

ARUN K.S. IYENGAR, ALEX A. NORING, JOCELYN K. MACKAY, DALE L. KEAIRNS

April 30, 2022

Disclaimer

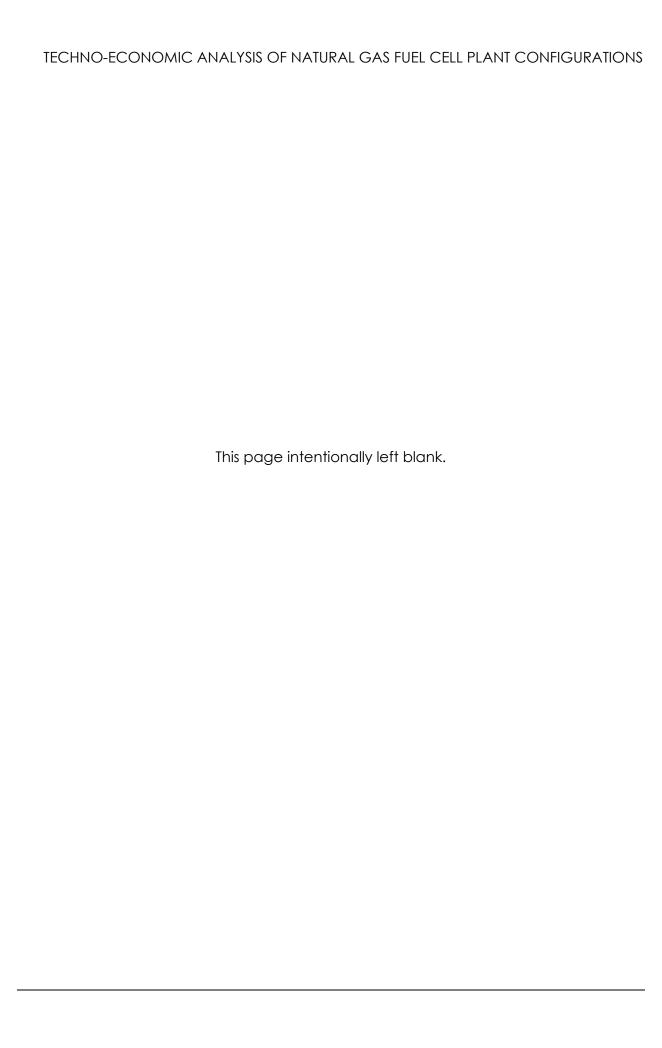
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

All images in this report were created by NETL, unless otherwise noted.

Arun K.S. lyengar^{1,2}:Methodology, Model Development, Formal Analysis, Writing – Original draft, Supervision; **Alex A. Noring**^{1,2}: Model Development, Writing – Review & Editing; **Jocelyn K. Mackay**^{1,2}: Formal Analysis, Writing - Review & Editing; **Dale L. Keairns**^{1,2}: Supervision; **Gregory A. Hackett**^{1*}: Supervision, Review & Editing

Suggested Citation:

A.K.S. Iyengar, A.A. Noring, J.K. Mackay, D.L. Keairns, "Techno-economic Analysis of Natural Gas Fuel Cell Plant Configurations," National Energy Technology Laboratory, Pittsburgh, April 30, 2022.


The authors gratefully acknowledge to contribution from the following:

Gregory Hackett, NETL, Energy Process Analysis Team Travis Shultz, NETL, Team Supervisor, Energy Process Analysis Team Shailesh Vora, NETL, Technology Manager, Fuel Cells Joseph Pierre and Mark Woods, NETL Support Contractors

¹ National Energy Technology Laboratory (NETL)

² NETL Support Contractor

^{*}Corresponding Contact: Gregory.Hackett@netl.doe.gov, 304.285.5279

TABLE OF CONTENTS

List of Exhib	its	iv
Acronyms o	and Abbreviations	viii
Executive S	ummary	1
Discussion	n of Pathway Results	10
System	Performance and Efficiency	10
NGFC I	Plant Costs	12
Cost of	CO ₂ Captured	16
Water	Consumption	16
Effect	of Natural Gas Price	17
1 Introdu	ction	20
2 Pathwo	ay Study Basis	27
2.1 Site	Description	27
2.2 De	sign Fuel	28
2.3 SO	FC Power Island Characterization	28
2.3.1	Estimation of Fuel Cell Operating Voltage	28
2.3.2	SOFC Carbon Deposition Control	30
2.3.3	Estimation of Steam Bottoming Cycle Performance	
2.4 Pla	nt Characteristics	31
2.4.1	Plant Capacity Factor	31
2.4.2	Plant Generating Capacity	31
2.4.3	Plant Sparing Philosophy and Number of Parallel Process Trains	
2.4.4	Natural Gas Reforming Technology	
2.4.5	Natural Gas Desulfurization Technology	
2.4.6	NGFC Power Island	
2.4.7	VGR Concept	
2.4.8	Air Separation Unit	
2.4.9	CO ₂ Capture Technology	41
2.5 Env	vironmental Requirements	
2.5.1	NGFC Emission Perspective	
	onomic Analysis	
2.6.1	Estimate Scope	
2.6.2	Capital Costs	
2.6.3	Plant Maturity	
2.6.4	Exclusions	
2.6.5	Contingency	
2.6.6	Current-Dollar Levelized Cost of Electricity	45

	2.6.7	Capital Costs	45
	2.6.8	SOFC Module Costs	46
	2.6.9	Operation and Maintenance	47
	2.6.10	Operating Labor	48
	2.6.11	Administrative and Support Labor	48
	2.6.12	Maintenance Material and Labor	48
	2.6.13	Stack Degradation and Production Costs	48
	2.6.14	Consumables	49
	2.6.15	Owner's Costs	49
	2.7 Ray	w Water Consumption	49
	2.8 CC	D ₂ Transport and Storage	50
3	NGFC F	Plant Major Process Areas	51
	3.1 Air	Separation Unit	51
	3.2 Na	tural Gas Reforming Area	51
	3.3 Pov	wer Island	54
	3.3.1	Solid Oxide Fuel Cell Unit	57
	3.3.2	Heat Recovery Steam Generator and Steam Power Cycle	
		Dehydration, Purification, and Compression Area	
		cessory Electric Plant	
		trumentation and Control	
1		io 1: Atmospheric-Pressure SOFC System	
	4.1 Ca	se 0: Atmospheric Reference Case Description	
	4.1.1	Case 0: Atmospheric Reference Plant Performance	
	4.1.2	Case 0: Atmospheric Reference Plant Costs	
		se 4: Advanced Atmospheric NGFC Description	
	4.2.1	Case 4: Advanced Atmospheric NGFC Performance	
	4.2.2	Case 4: Advanced Atmospheric NGFC Costs	
		se 4BV: Advanced Atmospheric NGFC with VGR Description	
	4.3.1	Case 4BV: Advanced Atmospheric NGFC with VGR Performance	
	4.3.2	Case 4BV: Advanced Atmospheric NGFC with VGR Costs	
_		thway 1 Results	
)		io 2: Pressurized-SOFC System	
		ise 0: Pressurized Reference Plant Description	
	5.1.1	Case 0: Pressurized Reference Plant Performance	
	5.1.2	Case 0: Pressurized Reference Plant Costs	
		ise 4: Advanced Pressurized NGFC Plant Description	
	5.2.1	Case 4: Advanced Pressurized NGFC Plant Performance	
	5.2.2	Case 4: Advanced Pressurized NGFC Plant Costs	
	5.3 Pat	thway 2 Results	153

6	Disc	cussion of Pathway Results	156
	6.1	NGFC Plant Costs	158
	6.2	Cost of CO ₂ Captured	162
		Water Consumption	
		Effect of Natural Gas Price	
7	Со	nclusions	165
8	Ref	ferences	166

LIST OF EXHIBITS

Exhibit ES-1. Solid Oxide Fuel Cells Pathway Studies	
Exhibit ES-2. Reference NGFC System Characteristics	
Exhibit ES-3. NGFC Pathway Cases without CCS	
Exhibit ES-4. NGFC Pathway Cases with CCS	
Exhibit ES-5. Atmospheric NGFC Plants with CCS Results Summary	
Exhibit ES-6. Atmospheric NGFC Plants without CCS Results Summary	
Exhibit ES-7. Pressurized NGFC Plants with CCS Results Summary	
Exhibit ES-8. Pressurized NGFC Plants without CCS Results Summary	
Exhibit ES-9. HHV Efficiency of the Pathway NGFC Plant Configurations	11
Exhibit ES-10. Technology Developments and Efficiency Improvements for NGFC Plant Configurations	
without CCS	
Exhibit ES-11. Technology Developments and Efficiency Improvements for NGFC Plant Configurations with	
Exhibit ES-12. Comparison of the TPC of the NGFC Plant Configurations	
Exhibit ES-13. Comparison of the LCOE (without T&S) of the NGFC Plant Configurations	
Exhibit ES-14. LCOE Breakdown (with T&S) of the NGFC Plant Configurations	
Exhibit ES-15. LCOE Breakdown (without T&S) of the NGFC Plant Configurations	
Exhibit ES-16. Progression of Plant LCOE (without T&S) along the NGFC Pathway without CCS	
Exhibit ES-17. Progression of Plant LCOE (without T&S) along the NGFC Pathway with CCS	
Exhibit ES-18. Break-even Sale Price of CO ₂ Captured for the Different NGFC Plant Configurations	
Exhibit ES-19. Water Consumption for the Various NGFC Plant Configurations	
Exhibit ES-20. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plant Configurations with C	
Exhibit ES-21. Influence of Natural Gas Price on the LCOE of NGFC Plant Configurations without CCS	
Exhibit 1-1. NGFC System Configuration with CCS	
Exhibit 1-2. Solid Oxide Fuel Cell Pathway Studies	
Exhibit 1-3. Reference NGFC System Characteristics	
Exhibit 1-4. NGFC Pathway Cases without CCS	25
Exhibit 1-5. NGFC Pathway Cases with CCS	
Exhibit 2-1. Site Ambient Conditions	
Exhibit 2-2. Site Characteristics	
Exhibit 2-3. Natural Gas Composition	
Exhibit 2-4. Overview of the ROM Generation Procedure and Usage	30
Exhibit 2-5. General NGFC Plant Configuration with CCS	
Exhibit 2-6. General NGFC Plant Configuration without CCS	
Exhibit 2-7. NGFC Module Sizing	
Exhibit 2-8. NGFC Module Layout	
Exhibit 2-9. SOFC Section Layout: Components and Dimension	
Exhibit 2-10. Characteristics of SOFC Section	
Exhibit 2-11. Atmospheric NGFC System Layout	
Exhibit 2-12. Generalized Configuration of the VGR Concept	38
Exhibit 2-13. Configuration of the VGR concept without an H ₂ Membrane	
Exhibit 2-14. Configuration of the Proposed System without Both the WGS Reactor and the H ₂ Membrane	
Exhibit 2-15. Project and Process Contingencies	
Exhibit 2-16. Atmospheric SOFC Module Costs	
Exhibit 2-17. Pressurized SOFC Module Costs	
Exhibit 2-18. Catalyst and Chemicals Consumption and Cost Basis	
Exhibit 3-1. Autothermal Reforming and Syngas Feed to SOFC	53
Exhibit 3-2. Natural Gas Reformer Section Operating Conditions and Assumptions	
Exhibit 3-3. Scenario 1 – Atmospheric NGFC Power Island with and without CCS	
Exhibit 3-4. Scenario 2 – Pressurized NGFC Power Island with and without CCS	
Exhibit 3-5. SOFC Power Island Conditions and Assumptions	
Exhibit 3-6. Auto-refrigerated CPU Process Developed for the Present Study	
Exhibit 4-1. SOFC Technology Parameters used for Reference Case 0	61
Exhibit 4-2. Case 0 – Atmospheric Reference NGFC Plant with and without CCS – Performance Summary	
Exhibit 4-3. Case 0 - Atmospheric Reference NGFC Plant with and without CCS - Gross Power Distribution	

