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Challenge

DYNAMIC MODELING OVERVIEW : Fuel cell and fuel celi

hybrid systems

* Various time scales

* BOP transients

* Turbine response times

e Start-Up

* Load Upset/Load following
* Thermal Management

* Etc
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Dynamic Modeling

Main Benefit:

® Better understanding of FC behavior

® Faster design and evaluation of new hybrid concepts
® Evaluation of stress points, limits, etc.

¢ Control design and evaluation

Main Challenges:
° |dentification of key features
¢ Scales of dynamic behavior
® Balance between details and speed
°® Integration of FC with BOP



Things to measure:

® Temperatures

® Concentrations (real time?)

® Electrical output, pressures, etc
Things to manipulate:

® Power electronics

® Fuel, Oxidizer, vapor etc flows

® Cooling air

® Flow tripping, etc

For control: actuators, sensors, objectives, MODELS (Dynamic)



Benefits of Control

More or less analytical aspects:

Study of performance limits
* Sensitivity and sensitivity reduction
Identifications of actuator and sensor needs

* Control "architecture’ and design (non-minimum phase,
hierarchical)

Practical Aspects:
* Subsystem level control
* Interactions among subsystems
* System level control

\
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FUEL CELL MODEL(S)

FUEL CELL OPERATION

Nerst Potential

OPERATING
VOLTAGE — Ohmlc Loss —P\

Activation Loss Concentration Loss

CURRENT DENSITY

Actual operating voltage characteristic: Bulk Model

&
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MODEL EQUATIONS

Species Conservation
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BASIC APPROACH

Common platform (SIMULINK)
* Fuel Cell
* Power electronics
* Reformers, heat exchanges, etc

Spatial Resolution:
* 1-D model
* discretized into several nodes

Thermal Conditions:
* Reliability
* Model fidelity (temp dependence of electro-chemistry)

)

G
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HYBRID SYSTEMS COMPONENT MODELS

DYNAMIC MODELS FOR A REFORMER, SOFC, AND GAS

TURBINE

SIMPLIFYING MODEL ASSUMPTIONS
* 1D process flow
* Well-stirred at nodal level
* Slow pressure transients

FUEL CELL ASSUMPTIONS

* H, electrochemically oxidized only

* CO consumed via water-gas shift

* Shift always at equilibrium (constraint)
° EqUiPOtential: VceII = Vnode1 = Vnode n
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Controls Research Challenges

Thermal Profile:

* Thermal loads, durability and reliability
* Temperature control

Interaction between spatial and thermal variations

* Temperature dependence of electrochemistry (Ohmic resistance,
activation energy constants, etc)

Non-Minimum Phase response
* System level: accumulators

* System level: power management
* Cell Level: electro-chemistry constants’
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Dynamic Model Status: FC

Main assumptions:

* guasi-steady state electro-chemical (e.g., no intermediate species,
etc.)

* No turbulence!

Focus on the the essential FC features
* Nernst potential
* Voltage losses
* Species concentrations and Mass conservation
* Energy conservation
* Momentum conservation
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Anode Equations Simulink® Example
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Challenges

What constants are really constants (dynamically speaking)

Heat transfer (energy) terms —
* relatively slow time scales
* Computationally intensive and problematic
* Do we really need it?

Experimental verification

&
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FUEL CELL MODEL(S)

TUBULAR (TSOFC) FUEL CELL DISCRETIZATION

10 Discrete Computational Nodes
* Anode Gas * Cell Solid

* Cathode Gas * Air Supply Pipe Solid
* Air Supply Gas

10 NODES

REFORMED

FUEL

CELL TUBE
CATHODE GA

ANODE GAS AIR SUPPLY PIPE

CROSS SECTION
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FUEL CELL MODEL(S)
TSOFC NODAL FUEL CELL HEAT TRANSFER RESISTANCES

NODE n NODE n+1

ANODE ANODE
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CATHODE CATHODE
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REFORMER MODEL

REFORMER

* 5 node model
* Concentric cans
* Heat from exhaust gas heat exchange

EXHAUST

NATURAL
GAS

Adiabatic Mixing Volume
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FUEL CELL MODEL(S)

SAMPLE TSOFC OUTPUTS: 10% LOAD INCREASE
ELECTROLYTE TEMPERATURE
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Dynamic Temperature Profile

Response to Load Demand Increase at t=2000 seconds

Average Nodal Temperature vs. time
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FUEL CELL MODEL(S)

SAMPLE TSOFC OUTPUTS: 10% LOAD INCREASE

TS0OFC Temperature Varation: 10% Load Increase at 4000 sec
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GAS TURBINE MODEL

COMPRESSOR

* Lumped Parameter
* Incompressible Compressor
* Compressible representatlve dlffuser volume

