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BACKGROUND

Approximately 75 tons of 
mercury are found in the coal 
delivered to coal-fired power 
plants each year and about 
two thirds of this mercury is 
emitted to the air, resulting in 
about 50 tons being emitted 
annually. This 25-ton 
reduction is achieved in the 
power plant boilers and 
through existing pollution 
controls such as FFs and 
ESPs for particulate matter, 
scrubbers for SO2 and 
Selective Catalytic Reduction 
(SCR) systems for NOx 
Emissions1. 
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[1] Controlling Power Plant Emissions: 
Overview, USEPA Web Site.



MERCURY EMISSIONS FROM 
COAL-FIRED BOILERS
Concentration of Hg0 from 
coal-fired boilers varies 
from 10 to >90%.  It 
depends on:

Coal Blend Characteristics
Boiler Design/Equipment
Boiler Operating 
Conditions!!

Coal  blend effect on Hg 
emissions is related to the 
Cl concentration in the 
coal and to some extent to 
other elements such as S, 
Fe and Ca.

After Senior, C., et.al.  “Modeling Gaseous Hg BehaviorAfter Senior, C., et.al.  “Modeling Gaseous Hg Behavior
In Practical Combustion Systems.”In Practical Combustion Systems.”



BOILER EQUIPMENT IMPACT ON BOILER EQUIPMENT IMPACT ON 
MERCURY EMISSIONSMERCURY EMISSIONS

Mercury removal varies 
across air pollution control 
devices :

Cold-side ESP’s 20-30%.
Hot-side ESP’s 0-10%.
Fabric Filters 50-60%.
Wet/dry FGD and spray dryer 
absorbers 80-90% of bivalent 
Hg.
SCR 40-60%.
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IMPACT/IMPORTANCE OF BOILER IMPACT/IMPORTANCE OF BOILER 
OPERATING CONDITIONS ON MERCURYOPERATING CONDITIONS ON MERCURY
The fate of Hg emissions is impacted by the chemical and physical 
processes occurring in the boiler convective pass and APCDs.

Homogeneous Hg oxidation is a kinetically controlled process occurring in the flue 
gas.  It is affected by flue gas time-temperature trend and composition.
Heterogeneous oxidation and adsorption is affected by the combined effect of 
surface chemical kinetics and mass diffusion.  It is promoted by the nature of the fly 
ash and flue gas conditions and composition.

Link between boiler conditions and Hg emissions:
Time-temperature history - flue gas temperature, APH performance, stack flow).
Fly ash characteristics - mill classification, low-NOx firing system operation, fuel 
blending).
Flue gas conditions – excess O2 level, reduced NOx emission level.
Other links - operating practices, boiler load profile, sootblowing, etc.

Importance of getting a handle on the operating conditions impacts:
Interpretation of Hg test data.
Development of Hg emissions control options.
Reduce the cost of compliance.

These variables ensure that Hg speciation is siteThese variables ensure that Hg speciation is site--specific.specific.



BOILER OPTIMIZATION FOR MERCURY BOILER OPTIMIZATION FOR MERCURY 
CONTROL PROJECT AT THE ERCCONTROL PROJECT AT THE ERC

Feasibility Study (included modeling/review)
Boiler Optimization Project
Activated Carbon Injection Project
Objectives:

Develop technical understanding and analytical model of Hg 
behavior in the flue gas in relation to appropriate boiler 
controllable parameters. 
Investigate the extent of Hg reduction by optimization of boiler
operation through field testing at full-scale boilers.
Investigate activated carbon injection requirements for Hg 
compliance in combination with optimized boiler control settings.



MERCURY MODELINGMERCURY MODELING
Mercury model includes a reaction scheme with 35 species and 92 reactions 
and the heterogeneous Hg oxidation by fly ash. 
Model validated against a range of datasets.
Model used to interpret test data and guide parametric testing.
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Experimental Results

Homogeneous Model Results

Homo+Hetero Model Results
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MODEL RESULTS MODEL RESULTS ––
Effect of APH Gas Inlet Temp. on Hg OxidationEffect of APH Gas Inlet Temp. on Hg Oxidation

Operation of the air preheater impacts the Hg0/HgCl2 ratio at the air 
preheater outlet.



MODEL RESULTS MODEL RESULTS ––
Example of Boiler Operation vs. Hg OxidationExample of Boiler Operation vs. Hg Oxidation

Each trend corresponds to a combination of boiler control settings that result in 
changes to flue gas conditions and, consequently, the Hg0/HgCl2 ratio.