Exhibit 4-4. Case 0 – Atmospheric Reference Plant with and without CCS – Auxiliary Load Distribution6	
Exhibit 4-5. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – Process Diagram6	
Exhibit 4-6. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – Stream Table6	66
Exhibit 4-7. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – Material and Energy Balance: 	
Exhibit 4-8. Case ANGFC0B – Reference Plant with CCS – Heat and Material Balance Diagram – ASU, ATR,	,,
and Power Island6	88
Exhibit 4-9. Case ANGFC0B – Reference Plant with CCS – Heat and Material Balance Diagram – CO2	
Dehydration, Purification, and Compression6	59
Exhibit 4-11. Case ANGFC0A – Atmospheric NGFC Reference Plant without CCS – Stream Table7	7]
Exhibit 4-12. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – Material and Energy	
Balances7	⁷ 2
Exhibit 4-13. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – Heat and Material	
Balance Diagram – ASU, ATR, and Power Island7	73
Exhibit 4-14. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – Capital Costs	⁷ 4
Exhibit 4-15. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – O&M Costs7	
. Exhibit 4-16. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – Capital Cost Components	
Exhibit 4-17. Case ANGFC0B – Atmospheric Reference NGFC Plant with CCS – BOP Cost Distribution	
Exhibit 4-18. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – Capital Costs	
Exhibit 4-19. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – O&M Costs7	
Exhibit 4-20. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – Capital Cost	_
Components	79
Exhibit 4-21. Case ANGFC0A – Atmospheric Reference NGFC Plant without CCS – BOP Cost Distribution7	
Exhibit 4-22. Case 0 – Atmospheric Reference NGFC Plant with and without CCS – Levelized Cost of	•
Electricity8	30
Exhibit 4-23. SOFC Technology Parameters Used for Case 4	
Exhibit 4-24. Case 4 – Advanced Atmospheric NGFC Plant with and without CCS – Performance Summary8	
Exhibit 4-25. Case 4 – Advanced Atmospheric NGFC Plant with and without CCS – Gross Power Distribution	
8	
Exhibit 4-26. Case 4 – Advanced Atmospheric NGFC Plant with and without CCS – Auxiliary Load Distributio 8	n
Exhibit 4-27. Case ANGFC4B – Advanced Atmospheric NGFC plant with CCS – Block Flow Diagram8	34
Exhibit 4-28. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Stream Table	
Exhibit 4-29. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Material and Energy	
Balances	36
Exhibit 4-30. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Heat and Material Balance	
Diagram – ASU and Power Island8	37
Exhibit 4-31. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Heat and Material Balance	
Diagram – CO2 Dehydration, Purification, and Compression8	
Exhibit 4-32. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Block Flow Diagram8	
Exhibit 4-33. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Stream Table9	
Exhibit 4-34. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Material and Energy	
Balances9	1
Exhibit 4-35. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Heat and Material	
Balance Diagram - Power Island	2
Exhibit 4-36. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Capital Costs9	
Exhibit 4-37. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – O&M Costs	
Exhibit 4-38. Case ANGFC4B – Advanced Atmospheric NGFC plant with CCS – Capital Cost Components 9	
Exhibit 4-39. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – BOP Cost Distribution9	
Exhibit 4-40. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Capital Costs	
Exhibit 4-41. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – O&M Costs	
Exhibit 4-42. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Capital Cost	′
Components9	28
Exhibit 4-43. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – BOP Cost Distribution9	
Exhibit 4-44. Case 4 – Advanced Atmospheric NGFC Plant with and without CCS – Levelized Cost of	J
Electricity9	9
Exhibit 4-45. SOFC Technology Parameters Used for Case 4BV	
	-

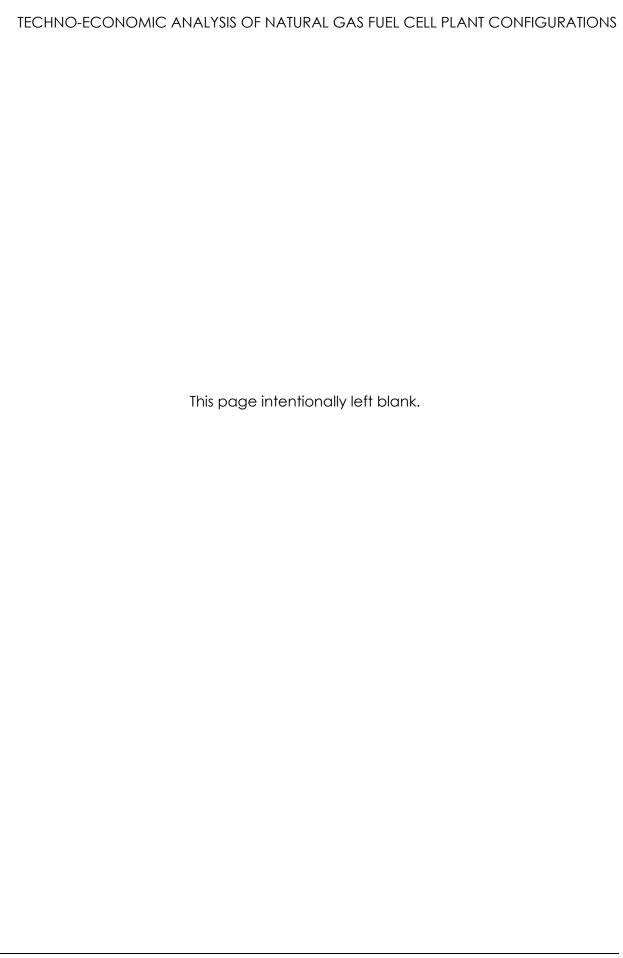

Exhibit 4-46. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Performance Summary.	
Exhibit 4-47. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Gross Power Distribution	
Exhibit 4-48. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Auxiliary Load Distribution	
	.102
Exhibit 4-49. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Block Flow Diagram	
Exhibit 4-50. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Stream Table	.104
Exhibit 4-51. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Material and Energy	
Balances	
Exhibit 4-52. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Heat and Material Balar	
Diagram – ASU, ATR, and Power Island	
Exhibit 4-53. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Heat and Material Balar	
Diagram – CO ₂ Dehydration, Purification, and Compression	
Exhibit 4-54. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Capital Costs	
Exhibit 4-55. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – O&M Costs	
Exhibit 4-56. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Capital Cost Componer	
	.110
Exhibit 4-57. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – BOP Cost Distribution	
Exhibit 4-58. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Levelized Cost of Electric	
Exhibit 4-59. Pathway 1 – Atmospheric NGFC Plants with CCS Results Summary	
Exhibit 4-60. Pathway 1 – Atmospheric NGFC Plants without CCS Results Summary	
Exhibit 5-1. SOFC Technology Parameters Used for Reference Case 0	.114
Exhibit 5-2. Case 0 – Pressurized Reference NGFC Plant with and without CCS – Performance Summary	
Exhibit 5-3. Case 0 – Pressurized Reference NGFC Plant with and without CCS – Gross Power Distribution .	
Exhibit 5-4. Case 0 – Pressurized Reference NGFC Plant with and without CCS – Auxiliary Load Distribution	
Exhibit 5-5. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Block Flow Diagram	
Exhibit 5-6. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Stream Table	
Exhibit 5-7. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Material and Energy Balance	
	.121
Exhibit 5-8. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Heat and Material Balance	
Diagram – ASU, ATR, and Power Island	.122
Exhibit 5-9. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Heat and Material Balance	
Diagram – CO ₂ Dehydration, Purification, and Compression	
Exhibit 5-10. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Block Flow Diagram	
Exhibit 5-11. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Stream Table	.125
Exhibit 5-12. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Material and Energy	
Balances	
Exhibit 5-13. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Heat and Material Balan	ice
Diagram – ASU, ATR, and Power Island	
Exhibit 5-14. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Costs	.128
Exhibit 5-15. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – O&M Costs	
	.129
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components	.129 .130
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs	.129 .130 .130 .131
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130 .131
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130 .131 .132
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130 .131 .132 nts
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130 .131 .132 nts .133
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs	.129 .130 .130 .131 .132 nts .133 .133
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution	.129 .130 .130 .131 .132 nts .133 .134 .134
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary	.129 .130 .130 .131 .132 nts .133 .134 .134
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary Exhibit 5-25. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Gross Power Distribution	.129 .130 .131 .132 .133 .133 .134 .134 .136
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4	.129 .130 .131 .132 .133 .133 .134 .134 .136
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary Exhibit 5-25. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Gross Power Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Ex	.129 .130 .131 .132 .133 .133 .134 .134 .136 .137 on
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary Exhibit 5-25. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Gross Power Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-27. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Block Flow Diagram	.129 .130 .131 .132 .133 .133 .134 .134 .136 .137 on .137
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary Exhibit 5-25. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Gross Power Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-27. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Block Flow Diagram Exhibit 5-28. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Stream Table	.129 .130 .131 .132 .133 .133 .134 .134 .136 .137 .137
Exhibit 5-16. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Capital Cost Components Exhibit 5-17. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – BOP Cost Distribution Exhibit 5-18. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Costs Exhibit 5-19. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – O&M Costs Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Componer Exhibit 5-21. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – BOP Cost Distribution Exhibit 5-22. Case 0 – Pressurized Reference Plant with and without CCS – Levelized Cost of Electricity Exhibit 5-23. SOFC technology parameters used for Case 4 Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary Exhibit 5-25. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Gross Power Distribution Exhibit 5-26. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Auxiliary Load Distribution Exhibit 5-27. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Block Flow Diagram	.129 .130 .131 .132 .133 .133 .134 .134 .136 .137 .138 .139 ees

Exhibit 5-30. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Heat and Material Balance	
Diagram – ASU, ATR, and Power Island	141
Exhibit 5-31. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Heat and Material Balance	
Diagram – CO ₂ Dehydration, Purification, and Compression	.142
Exhibit 5-32. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Block Flow Diagram	
Exhibit 5-33. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Stream Table	.144
Exhibit 5-34. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Material and Energy	
Balances	.145
Exhibit 5-35. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Heat and Material Bala	nce
Diagram – ASU, ATR, and Power Island	.146
Exhibit 5-36. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Capital Costs	147
Exhibit 5-37. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – O&M Costs	148
Exhibit 5-38. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - Capital Cost Components.	149
Exhibit 5-39. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - BOP Cost Distribution	149
Exhibit 5-40. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Capital Costs	150
Exhibit 5-41. Case PNGFC4A - Advanced Pressurized NGFC Plant without CCS - O&M Costs	151
Exhibit 5-42. Case PNGFC4A - Advanced Pressurized NGFC Plant without CCS - Capital Cost Compone	nts
	152
Exhibit 5-43. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - BOP Cost Distribution	152
Exhibit 5-44. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Levelized Cost of Electr	icity
Exhibit 5-45. Pathway 2 – Pressurized NGFC Plants with CCS Results Summary	
Exhibit 5-46. Pathway 2 – Pressurized NGFC Plants without CCS Results Summary	
Exhibit 6-1. HHV Efficiency of the NGFC Plant Configurations	
Exhibit 6-2. Technology Developments and Efficiency Improvements for NGFC Plants without CCS	
Exhibit 6-3. Technology Developments and Efficiency Improvements for NGFC Plants with CCS	
Exhibit 6-4. Comparison of the Total Plant Cost of the NGFC Plant Configurations	
Exhibit 6-5. Comparison of the LCOE (without T&S) of the NGFC Plant Configuration	
Exhibit 6-6. LCOE Breakdown (with T&S) of the NGFC Plant Configurations	
Exhibit 6-7. Comparison of the LCOE (without T&S) of the NGFC Plant Configurations	
Exhibit 6-8. Progression of Plant LCOE (without T&S) along the NGFC Pathway without CCS	
Exhibit 6-9. Progression of Plant LCOE (without T&S) along the NGFC Pathway with CCS	
Exhibit 6-10. Break-even Sales Price of CO2 Captured for the Various NGFC Plant Configurations	
Exhibit 6-11. Water Consumption Variation for the Different NGFC Plant Configurations	
Exhibit 6-12. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plants with CCS	
Exhibit 6-13. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plants without CCS	.164