[II]I::> Compressed Air Out

Pci;wer = Torque*RPM |
Air In ||~i l" ' V
2N
V=

8

Compressor Control Volume
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GAS TURBINE MODEL

COMPRESSOR MAPS

* Total pressure ratio vs. normalized mass flow
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GAS TURBINE MODEL

COMPRESSOR MAPS

* Isentropic efficiency vs. normalized mass flow

fm/ Constant normalized
/ rotational speed

&
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HYBRID SIMULATION

Dynamic Modeling Tools — Example Results - MCFC
FCE Direct FuelCell™/ Gas Turbine Hybrid System

Compressed Air is Heated with Fuel Cell Waste Heat,
Expanded, and then Used as the Fuel Cell Oxidant

WATER

FUEL
F ﬁ Anode r
—» Oxidizer Cathode HRU ———p

DIRECT FUEL CELL

-

|
m=> Ffficiencies of ~ 75% are possible

mm> Potential to Significantly Lower $/kW Cost

AIR

)

G
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HYBRID SIMULATION

MCFC Hybrid Implementation
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DATA AND VALIDATION

SINGLE CELL MCFC MODULE

Cell Voltage vs. Time Following a Resistance Load Change
From 0.1533 to 0.0692 Ohms at 650 C
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Model Exchange Current Density

Based on experimental fits:

T
L= i)
nalk

i =aP+bT+cPT+d
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Model Validation

Vvsl@ 650 C
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Control Challenge — Non-Minimum Phase

¥ 10° Total Power vs. time
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UNIVERSITIES FOR FUEL CELLS

PRINCIPLE: It takes village!

NFCRC OUTREACH INITIATIVE
* DEPARTMENT OF ENERGY
* DEPARTMENT OF DEFENSE

MISSION

* INITIATE UNIVERSITY AWARENESS AND PROGRAMS IN BOTH
RESEARCH AND CURRICULA

* ADDRESS FUNDAMENTAL FUEL CELL ENGINEERING AND
SCIENCE CHALLENGES

i// DEVELOP WORK FORCE FOR NATION’S INDUSTRY

\/
Results at: http://www.nfcrc.uci.edu/UfFC

\
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RESEARCH CHALLENGES: CONTROLS

DEVELOPING MODELS THAT AID IN CONTROL DESIGN AND
ANALYSIS

INTERFACES BETWEEN MODELS AT DIFFERENT SCALES /
RESOLUTION

CAPABILITIES FOR MODEL VALIDATION (EXPERIMENTS)
SENSING AND ACTUATION TECHNOLOGIES

UNDERSTANDING, INSIGHT, INTEROPERABILITY AND CONTROL
OF THREE (3) MAIN PARTS OF A FUEL CELL POWER PLANT

DIAGNOSTICS AND FAILURE PROGNOSIS

COST (DESIGN FOR MANUFACTURING) AND COMPLEXITY (DESIGN
FOR CONTROL) ISSUES

IDENTIFICATION OF SYSTEM, HYBRID COMPONENTS OR
ADDITIONAL CONTROLS REQUIRED TO APPLY FUEL CELLS TO
ACTUAL DUTY CYCLES AND APPLICATIONS

INTEGRATION ISSUES: NOT JUST THE COMPONENTS, BUT,
INTEGRATION AND COMPOSITE PERFORMANCE



o
Control / Sensors / Actuators / Models
M odel Control Control functions Sensing and Actuation needs M odel M odeling
scale diagnostics needs type tools
V ehicle Active and Driveability, ? ? Quasi - Matlab
passive performance, energy static, Simulink
use Low-order
lumped
Power- Active and Meet demand, energy V oltage, Power, Vaves, Low-order | Matlab
plant passive conversion efficiency, Temperature, Regulators, lumped Simulink
Humidity, flow, temperature,
other voltage, power,
motor controllers,
efc.
Fud ceall Active and Voltage and current Gas composition Vaves, Low-order | Matlab
passive (AC, DO), fuel supply Humidity Regulators, Temp. lumped Simulink,
nent
Stacl
nt,
. al
. ] u
Results at: http://www.nfcrc.uci.edu/UfFC
[ Cell ]
nt,
Char
passive moie rTractuon (DUIK Humiaity S-D FPLES HFinite
flow), pressure Temperature Element,
Detailed
diagnostics
Micro Passive Thermal and molecular | Gas composition MEMS 3-D PDEs ?
transport processes, gas | Humidity
diffusion layer, 2-phase | Temperature
flow resistance Detailed
diagnostics
Nano Passive Nanostructure and Gas composition ? ? ?
materias properties Humidity 2
(e.g.: surface reactivity, | Temperature Zi
catalysis, catalyst Detailed \——““
4 ) ragnostics
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SUMMARY

Control Research:

® Vital for operation AND design

® Lacks maturity (in modeling, control study, validations, etc)
® Needs further collaboration (especially with industry)

® ltis hard!
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