Elemental Mercury Reduction for Different Boiler Operating Conditions
700 MWg Wall-Fired Boiler; 3 Elevations of Low-NOx Burners
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FIELD TESTINGFIELD TESTING

Testing at three coal-fired units that fire 
bituminous coals was performed:

Site #1 is a 108 MW, T-fired boiler.  Cold- and hot-ESP, and 
tubular APH. Conventional burners.  Unit burns low-Sulfur Eastern 
U.S. bituminous coal.
Site #2 is a 250 MW, T-fired boiler.  Rotating APH with two cold 
ESP’s in series. LNCFS-III low-NOx firing system.  Unit burns U.S. 
bituminous and imported coals.
Site #3 is a 650 MW, opposed wall-fired boiler. Rotating APH with 
two cold ESP’s in series. DRB-XCL low-NOx burners with OFA. Unit 
burns U.S. bituminous and imported coals.



FIELD TESTINGFIELD TESTING
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Analytical capabilities:
Baldwin and Apogee 
inertial filtration probes.
Pretreatment/conditioning 
units.
PSA SCEM’s for Hg 
speciation.
OHM with EPA Method 
17 (performed on-site).
Coal, pyrite and fly ash 
analyses (ultimate and 
proximate analyses, Hg, 
Cl, S, LOI).

Note:                        SCEM Ports                          OHM Ports



FIELD TESTINGFIELD TESTING

Feasibility phase involved five 
days of boiler manipulation per 
boiler.
Boiler optimization project at two 
units involved a ten-day test 
schedule that included 
baselining, parametric testing, 
and optimal condition tests. 
Parameters investigated: unit 
load, excess air, OFA settings, 
mill bias and O/S configuration 
and classification, APH back-
end temperature, ESP 
energization and rapping, and 
sootblowing.
AC injection project involved 
testing at different AC 
conditioning rates under normal 
and optimal low-Hg operating 
conditions.

Sample Boiler Optimization ScheduleSample Boiler Optimization Schedule



Field Test Results Field Test Results –– Site #1Site #1

Overall Removal Efficiency = 20.0%Overall Removal Efficiency = 20.0%
Average Excess OAverage Excess O2 2 = 2.69%= 2.69%
Fly Ash LOI = 6.68% Fly Ash LOI = 6.68% 

Overall Removal Efficiency = 38.4%Overall Removal Efficiency = 38.4%
Average Excess OAverage Excess O2 2 = 2.13%= 2.13%
Fly Ash LOI = 9.93% Fly Ash LOI = 9.93% 



Field Test Results Field Test Results –– Site #1Site #1
Fly Ash LOI Effect on Hg Emissions
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Field Test Results Field Test Results –– Site #1Site #1
Hg Reduction across APH - Effect of Unit Load
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Field Test Results Field Test Results –– Site #2Site #2

Overall Removal Efficiency = 81.6%Overall Removal Efficiency = 81.6%
Average Excess OAverage Excess O2 2 = 3.5%= 3.5%
Fly Ash LOI = 17.4% Fly Ash LOI = 17.4% 

Overall Removal Efficiency = 93.6%Overall Removal Efficiency = 93.6%
Average Excess OAverage Excess O2 2 = 1.8%= 1.8%
Fly Ash LOI = 22.3% Fly Ash LOI = 22.3% 



Field Test Results Field Test Results –– Site #2Site #2
Effect of Combustion Conditions on Total Hg 
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Field Test Results Field Test Results –– Site #2Site #2
Hg Concentration v.s. Fly Ash LOI
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Field Test Results Field Test Results –– Site #2Site #2
Effect of Air Preheater Temperature Trace on Hg Oxidation 
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Field Test Results Field Test Results –– Site #2Site #2
Sootblowing Effect (on 1/28-29/2004)
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IMPACT OF COMBUSTION CONDITIONS ON HgIMPACT OF COMBUSTION CONDITIONS ON Hg



Unit 1 July 4, 2004 - ESP In and Out 
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Field Test Results Field Test Results –– Site #2Site #2
Total Mercury Concentration at the Stack
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IMPACT OF COMBUSTION CONDITIONS ON HgIMPACT OF COMBUSTION CONDITIONS ON Hg



IMPACT OF ESP OPERATION ON IMPACT OF ESP OPERATION ON 
MERCURYMERCURY
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Field Test Results Field Test Results –– Site #3Site #3
Total Mercury Concentration at the Stack
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Field Test Results Field Test Results –– Site #3Site #3
Activated Carbon - Mercury Tests
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Field Test Results Field Test Results –– Site #3Site #3
Activated Carbon - Mercury Tests
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CONCLUSIONSCONCLUSIONS

Mercury regulations are an urgent issue for the power industry. Low-
cost reductions in the 30-50 % range are attractive.
Analytical and experimental studies have suggested that boiler 
operating conditions can influence mercury oxidation and emissions 
from coal-fired boilers.  
Target parameters are: residence time (in-flight capture), flue gas 
temperature, and fly ash size and unburned carbon level.
Testing performed at three units, rated at 108, 250 and 650 MW, 
burning bituminous coals confirms the merit of optimizing boiler
operation through changes to the control settings for mercury 
emissions reduction.
An optimization test strategy involves unit baselining, parametric 
testing, extended test at optimal conditions and testing to determine 
AC requirement for trim control.



Questions … 
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