ACRONYMS AND ABBREVIATIONS

AC	Alternating current	GW	Gigawatt
Aspen	Aspen Plus®	h/hr	Hour
ASR	Area specific resistance	H ₂	Hydrogen
ASU	Air separation unit	H ₂ O	Water
atm, Atm.	Atmospheres	HHV	Higher heating value
Atmos.	Atmospheric	HP	High pressure
ATR BB	Auto-thermal reformer Bituminous Baseline	HRSG	Heat recovery steam generator
BOP		HX, HTX	Heat exchanger
Btu	Balance of plant British thermal unit	I&C	Instrumentation and control
Btu/h		IG	Integrated gasification
Btu/kWh	British thermal unit per hour British thermal unit per kilowatt hour	IGCC	Integrated gasification combined cycle
Btu/lb	British thermal unit per pound	IGFC	Integrated gasification fuel cell
Btu/scf	British thermal unit per standard	in	Inch
DIO/3CI	cubic foot	Int.	Internal
С	Cost of equipment in plant	IP	Intermediate pressure
	section	IR	Internal reformation
CCS	Carbon capture and sequestration	ISO	International Standards Organization
CF	Capacity factor	kg/GJ	Kilogram per gigajoule
CH ₄	Methane	kg/h	Kilogram per hour
cm	Centimeter	kJ	Kilojoules
CO	Carbon monoxide	kJ/h	Kilojoules per hour
CO_2	Carbon dioxide	kJ/kg	Kilojoules per kilogram
COE	Cost of electricity	kW	Kilowatt
CPU	CO ₂ purification unit	kWe	Kilowatts electric
C_{ref}	Cost of equipment in reference	kWh	Kilowatt-hour
	plant area or section	lb	Pound
CRT	Cathode ray tube	lb/h	Pounds per hour
DC	Direct current	lb/MWh	Pounds per megawatt hour
DCS	Distributed control system	LCOE	Levelized cost of electricity
DG	Distributed generation	LHV	Lower heating value
DGFC	Distributed generation fuel cell	LP	Low pressure
DOE	Department of Energy	m	Meters
E	Stack inlet gas Nernst potential	mA	Milliamperes
EOR	Enhanced oil recovery	m³/min	Cubic meter per minute
EPC	Engineer/procure/construct	mA/cm ²	Current density
Excl.	Excluding	MJ/scm	Megajoule per standard cubic
Ext.	External		meter
F _{ref}	Capacity of reference plant	mm	Millimeter
61	area or section	MMBtu	Million British thermal units (also
ft	Foot, feet		shown as 106 Btu)
gpm	Gallons per minute		

MMkJ Million kilojoules (also shown as 10° k.J) Ref. Reformation MMkJ/h Million kilojoules (also shown as 10° k.J) per hour ROM Reduced arder model MMkJ/h Million kilojoules (also shown as 10° k.J) per hour ROM Reduced arder model MP Multi-physics SC Supercritical MP Multi-physics sCO2 Supercritical MP Megapascals SOA State of the art MU Make up SOFC Solicid oxide fuel cell MW Milliowath T T emperature MW, MWe, Mwe Megawath-hour TASC Total as spent cost MWh Megawath-hour TDA TDA Research lnc. N Number of study plant areas or sections in parallel TDA TDA Research lnc. N/A Not applicable TPC Total as spent cost Ner Number of reference plant areas or sections in parallel TRL Technology Readiness Level Ner Number of reference plant areas or sections in parallel TRL Technology Readiness Level Ner Na	MMBtu/h	Million British thermal units (also shown as 106 Btu) per hour	QGESS	Quality Guidelines for Energy System Studies
MMKJ/h Million kilojoules (also shown as 10° kJ) per hour mol% Composition bases on molar percentage of constituents MP Multi-physics SCO2 Supercritical MPa Megapascals SOA State of the art MU Make up SOFC Solid oxide fuel cell MW, Mwe, Mwe Megawatt electric T&S Transport and storage mW/cm² Power density TASC Total as spent cost MWh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel sections in parallel NETL National Energy Technology Laboratory NG Natural gas combined cycle NGFC Natural gas combined cycle NGAK Nith of a kind NOX Oxides of nitrogen NGAK Operation and maintenance O2 Oxygen OP Overpotential of cell PCC Pulverized coal PNNL Pacific Northwest National Laboratory Path sper million volume Press. Pressurized Pound Service Assert and storage Reduced arder model Scaling factor for plant areas or section cost Scaling factor for plant areas or section as section and areas or section in parallel TRL Technology (1000 kg) Tasc Total overnight cost tone Metric ton (1000 kg) TPC Total plant cost TRL Technology Readiness Level UF Fuel utilization Voltage-current Voltage-current Voltage-current Voltage-current Volume percent Volume pe	MMkJ	Million kilojoules (also shown as	R&D	Research and development
Tok kJ) per hour Composition bases on molar percentage of constituents MP Multi-physics SCO2 Supercritical CO2 MPa Megapascals MU Make up SOFC Solid oxide fuel cell MU Make up SOFC Solid oxide fuel cell MW, MWe, Mwe Megawatt electric MW/my Megawatt-hour Taks Transport and storage mW/cm² Power density TaksC Total as spent cost MMh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel Not applicable Not applicable Not Natural gas or sections in parallel NETL National Energy Technology Laboratory No Natural gas combined cycle NGFC Natural gas combined cycle NGFC Natural gas fuel cell NOAK Nth of a kind NOX Oxides of nitrogen OP Overpotential of cell NOR Pout presidential of cell OC Oxygen OP Overpotential of cell NOTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory Pob Part per billion Ppmv Parts per million volume Press. Pressurized Pounds per square inch absolute		·	Ref.	
mol% Composition bases on molar percentage of constituents MP Multi-physics SCO2 Supercritical CO2 MPa Megapascals MU Make up SOFC Solid oxide fuel cell MW Milliwatt T T Temperature MW, MWe, Mwe Megawatt electric T&S Transport and storage mW/cm² Power density TASC Total as spent cost MWh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel tonne Metric ton (1000 kg) N/A Not applicable TPC Total overnight cost sections in parallel NETL National Energy Technology Laboratory V Poitential of cell NGC Natural gas combined cycle VGR Vent gas recirculation NGFC Natural gas fuel cell NOAK Nth of a kind NOX Oxides of nitrogen OBAM Operation and maintenance O2 Oxygen Overpotential of cell OFC Pulverized coal PNUL Pacific Northwest National Laboratory Power density SOFC Solid oxide fuel cell T TEMPERATURE TOTAL Associated the art Tomperature TRL Technology Readiness Level Up: Fuel utilization V Poitential of cell V Poitage-current V Potential of cell VI Voltage-current Voltage-current Voltage recirculation Volume percent Oblicars per million British thermal units NOAK Oxides of nitrogen US. United States Vyfyr Year Vear OP Overpotential of cell VS/WWh Dollars per megawatt hour US. United States Vyfyr Year Pomperature V Potential of cell VS Dollars per megawatt hour Us. United States Vyfyr Year Poperses Celsius PC Degrees Celsius PC Degrees Fahrenheit PNNL Pacific Northwest National Laboratory PDB Part per billion PDBV Part per square inch absolute	MMkJ/h	Million kilojoules (also shown as	ROM	Reduced order model
MP Multi-physics SCO2 Supercritical CO2 MPa Megapascals SOA State of the art MU Make up SOFC Solid oxide fuel cell MW Milliwatt T Temperature MW, MWe, Mwe Megawatt electric T&S Transport and storage mW/cm² Power density TASC Total as spent cost MWh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel tonne Metric ton (1000 kg) N/A Not applicable TPC Total plant cost TOC Total overnight cost TOC Total plant cost Total plant cost TRL Technology Readiness Level TPC Total plant cost TRL Technology Readiness Level TRL Technology Readiness TRL Technology Total plant cost TRL Technology Total pla	mol%	Composition bases on molar	S	•
MPa Megapascals MU Make up Mulliwart MW, MWe, Mwe Megawart electric MW, MWe, Mwe Megawart electric MW, MWe, Mwe Megawart electric MW, MWh Megawart-hour Number of study plant areas or sections in parallel Nore Natural gas Natural gas combined cycle Natural gas inlet NoAK Nth of a kind NoX Oxides of nitrogen Oxygen OP Overpotential of cell OTC Oxygen OP Part per billion ppbv Parts per million volume Press. Pressurized Pounds per square inch absolute Trest Solid oxide fuel cell Tre Temperature Tre Temperature Tre Temperature Tre Total oxide fuel cell The Temperature Tre Total ox spent coost Total overnight cost Total plant cost Total plant cost Total plant cost Total plant cost Volve Total plant cost Volve Fuel utilization Voltage-current Voltage-current Voltage-current Voltage-current Voltage-current Voltage-current Voltage-current Voltage-current Voltage recirculation Volume percent Solid oxide fuel cell Temperature Total oxide spen tocato Total overnight cost Total overnight		percentage of constituents	SC	Supercritical
MU Make up Milliwatt Milliwatt MIlliwatt MW, MWe, Mwe Megawatt electric MW/cm² Power density MWh Megawatt-hour N Mumber of study plant areas or sections in parallel N/A Not applicable Nere Natural gas NGCC Natural gas NGCC Natural gas fuel cell NGIN Natural gas inlet NOAK NITh of a kind NOX Oxides of nitrogen OP Overpotential of cell OTC Oxygen to carbon PC PUNIVERSE PROSS Pressurized Press Pressurized Press Pressurized Pose Pressurized Pose Pressurized Pose Power density Alliwatt T Temperature T Asc Total as mayor and storage T Asc Total as spent cost Transport and storage T Asc Transport and storage T Asc Transport and storage T Asc Total as spent cost Total overnight cost tonne Metric ton (1000 kg) T Dotal plant cost Total plant cost Trall Technology Readiness Level Trall Technology Readiness Trall Technology Readiness Trall Technology Readiness Trall Technology Total overnight cost Total overnight cos	MP	Multi-physics	sCO_2	Supercritical CO ₂
mW Milliwath T T Temperature MW, MWe, Mwe Megawath electric T&S Transport and storage mW/cm² Power density TASC Total as spent cost MWh Megawath-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel tonne Metric ton (1000 kg) N/A Not applicable TPC Total plant cost Nere Number of reference plant areas or sections in parallel tonne Metric ton (1000 kg) NETL National Energy Technology Laboratory V Potential of cell NGC Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell volfs NOAK Nth of a kind NOX Oxides of nitrogen O&M Operation and maintenance O² Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory Press. Pressurized psia Pounds per square inch absolute	MPa	Megapascals	SOA	State of the art
MW, MWe, Me Megawatt electric mW/cm² Power density MWh Megawatt-hour N Number of study plant areas or sections in parallel N/A Not applicable Nere Number of reference plant areas or sections in parallel NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NOAK Nith of a kind NOAK Nith of a kind NOAK Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory Press. Pressurized Pounds per square inch absolute TASC Total as spent cost TASC Total os spent cost TASC Total os spent cost Tasc Tochnology Metric ton (1000 kg) Total plant cost Total plant cost	MU	Make up	SOFC	Solid oxide fuel cell
MW, MWe, Mwe Megawatt electric mW/cm² Power density MWh Megawatt-hour N Number of study plant areas or sections in parallel N/A Not applicable Ner Number of reference plant areas or sections in parallel NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NOAK Nith of a kind NOX Oxides of nitrogen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory Press. Pressurized Press. Pressurized Ponds per million volume Press. Pressurized Ponds per million volume Press. Pressurized Ponds per million volume Press. Pressurized Ponds per square inch absolute PTASC Total as spent cost TDA TDA Research TASC Total as spent cost Total os spent cost TDA TDA Research TaSC Total as spent cost TDA TDA Research Total overight cost Total pant cost TRL Technology Pelulutilization TRL Technology Pelulutilization TRL Technology Technology Total pant cost TRL Technology Total pant cost TRL Technology Total pant c	mW	Milliwatt	T	Temperature
mW/cm² Power density TASC Total as spent cost MWh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel TOC Total overnight cost N/A Not applicable TPC Total plant cost Nter Number of reference plant areas or sections in parallel TRL Technology Readiness Level NETL National Energy Technology Laboratory V Potential of cell NG Natural gas V-I Voltage-current NGCC Natural gas combined cycle VGR Vent gas recirculation NGFC Natural gas fuel cell Vol% Volume percent NGIN Natural gas inlet \$/MMBtu Dollars per million British thermal units NOAK Nth of a kind \$/MWh Dollars per megawath hour NGM Operation and maintenance U.S. United States 02 Oxygen Y/Yr Year 0P Overpotential of cell WT Water treatment 0FC Pulverized coal *F Degrees Fahrenheit PNNL Pacific Northwest National Lab	MW, MWe,	Mwe Megawatt electric	T&S	-
MWh Megawatt-hour TDA TDA Research Inc. N Number of study plant areas or sections in parallel TOC Total overnight cost N/A Not applicable TPC Total plant cost Net Number of reference plant areas or sections in parallel TRL Technology Readiness Level NETL National Energy Technology Laboratory UF Fuel utilization NG Natural gas V-I Voltage-current NGCC Natural gas combined cycle VGR Vent gas recirculation NGFC Natural gas fuel cell vol% Volume percent NGIN Natural gas inlet */MMBtu Dollars per million British thermal units NOAK Nth of a kind */MMBtu Dollars per megawatt hour NOS Oxides of nitrogen U.S. U.S. O2 Oxygen Y/Yr Year OP Overpotential of cell WT Water treatment OC Degrees Celsius OTC Oxygen to carbon *F Degrees Fahrenheit PNNL Pacific Northwest National Laboratory Pounds per million volume <tr< td=""><td>mW/cm²</td><td>Power density</td><td></td><td>_</td></tr<>	mW/cm ²	Power density		_
Number of study plant areas or sections in parallel tonne Metric ton (1000 kg) N/A Not applicable TPC Total plant cost Number of reference plant areas or sections in parallel TRL Technology Readiness Level NETL National Energy Technology Laboratory V Potential of cell NG Natural gas V-I Voltage-current NGCC Natural gas combined cycle VGR Vent gas recirculation NGFC Natural gas fuel cell Vol% Volume percent NGIN Natural gas inlet Vol% Volume percent NOAK Nith of a kind S/MWh Dollars per million British thermal units NOX Oxides of nitrogen U.S. United States O2 Oxygen WT Water treatment OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute	MWh	Megawatt-hour		
N/A Not applicable Nief Number of reference plant areas or sections in parallel NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NOAK Nith of a kind NOX Oxides of nitrogen OP Overpotential of cell OF Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory PNOAD Not per square inch absolute tonne Metric ton (1000 kg) Tonne Metric ton (1000 kg) Total plant cost Text Total plant cost Total plant cost TRL Technology Readiness Level TRL Technology Readiness Fuel utilization Total plant cost TRL Technology Readiness Fuel utilization TRL Technology Readiness Level Technology Porehology Porehology Porehology Total plant cost Total plant cost Total plant cost Technology Polemina fectors Technology Polemina fectors Technology Porential of cell Us. Voltage-current Voltage-curre	Ν	Number of study plant areas or		
N/A Not applicable Nref Number of reference plant areas or sections in parallel NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGR Natural gas fuel cell NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen OP Overpotential of cell OTC Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		sections in parallel		G
Nefl Number of reference plant areas or sections in parallel Up Fuel utilization NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute TRL Technology Readiness Level TRL Technology Readiness Level TRL Technology Readiness Level TRL Technology Readiness Level Fuel utilization V Potential of cell Voltage-current Voltage-current Voltage recirculation Volume percent NoAK Vent gas recirculation Volume percent NoAK Volume percent VolW Volume percent Volwel' Yolume Persent Volwel' Yolume Percent V	N/A			
NETL National Energy Technology Laboratory NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NGFC NGH	N_{ref}			
NEIL Laboratory Laboratory V-I Voltage-current VGR Vent gas recirculation VGFC Natural gas combined cycle NGFC Natural gas fuel cell NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen OBM Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		•		<u> </u>
NG Natural gas NGCC Natural gas combined cycle NGFC Natural gas fuel cell NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute VGR Vent gas recirculation Volwer yolume percent Volwer yolume percent Volwer Vent gas recirculation Volwer yolume percent Volwer gas recirculation Volume percent	NETL	- · · · · · · · · · · · · · · · · · · ·		
NGCC Natural gas combined cycle NGFC Natural gas fuel cell NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute VGR Vent gas recirculation VGR Vent gas recirculation Volume percent Volume percint	\C	-		
NGFC Natural gas fuel cell vol% Volume percent NGIN Natural gas inlet \$/MMBtu Dollars per million British thermal units NOAK Nth of a kind \$/MWh Dollars per megawatt hour O&M Operation and maintenance O2 Oxygen V/yr Year OP Overpotential of cell VT Water treatment OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		_		_
NGIN Natural gas inlet NOAK Nth of a kind NOX Oxides of nitrogen O&M Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute \$/MMBtu Dollars per million British thermal units				_
NOAK Nth of a kind NOx Oxides of nitrogen O&M Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppbv Parts per million volume Press. Pressurized psia Pounds per square inch absolute Nok Nth of a kind		_		•
NOAK Nox Oxides of nitrogen O&M Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppbv Parts per million volume Press. Pressurized psia Pounds per square inch absolute \$/MWh Dollars per megawatt hour U.S. United States y/yr Year WT Water treatment OC Degrees Celsius F Degrees Fahrenheit		_	ψ/ΙνιΙνισιο	
O&M Operation and maintenance O2 Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute U.S. United States y/yr Year WT Water treatment O°C Degrees Celsius P°F Degrees Fahrenheit			\$/MWh	
Oz Oxygen OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppbv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		_	•	-
OP Overpotential of cell OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute WT Water treatment Water treatment WT Water treatment WT Water treatment PC Degrees Celsius Degrees Fahrenheit Pegrees Fahrenheit Press Part per billion Pounds per square inch absolute		·		
OTC Oxygen to carbon PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute				
PC Pulverized coal PNNL Pacific Northwest National Laboratory ppb Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		•		
PNNL Pacific Northwest National Laboratory ppb Part per billion ppbv Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute		,		_
ppb Part per billion ppbv Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute			·	Dogroos ranionnon
ppbv Part per billion ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute	PNNL			
ppmv Parts per million volume Press. Pressurized psia Pounds per square inch absolute	ppb	Part per billion		
Press. Pressurized psia Pounds per square inch absolute	ppbv	Part per billion		
psia Pounds per square inch absolute	ppmv	Parts per million volume		
absolute	Press.	Pressurized		
	psia			
	psig			

