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ADVANCED STEADY STATE AND DYNAMIC MODELINGChallengeChallenge

Fuel Cell Simulation Fuel Cell Simulation 
Tools NeededTools Needed

DYNAMIC MODELING OVERVIEW : DYNAMIC MODELING OVERVIEW : Fuel cell and fuel cell Fuel cell and fuel cell 
hybrid systemshybrid systems

• Various time scales
• BOP transients
• Turbine response times
• Start-Up
• Load Upset/Load following
• Thermal Management
• Etc 

Air

Fuel+
H2O

Stack

Oxidizer

Recuperator

Compressor Turbine

Fuel Cell



SUMMARYSUMMARYDynamic ModelingDynamic Modeling

Main Benefit:
iBetter understanding of FC behavior
iFaster design and evaluation of new hybrid concepts
iEvaluation of stress points, limits, etc.
iControl design and evaluation

Main Challenges:
iIdentification of key features 
iScales of dynamic behavior 
iBalance between details and speed
iIntegration of FC with BOP



SUMMARYSUMMARYOptionsOptions

Things to measure:
iTemperatures 
iConcentrations (real time?)
iElectrical output, pressures, etc

Things to manipulate:
iPower electronics
i Fuel, Oxidizer, vapor etc flows
iCooling air 
iFlow tripping, etc 

For control: actuators, sensors, objectives, MODELS (Dynamic)
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Benefits of Control Benefits of Control 

More or less analytical aspects:More or less analytical aspects:

• Study of performance limits 
• Sensitivity and sensitivity reduction 
• Identifications of actuator and sensor needs 
• Control `architecture’ and design (non-minimum phase, 

hierarchical)

Practical Aspects: Practical Aspects: 
• Subsystem level control
• Interactions among subsystems 
• System level control 
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FUEL CELL MODEL(S)FUEL CELL MODEL(S)
FUEL CELL OPERATIONFUEL CELL OPERATION

Actual operating voltage characteristic: Bulk Model

CURRENT DENSITY

OPERATING
VOLTAGE Ohmic Loss

Concentration LossActivation Loss

Nerst Potential

Actual operating voltage characteristic: Bulk Model
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MODEL EQUATIONSMODEL EQUATIONS
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BASIC APPROACHBASIC APPROACH

Common platform (SIMULINK)Common platform (SIMULINK)
• Fuel Cell 
• Power electronics
• Reformers,  heat exchanges, etc 

Spatial Resolution:Spatial Resolution:
• 1-D model 
• discretized into several nodes 

Thermal Conditions: Thermal Conditions: 
• Reliability
• Model fidelity (temp dependence of electro-chemistry) 
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HYBRID SYSTEMS COMPONENT MODELSHYBRID SYSTEMS COMPONENT MODELS
DYNAMIC MODELS FOR A REFORMER, SOFC, AND GAS DYNAMIC MODELS FOR A REFORMER, SOFC, AND GAS 

TURBINETURBINE

SIMPLIFYING MODEL ASSUMPTIONSSIMPLIFYING MODEL ASSUMPTIONS
• 1D process flow
• Well-stirred at nodal level
• Slow pressure transients

FUEL CELL ASSUMPTIONSFUEL CELL ASSUMPTIONS
• H2 electrochemically oxidized only
• CO consumed via water-gas shift
• Shift always at equilibrium (constraint)
• Equipotential: Vcell = Vnode 1 = Vnode n
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Controls Research ChallengesControls Research Challenges
Thermal Profile:Thermal Profile:

• Thermal loads, durability and reliability
• Temperature control

Interaction between spatial and thermal variationsInteraction between spatial and thermal variations
• Temperature dependence of electrochemistry  (Ohmic resistance, 

activation energy constants, etc)

NonNon--Minimum Phase response Minimum Phase response 
• System level: accumulators
• System level: power management 
• Cell Level: electro-chemistry `constants’ 
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Dynamic Model Status: FCDynamic Model Status: FC

Main assumptions:Main assumptions:
• quasi-steady state electro-chemical (e.g., no intermediate species, 

etc.)
• No turbulence! 

Focus on the the essential FC featuresFocus on the the essential FC features
• Nernst potential
• Voltage losses
• Species concentrations and Mass conservation
• Energy conservation
• Momentum conservation 
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Anode Equations Anode Equations SimulinkSimulink® Example® Example
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ChallengesChallenges

What constants are really constants (dynamically speaking)What constants are really constants (dynamically speaking)

Heat transfer (energy) terms Heat transfer (energy) terms ––
• relatively slow time scales
• Computationally intensive and problematic
• Do we really need it? 

