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P, T, S - Profile in CO2 Injection Well

• body force ρg

• frictional pressure drop

• phase change? drag liquid-gas

• thermal effects

• thermodynamics and thermophysical properties of CO2

• dissolution in water

• interaction with flow in the reservoir

• geothermal gradient • heat exchange w/surroundings
• (de-)compression • latent heat



Temperature-Pressure Paths
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• Geothermal (temperature) gradient ≈ 30 ˚C/km

• Hydrostatic (pressure) gradient ≈ 100 bar/km

• Average land surface conditions: Tls = 5 ˚C, 15 ˚C; Pls ≈ 1 bar
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Static Column of CO2

in a Geothermal Gradient

• when starting with liquid
density, ∆P outruns ∆T

• when starting with gas density,
∆T outruns ∆P

• top-down integration is stable;
always maintains same phase
composition

• bottom-up integration is
unstable near saturation line;
requires extremely small ∆z
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North Texas CO2 Injection Well

• T = 61.1 ˚C @ 1984.2 m
depth

• injection rate 2.3 MMscf/d
(= 120.1 tonnes/d; 1.39 kg/s)

(survey data from W.A. Flanders, personal communication, 2002)



Transient Effects in Unsteady CO2 Injection

• heat transfer, temperature changes in wellbore

• different two-phase flow regimes (bubble, slug, mist, …)

• for single-phase flow can neglect frictional pressure drop
(Carroll and Maddocks, 1999)

• use a reservoir simulator with 2-D R-Z grid: wellbore flow
plus heat exchange with formation

• represent wellbore by very large permeability (≈ 105 darcy)

• TOUGH2/ECO2; test against published (T, P) data

• apply to injection/falloff testing for pilot CO2 injection project
in Frio formation



Test against SPE-10735
(Cronshaw and Bolling, 1982)

• 1.76’’ I.D. tubing to 1875 ft

• inject CO2 for 7 days at 500 Mscf/d =0.306 kg/s

• temperatures: 62 ˚F @ surface, 96.7 ˚F downhole



Transient CO2 Injection into Frio Formation

qCO2  = 3 kg/s (259.2 tonnes/day)

1500 m

8'' diameter wellbore
initially water-filled

Twh = 20 ˚C

Twb = 65 ˚C

T| = 30 ˚C/km

|∆

Frio formation

k = 150.e-15 m 2

φφφφ = 25 %



Transient Behavior for CO2 Injection

• evolve free gaseous CO2 phase at wellhead

• rapid increase of wellhead pressure;
reaches 57.32 bars [= Psat(20 ˚C)] within about 20 minutes

• pressurization propagates rapidly down wellbore

• bottomhole (sandface) flow begins within less than one minute,
and at initially high rates (≈ 12 kg/s)

• within less than 1 hour, water rate at sandface stabilizes to
something near 3 kg/s

• CO2 reaches sandface in slightly less than 3 hours

• CO2 is in liquid or supercritical conditions throughout wellbore

• bottomhole rates of CO2 stabilize at 3 kg/s



Sandface Flowrates

log-time linear time



Wellbore Temperature Profiles



Downhole Temperature Response



Pressure Response



Downhole Pressure Response

• pressure response to injection is
rapid

• wellhead-controlled system
initially injects water into the
formation

• pressure fall-off is nearly
identical for both cases

• wellhead-controlled system
shows stronger buildup, acts
like it has fluid of lower
mobility

• in later cycle, have smaller
pressure amplitude



Radial Profiles after 6 Days

CO2 Saturation Temperature



Temporal Evolution

wellhead control sandface control



Longer Second Injection Period



Concluding Remarks

• frictional pressure drop is expected to be small

• can model wellbore flow with a reservoir simulator;
use large permeability (here: k ≈ 105 darcy)

• heat transfer effects are important and need to be
represented accurately

• wellbore flow adds considerable complexity

• characterization of CO2 plume from pressure transients
will not be easy

• interest in fluid mixtures: CO2, SOx, NOx, H2S,…, CH4
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