EXECUTIVE SUMMARY

The United States (U.S.) Department of Energy (DOE) Office of Fossil Energy and Carbon Management (FECM) and the National Energy Technology Laboratory (NETL) have been pursuing the development of solid oxide fuel cell (SOFC) technology to enable future power generation systems that are consistent with the cornerstones of the DOE mission—to ensure America's security and prosperity by addressing its energy and environmental challenges through transformative science and technology solutions. The U.S. DOE FECM SOFC Program is currently focused on the development of low-cost, highly efficient, and reliable SOFC power systems. NETL's SOFC technology development roadmap is aligned with near-term market opportunities in the distributed generation sector to validate and advance the technology while paving the way for utility-scale (> 50 MW) natural gas and coal-derived synthesis gas-fueled applications via progressively larger system demonstrations. The present study represents a part of a series of system evaluations being developed at NETL to aid in prioritizing technological advances along research pathways to the realization of utility-scale SOFC systems, a transformational goal of the fuel cell program. In particular, the system performance of utility-scale natural gas fuel cell (NGFC) systems with and without carbon dioxide (CO₂) capture is presented. The objective of the study is to provide targeted research and development (R&D) guidance to the FECM SOFC Program and SOFC commercial developers to accelerate technology deployment.

The implemented fuel cell technology is assumed to be a planar cell configuration with separated anode and cathode off-gas streams for this study. The overall framework for the SOFC system R&D pathway considered in this study is depicted in Exhibit ES-1, which considers anticipated improvements in SOFC electrochemical performance and system configuration supported by the SOFC technology development roadmap, combined with concomitant advances in plant operation and maintenance (O&M) and component technologies. With a commercially viable small-scale (≈1 MWe) distributed generation fuel cell (DGFC) system as a basis, the development of utility-scale systems is envisioned to proceed along two parallel pathways based on the fuel feedstock. The NGFC pathway is based on development of natural gas based SOFC systems while the integrated gasification fuel cell (IGFC) relies on synthesis gas (syngas) generated via coal gasification. This report describes the results of the NGFC pathway exclusively. The DGFC and IGFC pathways are described in separate NETL technical reports.

Two parallel developmental scenarios—one with the SOFC operating at atmospheric pressure and one based on pressurized SOFC operation—were considered as part of the NGFC development pathway. An SOFC operating pressure of three atmospheres was assumed based on previous studies, which found insignificant cost benefits for pressures higher than three atmospheres, and pressurized SOFC systems that have been generally proposed and operated by commercial vendors.

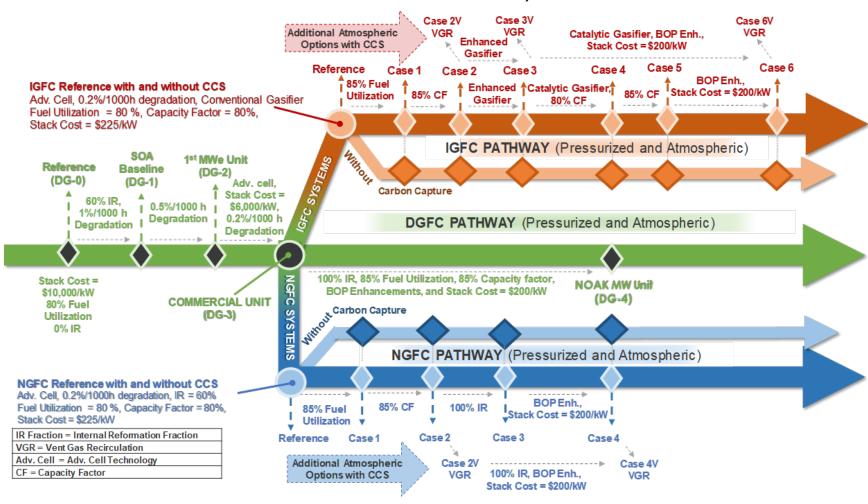


Exhibit ES-1. Solid Oxide Fuel Cells Pathway Studies

The SOFC technology and system characteristics, listed in Exhibit ES-2, of the established commercial DGFC unit (as shown in the DGFC developmental roadmap in Exhibit ES-1) was assumed as the basis for the reference NGFC system.

Exhibit ES-2. Reference NGFC System Characteristics

SOFC Parameters	Values
SOFC Performance	Advanced Cell – 50% reduction in ohmic and polarization losses relative to the state-of-the-art technology (SOA)
Degradation Rate	0.2% per 1000 h
System Fuel Utilization	80%
Stack Cost	\$225/kWe
Internal Reformation	60%
Capacity Factor	85%
Inverter Efficiency	97%

The specific NGFC pathway cases analyzed in this study are listed in Exhibit ES-3 and Exhibit ES-4 for systems without and with carbon capture and sequestration (CCS), respectively. Case 1 represents an increase in fuel utilization from 80 percent to 85 percent based on the confidence gained from DGFC systems. Enhanced reliability of balance-of-plant (BOP) components combined with optimized O&M is reflected by an increase in capacity factor to 85 percent in Case 2. Realization of complete internal reformation technology is assumed in Case 3 while Case 4 considers potential enhancements in air separation unit (ASU) technology and inverter technology, along with a reduction in stack cost to \$200/kW. In the case of systems with CCS, an attractive high-efficiency vent gas recirculation (VGR) configuration, which enables fuel utilization values >95 percent is also explored with systems described by Cases 2 and 4.

An SOFC Reduced Order Model (ROM) developed by the Pacific Northwest National Laboratory (PNNL) in collaboration with NETL was used to estimate the SOFC performance. The ROM, while being computationally effective for system studies, provides detailed information about the state of the stack, such as the internal temperature gradient, generally not available from simple performance models often used to represent the SOFC. Such information can be important in system optimization studies to preclude operation under off-design conditions that can adversely impact overall system reliability.

The design and cost bases for this pathway study closely follow the bases applied in the NETL Bituminous Baseline (BB) report so that direct performance and cost comparisons can be made with the conventional fossil-fuel power plant results estimated in that report. [1]

The results of the pathway studies, summarized in Exhibit ES-5 through Exhibit ES-8, represent the potential future benefits of NGFC technology development.