Experimental verification Experimental verification 
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FUEL CELL MODEL(S)FUEL CELL MODEL(S)

10 NODES

CATHODE GAS

TUBULAR (TSOFC) FUEL CELL DISCRETIZATIONTUBULAR (TSOFC) FUEL CELL DISCRETIZATION
10 Discrete Computational Nodes10 Discrete Computational Nodes

• Anode Gas
• Cathode Gas

• Cell Solid
• Air Supply Pipe Solid
• Air Supply Gas

REFORMED
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CROSS SECTION



National Fuel Cell Research Center: May, 2003

FUEL CELL MODEL(S)FUEL CELL MODEL(S)
TSOFC NODAL FUEL CELL HEAT TRANSFER RESISTANCESTSOFC NODAL FUEL CELL HEAT TRANSFER RESISTANCES
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REFORMER MODELREFORMER MODEL
REFORMERREFORMER
•• 5 node model5 node model
•• Concentric cansConcentric cans
•• Heat from exhaust gas heat exchangeHeat from exhaust gas heat exchange

NODES

NATURAL
GAS

EXHAUST
FC EXHAUST

REFORMATE

STEAM /
DEPLETED FUEL

Adiabatic Mixing Volume
Catalyst Bed
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FUEL CELL MODEL(S)FUEL CELL MODEL(S)
SAMPLE TSOFC OUTPUTS: 10% LOAD INCREASESAMPLE TSOFC OUTPUTS: 10% LOAD INCREASE
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Dynamic Temperature ProfileDynamic Temperature Profile
Response to Load Demand Increase at t=2000 secondsResponse to Load Demand Increase at t=2000 seconds
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FUEL CELL MODEL(S)FUEL CELL MODEL(S)
SAMPLE TSOFC OUTPUTS: 10% LOAD INCREASESAMPLE TSOFC OUTPUTS: 10% LOAD INCREASE
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GAS TURBINE MODELGAS TURBINE MODEL
COMPRESSORCOMPRESSOR
•• Lumped ParameterLumped Parameter

• Incompressible Compressor
• Compressible representative diffuser volume

Diffuser
Volume

Power = Torque*RPM

Compressed Air OutCompressed Air Out

Air In

Compressor Control Volume
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GAS TURBINE MODELGAS TURBINE MODEL
COMPRESSOR MAPSCOMPRESSOR MAPS
•• Total pressure ratio vs. normalized mass flowTotal pressure ratio vs. normalized mass flow

Constant normalized
rotational speed

in

out

P
P

,0

,0

in

in

P
Tm

,0

,0&



National Fuel Cell Research Center: May, 2003

GAS TURBINE MODELGAS TURBINE MODEL
COMPRESSOR MAPSCOMPRESSOR MAPS
•• Isentropic efficiency vs. normalized mass flowIsentropic efficiency vs. normalized mass flow

Constant normalized
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HYBRID SIMULATIONHYBRID SIMULATION
Dynamic Modeling Tools Dynamic Modeling Tools –– Example Results Example Results -- MCFCMCFC

FCE Direct FuelCellTM / Gas Turbine Hybrid System

Compressed Air is Heated with Fuel Cell Waste Heat, Compressed Air is Heated with Fuel Cell Waste Heat, 
Expanded, and then Used as the Fuel CellExpanded, and then Used as the Fuel Cell OxidantOxidant

WATER

AIR

Oxidizer

Anode

Cathode

DIRECT FUEL CELL
HRU

FUEL

Efficiencies of  ~ 75% are possible

Potential to Significantly Lower $/kW Cost
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HYBRID SIMULATIONHYBRID SIMULATION
MCFC Hybrid ImplementationMCFC Hybrid Implementation

PowerAmbient 
Air 

condition Exhaust

Anode Inlet:

Fuel + stream 

Voltage, Current
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DATA AND VALIDATIONDATA AND VALIDATION
SINGLE CELL MCFC MODULESINGLE CELL MCFC MODULE
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Model Exchange Current Density Model Exchange Current Density 
Based on experimental fits: Based on experimental fits: 
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Model ValidationModel Validation

V vs I @ 650 C
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Control Challenge Control Challenge –– NonNon--Minimum PhaseMinimum Phase
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UNIVERSITIES FOR FUEL CELLSUNIVERSITIES FOR FUEL CELLSUNIVERSITIES FOR FUEL CELLS

√
√
√

PRINCIPLE: It takes village!PRINCIPLE: It takes village!

