measured value
- MV set point
- Perfecter optimizes future trajectories using an internal simulation
- CV measured value
- CV desired value
- current time indicator
- CV prediction
- MV prediction
Power Perfecter™ Advantages

- Reduced Variability
 - By Moving the Manipulated Variables at the right time and right amount so that CV’s stay close to their setpoints

- Optimal Allocations of the resources (MV), to achieve better objective
 - Calculating the optimal combination among Manipulated Variables trajectories for minimizing the overall cost function
Power Perfecter™ Advantage – Reduced Variability

- Reduced maintenance
- Safe operation
- Increased efficiency

Example: Steam Temperature and Pressure Control
50% Reduction in Variability is Typical
Power Perfecter™ Advantage
Optimal Resource Allocations

Diagram Description

Power Perfecter

- **Steady State Models and Optimizer**
 - Outputs Targets

- **Dynamic Controller (MPC)**
 - Inputs k
 - Processes Targets

Graphs

- **SOFA DAMPER / AIR FLOW**
 - Chart showing SOFA DAMPER and AIR FLOW over time.

- **CO**
 - Graph showing CO emission levels over time, with a maximum limit.
 - Fluctuations around the limit.

- **NOx**
 - Graph showing NOx emission levels over time, with minimal fluctuations.

Dynamic Controller (MPC)

- Process for controlling emissions effectively.

Wet FGD Optimizer

Goals:
• Use Power Perfecter to maximize SO$_2$ removal
• Maintain gypsum quality
• Minimize power usage
WFGD Simulation:

Basis: Dynamic simulation of WFGD process based on proprietary ALSTOM WFGD spray-tower steady-state design techniques and empirical dynamic observations.
Comparison of Control Schemes

Conventional PID/FF Controls

1-Day MPC Target

30-Day MPC Target

Time (126 days)

Inlet SO2 (lb/hr)

Outlet SO2 (lb/hr)

SO2 Emissions: 1 Day Rolling Average

SO2 Emissions: 30 Day Rolling Average

SO2 Emissions Target

Before

After
Operational Summary of Control Schemes

SO\textsubscript{2} Emissions (lb/hr)

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Median</th>
<th>Standard Deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional PID/FF</td>
<td>504.8</td>
<td>488.7</td>
<td>153.2</td>
<td>1331.4</td>
<td>114.6</td>
</tr>
<tr>
<td>MPC: 1 Day Target</td>
<td>515.1</td>
<td>512.1</td>
<td>58.2</td>
<td>1225.1</td>
<td>122.0</td>
</tr>
<tr>
<td>MPC: 30 Day Target</td>
<td>510.5</td>
<td>511.5</td>
<td>99.0</td>
<td>1166.0</td>
<td>143.0</td>
</tr>
<tr>
<td>1 Hour Rolling Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional PID/FF</td>
<td>504.9</td>
<td>488.0</td>
<td>151.8</td>
<td>983.0</td>
<td>213.2</td>
</tr>
<tr>
<td>MPC: 1 Day Target</td>
<td>515.1</td>
<td>512.5</td>
<td>53.4</td>
<td>708.9</td>
<td>338.0</td>
</tr>
<tr>
<td>MPC: 30 Day Target</td>
<td>510.4</td>
<td>511.7</td>
<td>95.8</td>
<td>964.6</td>
<td>233.7</td>
</tr>
<tr>
<td>1 Day Rolling Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional PID/FF</td>
<td>505.0</td>
<td>485.1</td>
<td>129.0</td>
<td>919.8</td>
<td>255.2</td>
</tr>
<tr>
<td>MPC: 1 Day Target</td>
<td>515.3</td>
<td>514.8</td>
<td>13.0</td>
<td>568.3</td>
<td>480.6</td>
</tr>
<tr>
<td>MPC: 30 Day Target</td>
<td>510.5</td>
<td>514.2</td>
<td>41.0</td>
<td>628.2</td>
<td>377.3</td>
</tr>
<tr>
<td>30 Day Rolling Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional PID/FF</td>
<td>520.2</td>
<td>519.2</td>
<td>28.3</td>
<td>591.9</td>
<td>477.4</td>
</tr>
<tr>
<td>MPC: 1 Day Target</td>
<td>519.3</td>
<td>518.1</td>
<td>2.8</td>
<td>528.7</td>
<td>515.6</td>
</tr>
<tr>
<td>MPC: 30 Day Target</td>
<td>514.9</td>
<td>514.8</td>
<td>4.4</td>
<td>532.0</td>
<td>502.5</td>
</tr>
</tbody>
</table>

All Cases: Average Gypsum Quality: 95.2%
FGD Optimizer Benefits

• Increased SO₂ removal efficiency (2-5%)
• Decrease operation cost for limestone and power (2-5%)
• Maintain by-products quality
• Consistent operations
• Improved operations
• Improved maintenance
FGD Benefits for a 600 MW Unit*

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Savings per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$ Credit (2.5% improvement due to absorber control)</td>
<td>$400,000</td>
</tr>
<tr>
<td>Operational Savings for Power (4% reduction)</td>
<td>$67,000</td>
</tr>
<tr>
<td>Operational Savings for Limestone (2% reduction)</td>
<td>$87,000</td>
</tr>
<tr>
<td>Prevention of Limestone Blinding (2 incidents)</td>
<td>$182,000</td>
</tr>
<tr>
<td>Maintenance (Replacement of pH probes)</td>
<td>$65,000</td>
</tr>
<tr>
<td>Total</td>
<td>$801,000</td>
</tr>
</tbody>
</table>

* 600 MW unit, 0.8 capacity, sulfur content of 2%, SO$_2$ credit of $165/ton.