Exhibit ES-3. NGFC Pathway Cases without CCS

Case Designation	Pathway Parameter	Case ID	SOFC Pressure (atm)	Internal Reformation (%)	SOFC Technology	Capacity Factor (%)	Degradation (%/1000 h)	Fuel Utilization (%)	Inverter Efficiency	Stack Cost (\$/kW)						
Reference	Reference Without	ANGFC0A	1					900/								
(Case 0)	ccs ccs	PNGFC0A	3			00		80%								
01	050/ 5	ANGFC1A	1]		80										
Case 1	85% Fuel Utilization	PNGFC1A	3	- 60					070/	225						
6	050/ Caracity Factor	ANGFC2A	1		-	-									97%	225
Case 2	85% Capacity Factor	PNGFC2A	3													
6	100% Internal	ANGFC3A	1		Advanced Cell			0.2								
Case 3	Reformation	PNGFC3A	3	-	Cen			85%								
04	BOP Enhancements 20% ASU Power	ANGFC4A	1	100		85			000/	200						
Case 4	Reduction, Inverter Efficiency 98%, Stack Cost Reduction	PNGFC4A	3						98%	200						

Exhibit ES-4. NGFC Pathway Cases with CCS

Case Designation	Pathway Parameter	Case ID	SOFC Pressure (atm)	Internal Reformation (%)	SOFC Technology	Capacity Factor (%)	Degradation (%/1000 h)	Fuel Utilization (%)	Inverter Efficiency	Stack Cost (\$/kW)		
Reference	Reference with CCS	ANGFC0B	1					80%				
(Case 0)	Reference with CCS	PNGFC0B	3			00		80%				
Corp 1	QEO/ Fuel Htilization	ANGFC1B	1			80						
Case 1	85% Fuel Utilization	PNGFC1B	3	60				050/				
Co	OFO/ Conneity Forter	ANGFC2B	1				1		85%	97%	225	
Case 2	85% Capacity Factor	PNGFC2B	3									
Case 2BV	With VGR	ANGFC2BV	1							> 90%		
Co. 2	100% Internal	ANGFC3B	1		Advanced		0.0					
Case 3	Reformation	PNGFC3B	3		Cell		0.2					
04	BOP Enhancements 20% ASU Power	ANGFC4B	1	100	100		85%					
Case 4	Reduction, Inverter Efficiency 98%, Stack Cost Reduction	PNGFC4B	3						98%	200		
Case 4BV	With VGR	ANGFC4BV	1					> 90%				

Exhibit ES-5. Atmospheric NGFC Plants with CCS Results Summary

Case		Case 0	Case 1	Case 2	Case 2BV	Case 3	Case 4	Case 4BV	
Internal Reformation (%)		60 100							
SOFC Degradation Rate (%/1000 h)		0.2							
Fuel Utilization (%)		80	80 85		97.5	85		97.5	
Capacity Factor	(%)	8	30			85			
Inverter Efficien	cy (%)		97			98			
SOFC Stack Cost	(\$/kW)		225			200			
		Pe	Performance						
	Current Density (mA/cm²)	400	400	400	400	400	400	400	
SOFC Parameters	Cell Potential (V)	0.875	0.866	0.866	0.865	0.855	0.855	0.848	
Farameters	Power Density (mW/cm²)	350	346	346	346	342	342	339	
Gross Power (kW	/e)	713,048	710,326	710,326	712,709	694,360	693,950	700,617	
Auxiliary Loads (I	kWe)	62,922	60,279	60,279	62,732	46,224	43,920	50,439	
Air Separation	Unit (kWe)	19,955	16,754	16,754	6,889	9,464	7,499	0	
CO₂ Drying, Pu	rification and Compression (CPU) (kWe)	25,895	25,323	25,323	39,259	23,104	22,883	37,094	
Blowers (kWe)		7,919	9,862	9,862	9,671	6,197	6,138	7,235	
Steam Cycle ar	nd Miscellaneous (kWe)	9,153	8,341	8,341	6,912	7,452	7,400	6,110	
Net Power (kWe)		650,126	650,047	650,047	649,978	648,136	650,030	650,178	
NG Flowrate (lb/h)		169,965	166,190	166,190	155,900	151,700	150,248	142,100	
Net Electric Efficiency, HHV (%)		57.9	59.2	59.2	63.1	64.7	65.5	69.2	
Net Plant Heat Rate, HHV (Btu/kWh)		5,895	5,765	5,765	5,408	5,278	5,212	4,928	
CO ₂ Capture rate	CO ₂ Capture rate (%)		97.8	97.8	93.3	98.1	98.1	91.7	
CO ₂ Captured (to	onnes per year)	1,399,003	1,367,654	1,453,133	1,299,505	1,329,578	1,316,844	1,165,365	
CO ₂ Emissions (lb/MWhgross)		14.8	15.2	15.2	37.9	12.1	12.0	41.7	
CO ₂ Emissions (lb/MWhnet)		16.2	16.6	16.6	41.5	12.9	12.8	44.9	
Raw Water Consumption (gpm/MWnet)		2.34	2.03	2.03	1.63	1.63	1.61	1.25	
			Cost						
Total Plant Cost ((TPC) (1000\$)	868,437	838,860	838,860	770,233	739,560	721,477	638,269	
Total Overnight (Cost (TOC) (1000\$)	1,057,252	1,021,362	1,021,308	938,024	900,205	878,320	777,532	
Total As-Spent Co	Total As-Spent Cost (TASC) (1000\$)		1,116,349	1,116,289	1,025,260	983,924	960,003	849,843	
Levelized Cost of	Electricity (\$/MWh)								
Variable Costs		32.6	31.9	31.6	29.8	29.2	28.5	27.0	
Fuel Costs		26.1	25.5	25.5	23.9	23.3	23.0	21.8	
Variable O&	M Costs	6.5	6.5	6.1	5.9	5.8	5.4	5.2	
Fixed O&M Costs		6.5	6.3	5.9	5.5	5.3	5.2	4.7	
Capital Costs		17.9	17.3	16.3	15.0	14.4	14.0	12.4	
Total LCOE (excluding T&S)		57.0	55.6	53.9	50.3	48.9	47.7	44.1	
T&S		3.1	3.0	3.0	2.7	2.8	2.7	2.4	
Total LCOE (including T&S)		60.1	58.6	56.9	53.0	51.7	50.4	46.5	

Exhibit ES-6. Atmospheric NGFC Plants without CCS Results Summary

	Case	Case 0	Case 1	Case 2	Case 3	Case 4
Internal Reformation (%)					100	
SOFC Degradation Rate (%/1000 h)				0.2	ı	
Fuel Utilization (%)		80	85			
Capacity Factor (%)		8				
Inverter Efficiency (%)			9	7		98
SOFC Stack Cost (\$/kW)			22	25		200
	ormance					
	Current Density (mA/cm²)	400	400	400	400	400
SOFC Parameters	Cell Potential (V)	0.867	0.862	0.862	0.857	0.857
	Power Density (mW/cm²)	347	345	345	343	343
Gross Power (kWe)		669,409	670,720	670,720	662,670	662,528
Auxiliary Loads (kWe)		19,346	20,603	20,603	12,545	12,452
Air Separation Unit (kWe)		3,320	3,260	3,260	0	0
CO ₂ Drying, Purification a	nd Compression (CPU) (kWe)	0	0	0	0	0
Blowers (kWe)		7,940	10,011	10,011	5,890	5,837
Steam Cycle and Miscella	neous (kWe)	8,087	7,332	7,332	6,655	6,615
Net Power (kWe)		650,063	650,117	650,117	650,125	650,076
NG Flowrate (lb/h)		159,790	157,070	157,070	144,200	142,890
Net Electric Efficiency, HHV (%)		61.6	62.6	62.6	68.2	68.8
Net Plant Heat Rate, HHV (Btu/kWh)		5,543	5,448	5,448	5,001	4,956
CO ₂ Capture rate (%)		0.0	0.0	0.0	0.0	0.0
CO ₂ Captured (tonnes per year)		0	0	0	0	0
CO ₂ Emissions (lb/MWhgross)		575.8	565.6	565.6	524.3	519.7
CO ₂ Emissions (lb/MWhnet)		593.0	583.6	583.6	534.5	529.6
Raw Water Consumption (gpm/MWnet)		3.05	2.73	2.73	2.16	2.14
		Cost				
Total Plant Cost (TPC) (1000\$)		593,305	584,869	584,869	530,446	509,537
Total Overnight Cost (TOC) (1000\$)		725,408	715,072	715,036	647,086	621,790
Total As-Spent Cost (TASC) (1000\$)		792,871	781,574	781,534	707,265	679,616
Levelized Cost of Electricity	(\$/MWh)					
Variable Costs		30.5	30.0	29.7	27.4	26.8
Fuel Costs		24.5	24.1	24.1	22.1	21.9
Variable O&M Costs		6.0	5.9	5.6	5.3	4.9
Fixed O&M Costs		4.6	4.5	4.2	3.9	3.8
Capital Costs		12.3	12.1	11.4	10.3	9.9
Total LCOE (excluding T&S)		47.3	46.6	45.4	41.7	40.5
T&S		0.0	0.0	0.0	0.0	0.0
Total LCOE (including T&S)		47.3	46.6	45.4	41.7	40.5

Exhibit ES-7. Pressurized NGFC Plants with CCS Results Summary

	Case	Case 0	Case 1	Case 2	Case 3	Case 4
Internal Reformation (%)			00			
SOFC Degradation Rate (%/1000 h)		0.2				
Fuel Utilization (%)		80 85				
Capacity Factor (%)		8				
Inverter Efficiency (%)			9	7		98
SOFC Stack Cost (\$/kW)		225				
	rformance					
	Current Density (mA/cm²)	400	400	400	400	400
SOFC Parameters	Cell Potential (V)	0.904	0.898	0.898	0.868	0.868
	Power Density (mW/cm²)	362	359	359	347	347
Gross Power (kWe)		805,089	830,082	830,082	740,186	737,413
Auxiliary Loads (kWe)		154,900	180,096	180,096	90,225	87,342
Air Separation Unit (kW	е)	23,336	20,242	20,242	10,012	7,282
CO₂ Drying, Purification	and Compression (CPU) (kWe)	24,458	24,277	24,277	22,183	21,918
Blowers (kWe)		98,711	127,861	127,861	51,081	50,471
Steam Cycle and Miscell	aneous (kWe)	8,395	7,715	7,715	6,949	6,887
Net Power (kWe)	Net Power (kWe)		649,987	649,987	649,962	650,071
NG Flowrate (lb/h)		161,140	159,945	159,945	146,200	144,458
Net Electric Efficiency, HHV (%)		61.1	61.5	61.5	67.3	68.1
Net Plant Heat Rate, HHV (Btu/kWh)		5,588	5,549	5,549	5,072	5,011
CO ₂ Capture rate (%)		97.7	97.7	97.7	97.9	97.9
CO ₂ Captured (tonnes per	year)	1,324,217	1,314,654	1,396,819	1,279,612	1,264,343
CO ₂ Emissions (lb/MWhgross)		14.2	14.5	14.5	11.6	11.5
CO ₂ Emissions (lb/MWhnet)		17.6	18.5	18.5	13.2	13.1
Raw Water Consumption (gpm/MWnet)		1.88	1.55	1.55	1.35	1.34
		Cost				
Total Plant Cost (TPC) (1000\$)		922,304	927,010	927,010	757,361	739,234
Total Overnight Cost (TOC) (1000\$)		1,125,577	1,131,492	1,131,428	924,124	902,154
Total As-Spent Cost (TASC) (1000\$)		1,250,355	1,258,432	1,258,363	1,024,360	1,000,222
Levelized Cost of Electricit	y (\$/MWh)					
Variable Costs		31.2	31.0	30.7	28.2	27.5
Fuel Costs		24.7	24.5	24.5	22.4	22.1
Variable O&M Costs		6.5	6.5	6.2	5.8	5.4
Fixed O&M Costs		7.0	7.0	6.6	5.5	5.4
Capital Costs		19.4	19.5	18.4	15.0	14.6
Total LCOE (excluding T&S)		57.6	57.6	55.7	48.7	47.6
T&S		2.9	2.9	2.9	2.6	2.6
Total LCOE (including T&S)		60.5	60.5	58.6	51.3	50.2