NFCRC OUTREACH INITIATIVENFCRC OUTREACH INITIATIVE
• DEPARTMENT OF ENERGY
• DEPARTMENT OF DEFENSE

MISSIONMISSION
• INITIATE UNIVERSITY AWARENESS AND PROGRAMS IN BOTH 

RESEARCH AND CURRICULA

• ADDRESS FUNDAMENTAL FUEL CELL ENGINEERING AND 
SCIENCE CHALLENGES

• DEVELOP WORK FORCE FOR NATION’S INDUSTRY

Results at: http://Results at: http://www.nfcrc.uci.edu/UfFCwww.nfcrc.uci.edu/UfFC



RESEARCH CHALLENGES:  CONTROLSRESEARCH CHALLENGES:  CONTROLS

i DEVELOPING MODELS THAT AID IN CONTROL DESIGN AND 
ANALYSIS

i INTERFACES BETWEEN MODELS AT DIFFERENT SCALES / 
RESOLUTION

i CAPABILITIES FOR MODEL VALIDATION (EXPERIMENTS)
i SENSING AND ACTUATION TECHNOLOGIES
i UNDERSTANDING, INSIGHT, INTEROPERABILITY AND CONTROL 

OF THREE (3) MAIN PARTS OF A FUEL CELL POWER PLANT
i DIAGNOSTICS AND FAILURE PROGNOSIS
i COST (DESIGN FOR MANUFACTURING) AND COMPLEXITY (DESIGN 

FOR CONTROL) ISSUES
i IDENTIFICATION OF SYSTEM, HYBRID COMPONENTS OR 

ADDITIONAL CONTROLS REQUIRED TO APPLY FUEL CELLS TO 
ACTUAL DUTY CYCLES AND APPLICATIONS

i INTEGRATION ISSUES: NOT JUST THE COMPONENTS, BUT, 
INTEGRATION AND COMPOSITE PERFORMANCE 
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Model  
scale 

Control Control functions Sensing and 
diagnostics needs 

Actuation needs Model  
type 

Modeling  
tools 

Vehicle Active and 
passive 

Driveability, 
performance, energy 
use 

? ? Quasi-
static, 

Low-order 
lumped 

Matlab 
Simulink 

Power-
plant 

Active and 
passive 

Meet demand, energy 
conversion efficiency,  

Voltage, Power, 
Temperature, 

Humidity, flow, 
other 

Valves, 
Regulators, 
temperature, 

voltage, power, 
motor controllers, 

etc. 

Low-order 
lumped 

Matlab 
Simulink 

Fuel cell Active and 
passive 

Voltage and current 
(AC, DC), fuel supply 
flow, temperature 
humidity 

Gas composition 
Humidity 
Temperature 
Flow rates 
Other? 

Valves, 
Regulators, Temp. 

voltage, power, 
controllers, etc. 

Low-order 
lumped 

High-order 
lumped 

Matlab 
Simulink, 
CFD – 
component 
level 

Stack Active and 
passive 

Fuel supply: flow, 
temperature, humidity; 
internal stack transient 
control (start-up/shut 
down); energy 
conversion efficiency 

Gas composition 
Humidity 
Temperature 
Flow rates 

? High-order 
lumped 
1-D PDEs 
3-D PDEs 

CFD, 
Finite 
Element, 
Thermal 
Stress 

Cell Active and 
passive 

Heat removal/humidity, Gas composition 
Humidity 
Temperature 
Detailed 
diagnostics 

? High-order 
lumped 
1-D PDEs 
3-D PDEs 

CFD, 
Finite 
Element, 

Channel Active and 
passive 

Humidity, temperature, 
mole fraction (bulk 
flow), pressure 

Gas composition 
Humidity 
Temperature 
Detailed 
diagnostics 

MEMS 1-D PDEs 
3-D PDEs 
 

CFD, 
Finite 
Element, 

Micro Passive Thermal and molecular 
transport processes, gas 
diffusion layer, 2-phase 
flow resistance 

Gas composition 
Humidity 
Temperature 
Detailed 
diagnostics 

MEMS 3-D PDEs 
 

? 

Nano Passive Nanostructure and 
materials properties 
(e.g.: surface reactivity, 
catalysis, catalyst 
transport processes) 

Gas composition 
Humidity 
Temperature 
Detailed 
diagnostics 

? ? ? 

 

iResults at: http://www.nfcrc.uci.edu/UfFC

i Control / Sensors / Actuators / Models



SUMMARYSUMMARY

Control Research:

i Vital for operation AND design
i Lacks maturity (in modeling, control study, validations, etc)
i Needs further collaboration (especially with industry)
i It is hard! 
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