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CO, Leakage Risk Motivates Verification m ﬂ
,_\|

South Liberty Site (Frio Pilot Study) %
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Introduction m ﬂ
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* Injection of CO, into deep geologic formations involves risk that
CO, will migrate away from primary target.

« Verification of CO, sequestration integrity is needed to satisfy
concerns about:

« Health, Safety, and Environmental (HSE) risk
« Costs of sequestration (energy, emissions, dollars)
« Verification involves field monitoring and measurements.

« Technology to measure CO, concentrations and fluxes is well
established.

« However, the challenge is that CO, is naturally ubiquitous.
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Outline gg/m

* Terminology.

« Predicted CO, Leakage Or Seepage Signal (LOSS).
« Controls on background fluxes and concentrations.
« Near-surface monitoring technologies.

« Strategies for CO, storage verification.

« Example work in progress.
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Terminology L:%

Leakage = CO, migration away from primary sequestration target.

Seepage = CO, transport out of the ground into the atmosphere or
into surface water.

Surface layer = bottom 1/10 of the atmospheric boundary layer

Near-surface environment =~ 10 m depth — ~ 10 m height.

+ LOSS =Leakage Or Seepage Signal
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Case-studies of geologic CO, seq| ion leak are lacking.

g

Therefore, we turn to modeling to predict expected behavior.
— (1) CO, attenuation in the unsaturated (aka vadose) zone.
— (2) Atmospheric dispersion of CO, in the surface layer.

Leakage can lead to high CO, concentrations in the subsurface.
Atmospheric dispersion is effective at dispersing seeping gases.

However, CO, concentrations may be higher in stagnant (low-wind) areas.

CO, concentrations can also be higher for higher fluxes.
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Expected Concentrations and Fluxes m m
]
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X,°°2 in Subsurface and Surface Layer gg/m

Height (m)

9 100 20 300 40 50 &0 700 &0 50

Distance (m)

X% atX =645m

" Time (yr)

S0 60 700 80 %0
Distance (m)
—_ A WRENCE BERKELEY NATIONAL LABORATOR Y S—

CO, Migration Through 30 m of ::}I A
Unsaturated Zone with Infiltration 10 cm yr! |

CO, mass fraction in the
unsaturated zone for various
CO, leakage flow rates.
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Radial distance [m]

(Oldenburg and Unger, Vadose Zone Journal, 2, 287-296, 2003)
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CO, Leakage, Seepage, and Dispersion m ﬂ
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Modeling Summary m A
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Even for small leakage fluxes, subsurface CO, concentrations can be high.
Diffuse K leads to passive dispersion in the surface layer.

Atmospheric dispersion is effective at dispersing seeping gases, subject to
caveats, among which are:

— CO, concentrations will be higher in stagnant (low-wind) areas.
— CO, concentrations will be larger for higher fluxes.
— CO, concentrations may be higher periodically.

Result is small LOSS in surface layer.
Larger LOSS in the subsurface.
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Natural CO, Sources and Sinks m ﬂ
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Production by decay \ Uptake by plants
co,

Atmospheric exchange

pot respiration

Production by oxidation
of organic carbon in
groundwater
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Measured CO, Profiles L’L’m
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(modified from Wood and Petraitis, Water Resour. Res., 20, 1193-1208,1984)
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Temporal Changes in CO, Profile ﬂﬂm
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Overview of Approaches for Monitoring  rerree? m

« Conventional CO, Monitoring Technologies:
— IRGA (infrared gas I ) for point
Absorption at 4.26 um.

ts of CO,ingas.

Frequency 1-10 Hz.

Typically 0-3000 ppmv detection range, also up to 100% CO,.
Precision +/- 0.2 ppmv at 350 ppmv.

$5-30k.

Transportable.

Although point measurement, can be combined with other
instrumentation to measure fluxes over small (accumulation
chamber) and large (eddy correlation) areas.
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Schematic of Accumulation Chamber (AC) L’L’/éml\m

25cm
Soil gas is ci and CO, i every 1 sec.
Rate of accumulation of CO, in AC is measured.
Flux is from rate of ion of CO,.
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Schematic of Eddy Correlation (EC) Tower m m

Time averaging of fluctuating CO, and vertical wind results in mean flux.
Mean flux is over an upwind footprint typically m? — km? in area.
Area of footprint is function of tower height and meteorological conditions.
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Schematic of Truck-Mounted LIDAR )\| ﬂ

LIDAR = LIght Detection And Ranging.

Raman LIDAR = detecting wavelength shifts due to Raman scattering.
DIAL =Differential Absorption LIDAR =tunable laser to create backscatter ratios.
Rapidly developing, good areal coverage.

Concentration integrated over path length.

—_ A WRENCE BERKELEY NATIONAL LABORATOR Y S—

Near- €O, cone. O, conc
€O, source 8"Cry A“Ceqy  surface  profile with  profile with
€O, cone.  depth depth
o o

Atmosphere -7 10 Low - -
Plant root Ci24t0-38 2-70 Lowto  Increasing  Decreasing
respiration and  C,: -6 to 19 moderate  through soil  through soil
oxidative decay zone zone
of young soil
organic matter
Oxidative Ci2410-38 Highly  Low Increasing  Decreasing
decay of Aquatic/C,;  depleted potentially  potentially
ancient organic -6 to 19 toabsent, through through
matter depending vadose zone  vadose zone

Also age onage

dependent
Marine 04 absent  Low Increasing  No effect
carbonate rocks through

vadose zone

Fossil fuel Average: absent  Moderate Increasing  Noeffect

27 o high through

vadose zone

Conc., G, and C,, refe 1o concentration, C, plants, and C, plants All nea-surface concentrations given
willbe the magnitude of the CO, flux

—_ A WRENCE BERKELEY NATIONAL LABORATORY S—

Chemical and Isotopic Signatures m m
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Potential Activities and Schedule m ﬂ
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Strategies for Storage Verfication m m
—

Subsurface gas geochemistry.
— Carbon isotopes.
— Bulk soil gas composition.
+ Trends with depth. Spatial trends.

Surface CO, concentration and flux monitoring.
— EC good for large areas and average flux measurements.
— AC good for small features and delineating spatial trends.
Water che mistry.

— pH. Gas bubbles. Dissolved Inorganic Carbon.

Integrated sampling strategy
— Baseline monitoring and modeling.
— Long-term monitoring.
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Integrated Sampling Strategy m ﬂ
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Baseline monitoring and modeling.
— Characterize spatial and temporal variability

« Soil, parent material, vegetation, hydrology, topography, surface
water, ...

— Flow modeling (TOUGH2) and ecological modeling (LSM).

Surface CO, concentration and flux monitoring (AC and EC).

Soil gas sampling and analysis. Fixed sites over time.

Soil moisture and temperature.

Goal is to understand the natural logical system prior to injection.
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South Liberty Site (Frio Pilot Study) %

3750 tons/of CO:
0/ t

{198
‘Fiio Formation. | -
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0_1 000 ft @ CO, fluxand soil gas profile
® Soil gas profile
1umol CO, m?s=4.4 x109kg CO,m2 s
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Summary ﬂm

« Extensive knowledge exists about behavior, properties, detection,
and monitoring of CO,.

* Modeling provides plausible expectations of CO, page flux and
concentration.

« Nevertheless, discerning small CO, LOSS from natural
background variation will be challenging.

- Strategy we propose involves comprehensive baseline monitoring
and modeling to develop understanding of natural system.

* Program of multiple and integrated measurement and monitoring
can be applied during and after injection.

+ Measurements in conflict with expectations of the natural system
would be investigated thoroughly by more detailed studies.
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