Exhibit ES-8. Pressurized NGFC Plants without CCS Results Summary

Case		Case 0	Case 1	Case 2	Case 3	Case 4	
Internal Reformation (%)		60 1				00	
SOFC Degradation Rate (%/1000 h)				0.2	1		
Fuel Utilization (%)		80	85				
Capacity Factor (%)		8					
Inverter Efficienc	y (%)		97				
SOFC Stack Cost (\$/kW)			225				
	Performance						
	Current Density (mA/cm²)	400	400	400	400	400	
SOFC Parameters	Cell Potential (V)	0.852	0.845	0.845	0.825	0.825	
T at attleters	Power Density (mW/cm²)	341	338	338	330	330	
Gross Power (kW	e)	783,508	794,567	794,567	722,228	721,488	
Auxiliary Loads (k	We)	133,384	144,518	144,518	71,573	70,979	
Air Separation	Unit (kWe)	16,980	15,330	15,330	0	0	
CO ₂ Drying, Purification and Compression (CPU) (kWe)		0	0	0	0	0	
Blowers (kWe)		110,856	123,320	123,320	67,325	66,744	
Steam Cycle an	d Miscellaneous (kWe)	5,548	5,868	5,868	4,248	4,235	
Net Power (kWe)		650,124	650,049	650,049	650,655	650,509	
NG Flowrate (lb/h)		132,950	120,055	120,055	139,050	137,850	
Net Electric Efficie	ency, HHV (%)	61.4	59.9	59.9	70.7	71.3	
Net Plant Heat Ra	nte, HHV (Btu/kWh)	5,558	5,695	5,695	4,823	4,782	
CO ₂ Capture rate (%)		0.0	0.0	0.0	0.0	0.0	
CO ₂ Captured (tonnes per year)		0	0	0	0	0	
CO ₂ Emissions (lb/MWhgross)		494.6	500.1	500.1	464.9	461.4	
CO ₂ Emissions (lb	/MWhnet)	596.2	611.3	611.3	516.5	512.1	
Raw Water Consu	umption (gpm/MWnet)	1.29	1.39	1.39	0.72	0.71	
		Cost					
Total Plant Cost (TPC) (1000\$)	618,812	629,499	629,499	520,503	506,808	
Total Overnight Cost (TOC) (1000\$)		759,605	772,409	772,365	638,092	621,494	
Total As-Spent Co	ost (TASC) (1000\$)	856,504	872,450	872,402	715,509	697,261	
Levelized Cost of Electricity (\$/MWh)							
Variable Costs		26.2	24.3	23.9	26.6	26.0	
Fuel Costs		20.4	18.4	18.4	21.3	21.1	
Variable O&I	M Costs	5.8	5.8	5.5	5.3	4.9	
Fixed O&M Cos	ts	4.9	5.0	4.7	3.9	3.9	
Capital Costs		13.3	13.5	12.7	10.4	10.2	
Total LCOE		44.4	42.8	41.4	41.0	40.0	

DISCUSSION OF PATHWAY RESULTS

The impact of the technological developments and the cost reduction assumptions considered in the present pathway study on the performance and cost of an NGFC plant are discussed in this section. The results from the various cases are consolidated to provide guidance to the DOE-FECM Solid Oxide Fuel Cell Program.

System Performance and Efficiency

The efficiencies of the various NGFC plants considered in the two pathways are shown in Exhibit ES-9. For an atmospheric NGFC plant without CCS, the higher heating value (HHV) efficiency varies from a value of 61.6 percent for the reference plant to a value of 68.8 percent for the Case 4 advanced plant with complete internal (on cell) reformation. Inclusion of CCS imposes an efficiency penalty of ≈3.0–3.5 percentage points. Pressurization generally results in an increase in efficiency over the atmospheric NGFC cases except for the Reference Case 0 and Case 1 without CCS due to the additional injection of natural gas required to get the desired turbine inlet temperature in these pressurized cases. The atmospheric NGFC plant with VGR (and with CCS) results in an efficiency value of 69.2 percent, which is higher than most of the plants, including the plants without CCS, and is second only to the Case 4 pressurized system without CCS. The VGR concept enables operating at a fuel utilization of 97.5 percent while the in-stack utilization is maintained below 50 percent. The VGR configuration enables an NGFC plant with CCS that is ≈4 percentage points higher than a comparable atmospheric NGFC plant without VGR.

As expected with the underlying SOFC technology advantages, the NGFC efficiencies are significantly higher than the values for comparable conventional technologies including the supercritical pulverized coal (SC PC) and F-class natural gas combined cycle (NGCC) plants with CCS [1] shown in Exhibit ES-9. The reference atmospheric NGFC plant without CCS eclipses the system performance of both an advanced H-class NGCC plant and a natural gas-based Allamcycle supercritical CO₂ plant (sCO₂), whose HHV efficiencies are between 53 and 54 percent, by over 7 percentage points. The efficiency advantage relative to the conventional plants increases to over 20 percentage points with the advances in NGFC technology (Case 4).

The technology advancement in natural gas internal reformation capability from 60 percent to 100 percent has the highest influence on the system efficiency in the case of plants without CCS, as indicated by the waterfall plot in Exhibit ES-10. For atmospheric NGFC plants with CCS, the benefits of VGR significantly outweigh benefits from other technological advancements as shown in Exhibit ES-11. The BOP enhancements resulted only in modest gains since the ASU parasitic load is lower for the 100 percent internal reformation cases.

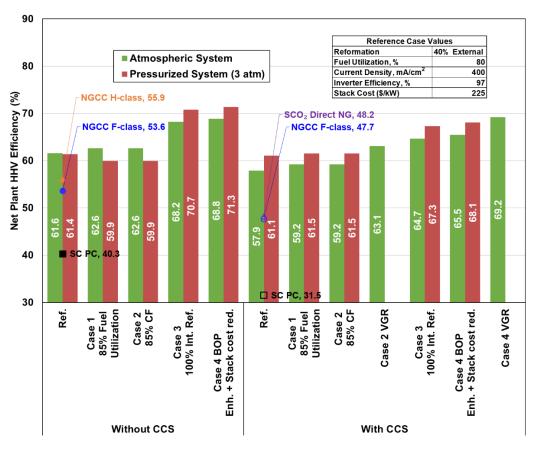
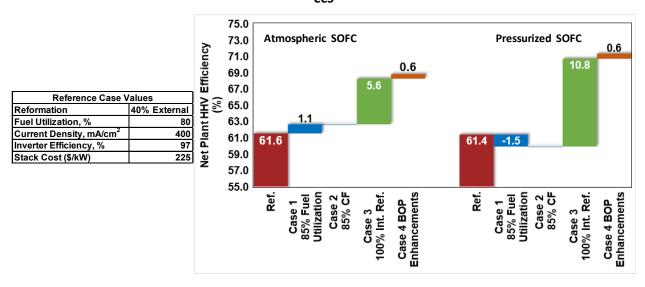



Exhibit ES-9. HHV Efficiency of the Pathway NGFC Plant Configurations

Exhibit ES-10. Technology Developments and Efficiency Improvements for NGFC Plant Configurations without CCS

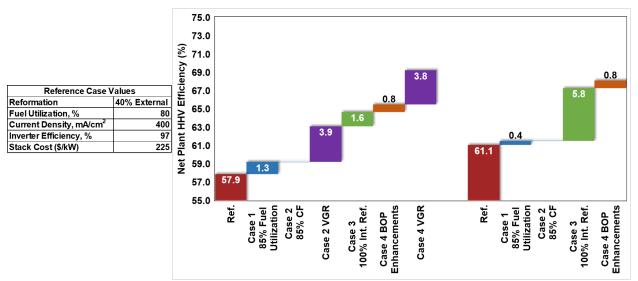


Exhibit ES-11. Technology Developments and Efficiency Improvements for NGFC Plant Configurations with CCS

NGFC Plant Costs

The 100 percent internal reformation case results in the lowest total plant cost (TPC) for the NGFC plants without CCS, as shown in Exhibit ES-12, attributable to the high plant efficiency and the elimination of the external reformer. The pressurized configurations generally result in a higher TPC relative to the atmospheric systems primarily due to the increased enclosure (pressure vessel) cost. The TPC of NGFC plants with CCS are considerably lower than the TPC of other technologies with CCS while the NGFC plant costs without CCS are competitive even with F-Class NGCC units.

The levelized cost of electricity (LCOE) (without transport and storage [T&S]) of the reference NGFC plant with CCS is lower by ≈\$14/MWh than the LCOE of an F-class NGCC system with CCS as shown in Exhibit ES-13.^a The advanced NGFC plants with CCS are projected to result in LCOEs that are ≈\$23–60/MWh lower than the LCOE of all the other technologies. In the case of systems without CCS, the NGFC systems are economically competitive with the F-class NGCCs. The VGR configuration substantially mitigates the LCOE penalty of CCS (by nearly half). The components of the LCOE of NGFC systems with and without T&S costs are shown in Exhibit ES-14 and Exhibit ES-15 respectively, which show the reduction in capital and variable O&M (fuel) components along the pathways.

The difference in LCOEs between an NGFC plant with and without CCS is significantly smaller than the corresponding penalties for conventional technologies. The SOFC is essentially an oxyfuel reactor, and along with the sealed design generally used to separate the air and fuel, it forms a highly effective inherent carbon separator (that produces power); it produces a concentrated CO₂ effluent that is ready for CCS with minimal incremental costs. This

12

 $^{^{\}circ}$ The LCOE for H-class have been estimated to be \sim \$36/MWh in the study by Uysal. [25] However, these were not included on the charts since the costs are based on a 1 GW plant capacity and the financial parameters used are different than the baseline studies.

underscores the leading role played by SOFC-based systems in meeting DOE-FECM's environmental vision.

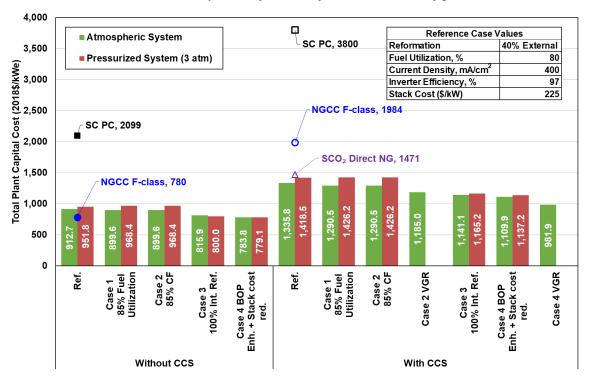
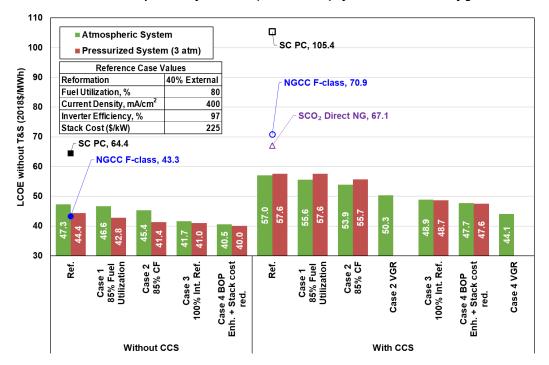



Exhibit ES-12. Comparison of the TPC of the NGFC Plant Configurations

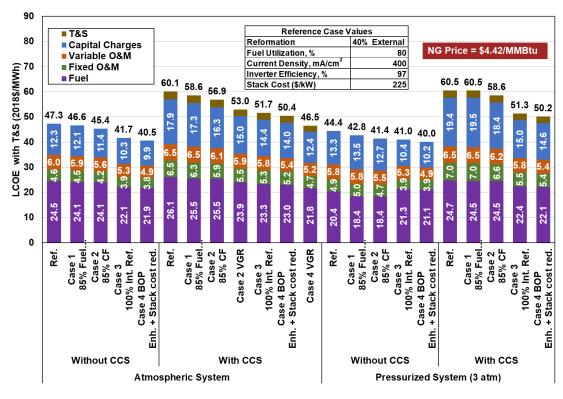
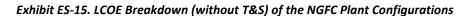
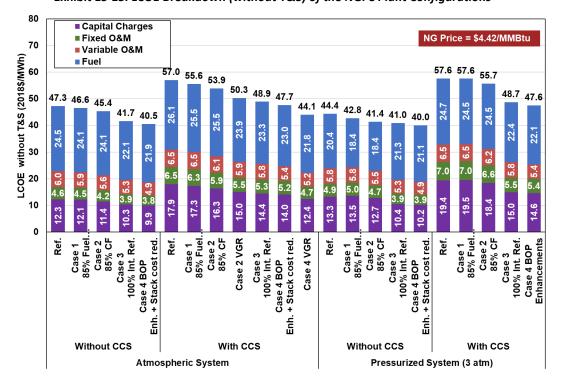




Exhibit ES-14. LCOE Breakdown (with T&S) of the NGFC Plant Configurations

The progression of LCOE with pathway technology developments, cost reductions, and increased availability are shown in Exhibit ES-16 and Exhibit ES-17 for the NGFC plants without and with CCS respectively. In the case of NGFC plants without CCS, the largest reduction in LCOE, ≈\$3.7/MWh, is associated with the technology advancement to enable 100 percent internal reformation. The VGR configurations yield the largest LCOE reduction (≈\$3.6/MWh) for the NGFC plants with CCS. The pathways, which represent practical and realizable steps consistent with the Fuel Cell Program, lead to a NGFC system with capture that has a significantly low LCOE (at a natural gas price of \$4.42/MMBtu) relative to conventional heatengine based technologies with CCS. The pathways also lead to NGFC plants without CCS that are economically competitive with F-class and J-class NGCC plants.

Although pressurization does not appear to have a significant advantage in the cases analyzed here, pressurized configurations could be found to be attractive as a hybrid system where operational flexibility aspects may be attractive.

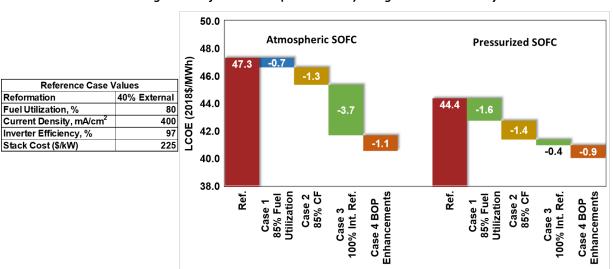
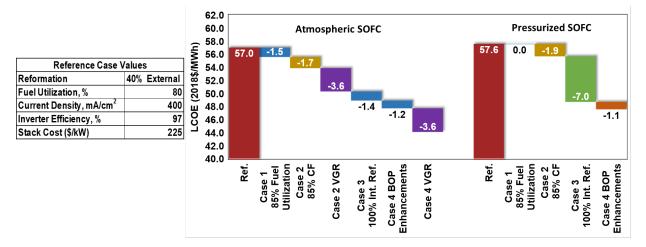



Exhibit ES-16. Progression of Plant LCOE (without T&S) along the NGFC Pathway without CCS

Exhibit ES-17. Progression of Plant LCOE (without T&S) along the NGFC Pathway with CCS

Cost of CO₂ Captured

The breakeven CO_2 sale price (the price of CO_2 that is required to pay for the difference in LCOE between a plant with and without CCS) for the pathway NGFC cases are shown in Exhibit ES-18. All the atmospheric NGFC plants and advanced pressurized plants considered herein have a breakeven CO_2 sales price that is well below the \$40/tonne of CO_2 generally considered to be an achievable selling price for pure CO_2 for EOR purposes. The NGFC system with the VGR configuration results in a break-even price that is below \$15/tonne, which could make this system highly competitive with other CO_2 sources.

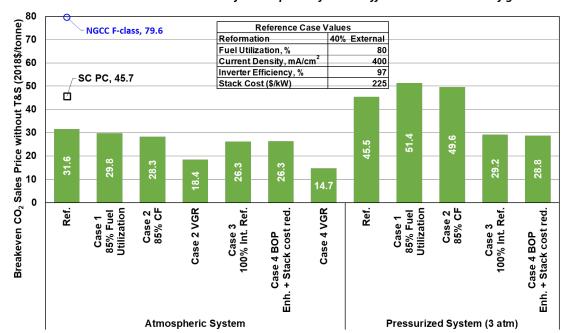


Exhibit ES-18. Break-even Sale Price of CO₂ Captured for the Different NGFC Plant Configurations

Water Consumption

The NGFC plants result in significantly lower water consumption compared to SC PC and NGCC plants as shown in Exhibit ES-19. The NGFC plant water consumption is dominated by steam-cycle the cooling water make-up requirements. Without the steam bottoming cycle, the advanced NGFC plant Case 3 and Case 4 with 100 percent internal reformation do not require any external steam and can result in a net production of water (not shown in the figure).

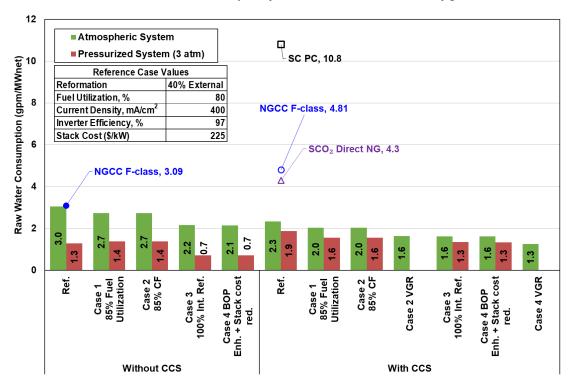


Exhibit ES-19. Water Consumption for the Various NGFC Plant Configurations

Effect of Natural Gas Price

The LCOE of the reference NGFC plant and the best advanced NGFC plant (Case 4 with VGR) with CCS is shown in Exhibit ES-20 as function of natural gas price. The variation of the LCOE of a conventional F-class NGCC plant with CCS is also shown along with the LCOE of an SC PC plant, which does not depend directly on the price of natural gas. While both the NGFC and the NGCC plant LCOEs increase with increase in the price of natural gas, the slope of the dependency is less steep for the for the former (NGFC) relative to the latter (NGCC) due to the higher plant efficiencies. The NGFC plants with CCS show a significant economic advantage relative to other systems at natural gas prices between \$2–15/MMBtu. Even at high natural gas prices, the advanced NGFC plant maintain a significant advantage relative to an SC PC plant although IGFC plants may become competitive.

In plants without CCS, there is a natural gas price (\approx \$8/MMBtu) beyond which the conventional NGFC units overcome the slight LCOE advantage of the NGCC plant at low gas prices as shown in Exhibit ES-21. While the advanced NGFC configuration without CCS is economically advantageous relative to NGCC systems, the SC PC system becomes competitive at natural gas prices > \approx \$9/MMBtu.

Exhibit ES-20. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plant Configurations with CCS

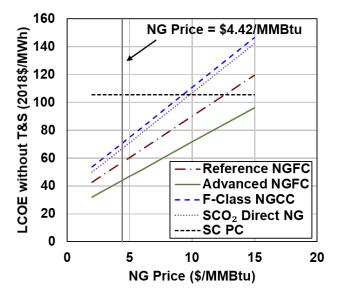
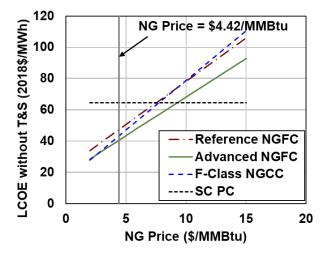



Exhibit ES-21. Influence of Natural Gas Price on the LCOE of NGFC Plant Configurations without CCS

In summary,

- Technology development and cost reduction steps that can cumulatively result in an increase of over 12 percentage points in NGFC plant efficiency accompanied by over 23 percent reduction in the associated LCOE were identified and quantified.
- Development of technologies that enable increased internal reformation of natural gas fuel, along with the implementation of the VGR concept for plants with CCS, had the highest impact on the LCOE of the NGFC plant. The advanced NGFC plant based on complete internal reformation of the natural gas and VGR, which has the highest efficiency and lowest LCOE among all the plants considered in this report, fits well within the DOE transformational technology timeframe.

- The advanced NGFC plant with complete internal reformation and VGR has the lowest CO₂ emission footprint and the lowest water consumption relative to any other conventional power generation technology without CCS.
- The LCOE for the NGFC power plant with CCS is attractive compared to the conventional NGCC with CCS. The LCOE of NGFC plants without CCS were also found to be competitive with NGCC technologies. The competitiveness of NGFC without CCS increases as the price of natural gas increases due to the much higher efficiency of the NGFC plants, although higher natural gas prices may tend to favor coal-based plants.
- The results presented in this study are for SOFC systems operating at a nominal current density of 400 mA/cm² consistent with today's technology. Operating at higher current densities could potentially reduce the capital costs (since a lower number of SOFCs may be needed to achieve the desired power rating) while increasing production costs due to the concomitant loss of efficiency. The usage of PNNL SOFC-ROM enables the evaluation of the trade-off between these costs, which intended to be explored through future sensitivity studies.

1 Introduction

Solid oxide fuel cell (SOFC) technology, through its nearly reversible electrochemical conversion of chemical potential into electric power, has the potential for significantly higher electric efficiency power systems relative to conventional Carnot-cycle-based heat engines. In addition, the oxy-combustion of unutilized fuel in a sealed SOFC system renders itself readily available for carbon capture and sequestration (CCS) with the requirement of only a small oxy-combustor downstream of the fuel cell to combust the remaining fuel (Electrochemical utilization of fuels varies typically between 75 and 90 percent for current fuel cell technology). The heat rejected by the fuel cell system can be recovered further in a combination of Brayton and Rankine cycles, depending on whether the fuel cell system is operating at elevated or atmospheric pressures.

Accordingly, the United States (U.S.) Department of Energy (DOE) National Energy Technology Laboratory (NETL) has been pursuing the development of the SOFC technology to enable future power generation systems that are consistent with the cornerstones of the DOE mission— to ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. The U.S. DOE FECM SOFC Program is currently focused on the development of low-cost, highly efficient, and reliable SOFC power systems.

The present study represents a part of a series of system evaluations being developed at NETL to aid in prioritizing technological advances along research pathways to the realization of utility-scale SOFC systems, a transformational goal of the fuel cell program. In particular, the system performance of utility-scale (>50 MWe) natural gas fuel cell (NGFC) systems with and without carbon dioxide (CO₂) capture is presented. The NGFC power plant is analogous to a natural gas combined cycle (NGCC) power plant, but with the gas turbine power island replaced with an SOFC power island.

A general schematic block flow diagram of the NGFC system with carbon capture is shown in Exhibit 1-1. Desulfurized natural gas with less than 100 ppb of sulfur is sent to an oxygen (O2)driven auto-thermal reformer (ATR) where it is converted to syngas, which fuels the SOFC system after expansion to the desired SOFC operating pressure. Part or all the desulfurized natural gas may bypass the ATR to increase the methane content of the syngas entering the SOFC, which offers cost and performance advantages. In systems featuring a pressurized SOFC generator, a major portion of the compression work needed to supply air at pressure to the generator is recovered by expanding the SOFC air exhaust gas back to atmospheric pressure (as shown by the dotted lines in Exhibit 1-1). An air separation unit (ASU) supplies O₂ to the reformer and to the oxy-combustor to enable efficient capture of CO₂. The cooled anode exhaust from the heat recovery steam generator (HRSG) is further purified to pipeline specifications in a CO₂ purification unit (CPU). For systems without carbon capture, the O₂ supply to the reformer and the combustor may be substituted with air. Further, the expansion of the anode-off gas to atmospheric pressure is accomplished downstream of the SOFC generator with an additional expander (anode expander) before recovering heat for steam generation in the case of pressurized SOFC operation.

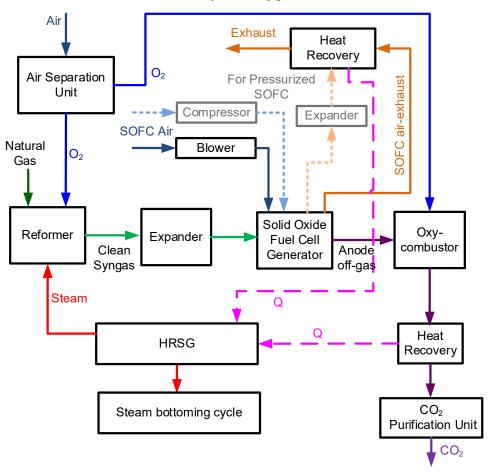


Exhibit 1-1. NGFC System Configuration with CCS

The fuel cell technology is assumed to be a planar cell configuration with separated anode and cathode off-gas streams for the present pathway studies. The overall framework for the SOFC system research and development (R&D) pathway considered in this study is depicted in Exhibit 1-2, which considers anticipated improvements in SOFC electrochemical performance and system configuration supported by the SOFC technology development roadmap combined with concomitant advances in plant operation and maintenance (O&M) and component technologies. With commercially viable small-scale (≈1 MWe) distributed generation fuel cell (DGFC) system as a basis, the development of utility scale systems is envisioned to proceed along two parallel pathways based on the fuel feedstock. The NGFC pathway is based on development of natural gas based SOFC systems while the integrated gasification fuel cell (IGFC) relies on synthetic gas (syngas) generated via coal gasification. The results of only the NGFC pathway are discussed in this report. The DGFC and IGFC pathways are described in separate NETL technical reports.

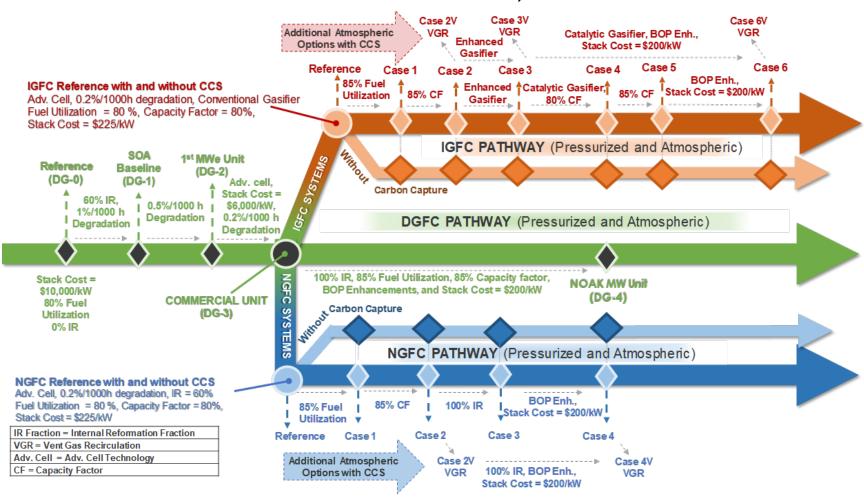


Exhibit 1-2. Solid Oxide Fuel Cell Pathway Studies

The SOFC technology and system characteristics, listed in Exhibit 1-3, of the established commercial DGFC unit (as shown in the DGFC developmental roadmap^b in Exhibit 1-2) was assumed as the basis for the reference NGFC system.

Exhibit 1-3. Reference NGFC System Characteristics

SOFC Parameters	Values
SOFC Performance	Advanced Cell – 50% reduction in Ohmic and Polarization losses relative to the state-of-the-art technology (SOA)
Degradation Rate	0.2% per 1000 h
System Fuel Utilization	80%
Stack Cost	\$225/kWe
Internal Reformation	60%
Capacity Factor	85%
Inverter Efficiency	97%

Two parallel developmental scenarios—one with the SOFC operating at atmospheric pressure and one based on a pressurized SOFC operation—were considered as part of the NGFC pathways. From previous studies, which found insignificant cost benefits for pressures higher than three atmospheres and based on pressurized SOFC systems that have been generally proposed and operated by industrial vendors, an SOFC operating pressure of 3 atm was assumed in the present calculations.

The specific NGFC pathway cases analyzed in this study are listed in Exhibit 1-4 and Exhibit 1-5 for systems without and with CCS respectively. Case 1 represents an increase in fuel utilization from 80 to 85 percent based on the confidence gained from DGFC systems. Enhanced reliability of balance of plant (BOP) components combined with optimized O&M is reflected by an increase in capacity factor to 85 percent in Case 2. Realization of complete internal reformation technology is assumed in Case 3 while Case 4 considers potential enhancements in ASU technology and inverter technology, along with a reduction in stack cost to \$200/kW. In the case of systems with CCS, an attractive high-efficiency vent gas recirculation (VGR) configuration, which enables fuel utilization values >95 percent, is also explored with systems reflected by Cases 2 and 4.

Each NGFC case is designated by a numbering system—"XNGFCYZ*"—where X = A or P depending on whether the SOFC is operating under atmospheric or pressurized conditions respectively, Y represents the case number, Z = B or A depending on whether the system features CCS or not, and * is a wildcard letter used to designate special configurations such as the vent gas recirculation concept.

_

b The DGFC pathway is discussed in an alternate report.

The design and cost bases for this pathway study closely follow the bases applied in the NETL Bituminous Baseline (BB) report so that direct performance and cost comparisons can be made with the conventional fossil-fuel power plant results estimated in that report. [1]

The results represent the potential future benefits of NGFC technology development. Performance and cost projections for the NGFC plants are compared with conventional heatengine based technologies.

The balance of this report is organized as follows:

- Section 2 provides the basis for the technical and cost evaluations.
- Section 3 describes the major plant components that are applied throughout the case studies.
- Section 4 describes the plant simulations and presents the results for Scenario 1: atmospheric-pressure NGFC cases and their corresponding pathway parameters and NGFC with and without CCS are considered.
- Section 5 describes the Scenario 2 plant simulations and presents the results for the pressurized-SOFC and NGFC cases and their corresponding pathway parameters. NGFC with and without CCS are considered.
- Section 6 provides a discussion of all the pathway results and provides DOE with a basis
 to select the most appropriate development path for NGFC, and to measure and
 prioritize the contribution of its R&D program to future power systems technology.
- Section 7 presents the major conclusions from the study.

TECHNO-ECONOMIC ANALYSIS OF NATURAL GAS FUEL CELL PLANT CONFIGURATIONS

Exhibit 1-4. NGFC Pathway Cases without CCS

Case Designation	Pathway Parameter	Case ID	SOFC Pressure (atm)	Internal Reformation (%)	SOFC Technology	Capacity Factor (%)	Degradation (%/1000 h)	Fuel Utilization (%)	Inverter Efficiency	Stack Cost (\$/kW)	
Reference	Reference Without	ANGFC0A	1					80%			
(Case 0)	CCS	PNGFC0A	3			80					
Cons 1	050/ 5	ANGFC1A	1	60		80					
Case 1	85% Fuel Utilization	PNGFC1A	3	- 60				0.70/	225		
	050/ 6	ANGFC2A	1				0.2	85%	97%	225	
Case 2	85% Capacity Factor	PNGFC2A	3	-	Advanced	Advanced Cell					
	100% Internal	ANGFC3A	1		Cell						
Case 3	Reformation	PNGFC3A	3	-							
	BOP Enhancements	ANGFC4A	1	100			65				
Case 4	20% ASU Power Reduction, Inverter Efficiency 98%, Stack Cost Reduction	PNGFC4A	3	100							

TECHNO-ECONOMIC ANALYSIS OF NATURAL GAS FUEL CELL PLANT CONFIGURATIONS

Exhibit 1-5. NGFC Pathway Cases with CCS

Case Designation	Pathway Parameter	Case ID	SOFC Pressure (atm)	Internal Reformation (%)	SOFC Technology	Capacity Factor (%)	Degradation (%/1000 h)	Fuel Utilization (%)	Inverter Efficiency	Stack Cost (\$/kW)			
Reference	Reference with	ANGFC0B	1					900/					
(Case 0)	CCS	PNGFC0B	3			00		80%					
Case 1	85% Fuel	ANGFC1B	1			80	80						
Case 1	Utilization	PNGFC1B	3	60						225			
C 2	85% Capacity	ANGFC2B	1				0.2	85%	97% > 90%				
Case 2	Factor	PNGFC2B	3										
Case 2BV	With VGR	ANGFC2BV	1					> 90%					
C 2	100% Internal	ANGFC3B	1		Advanced								
Case 3	Reformation	PNGFC3B	3		Cell								
	ВОР	ANGFC4B	1			85							
Case 4	Enhancements 20% ASU Power Reduction, Inverter Efficiency 98%, Stack Cost Reduction	PNGFC4B	3	100					83		85%	98%	200
Case 4BV	With VGR	ANGFC4BV	1					> 90%					

2 PATHWAY STUDY BASIS

Systems models were developed under the Aspen Plus® (Aspen) platform to simulate the NGFC process configurations. The major equipment characterizations were used to generate capital and operating cost estimates for the NGFC plants. Performance and process limits were based upon published reports, information obtained from vendors and users of the technology, performance data from design/build utility projects, and/or best engineering judgment as described in the BB report. [1]

Capital and operating costs for most of the conventional equipment items were scaled based on the updated BB report cost estimates. [2] All the costs are reported in 2018 dollars, and the levelized cost of electricity (LCOE) is presented as the revenue requirement figure-of-merit for each of the cases.

The design basis for the pathway study, which is largely based on the BB report, [1] is reported in this section along with the environmental targets and cost assumptions.

2.1 SITE DESCRIPTION

The plants in this report apply the site description assumptions used in the BB report. [1] The plants are fueled by natural gas, and are assumed to be located at a generic Midwestern site (Exhibit 2-2) operating at International Standards Organization (ISO) ambient conditions (Exhibit 2-1).

Elevation, m (ft) 0 (0)

Barometric Pressure, MPa (psia) 0.10 (14.696)

Design Ambient Temperature, Dry Bulb, °C (°F) 15 (59)

Design Ambient Temperature, Wet Bulb, °C (°F) 11 (51.5)

Design Ambient Relative Humidity, % 60

Exhibit 2-1. Site Ambient Conditions

Exhibit 2-2. Site Characteristics

Location	Greenfield, Midwestern U.S.			
Topography	Level			
Size, acres	150			
Transportation	Rail			
Water	Municipal (50%) / Groundwater (50%)			
Access	Land locked, having access by train and highway			
CO₂ Storage	Compressed to 15.3 MPa (2,215 psia), transported 80 kilometers (50 miles) and sequestered in a saline formation at a depth of 1,239 meters (4,055 feet)			

2.2 DESIGN FUEL

The design basis composition for the NGFC cases is the same as used in the BB report for NGCC plants (Exhibit 2-3). It is assumed that the natural gas has a total sulfur content of 5 ppmv and has no significant trace element content.

Volume Percentage Component Methane CH₄ 93.1 Ethane 3.2 C_2H_6 0.7 Propane C_3H_8 *n*-Butane C₄H₁₀ 0.4 Carbon Dioxide CO_2 1.0 Nitrogen N_2 1.6 100.0 Total 52,581 kJ/kg 47,454 MJ/scm 34.71 38.46 Btu/lb 22,600 20,410 Btu/scf 932 1,032

Exhibit 2-3. Natural Gas Composition

Note: Fuel composition is normalized, and heating values are calculated.

2.3 SOFC POWER ISLAND CHARACTERIZATION

The SOFC simulations represent the expected operating conditions and performance capabilities of planar fuel cell technology, having split cathode and anode off-gas steams, and operating at both atmospheric-pressure and elevated-pressure conditions. Several assumptions were applied to estimate the performance of the NGFC power island. These assumptions were generally based on SOFC test data and internal vendor reports.

2.3.1 Estimation of Fuel Cell Operating Voltage

NETL's previous pathway studies [3], [4] are based on simplified representations of the SOFC performance at only a specific design point. While a variety of detailed computational models can be employed to predict the electrical performance along with the thermal and flow fields of SOFCs, these models are generally computationally intensive for use in system-level thermodynamic and material balance models typically used in techno-economic analyses. Through a collaboration with Pacific Northwest National Laboratory (PNNL), NETL has developed a reduced order model (ROM) that is based on detailed computational models of the SOFC stack. This model, which is referred to as PNNL-ROM here, is not computationally intensive, by design, and allows for effective use in system-level models. PNNL-ROM, in

addition to the capability to predict the stack performance over the entire range of operating conditions, is designed to provide other desirable information about the state of the stack, such as internal temperature gradients, which can be critical constraints in system optimization studies.

PNNL-ROM was used to predict the SOFC performance along with the cell thermal fields for a given airflow and fuel flow for the NGFC studies. PNNL-ROM is based on the response surface methodology [5] with detailed SOFC stack model results to create a computationally efficient ROM for the stack that retains desirable information about its internal state. The response surface approach attempts to describe the behavior of a dependent or 'response' variable of interest based on the independent or 'explanatory' variables that are inputs to a given process or model. For the SOFC, the input variables could constitute operational parameters such as fuel/oxidant compositions, temperatures, flow rates, and utilizations. Response variables could include electrical performance characteristics such as stack voltage, power output, and efficiency. Peak cell/stack temperature, cell temperature gradient, or maximum local current density are among other response variables that may be of interest due to their influence on cell/stack structural stability and performance degradation.

The developed numerical process for ROM generation is shown schematically by the flow chart in Exhibit 2-4. The number of different model input variables and their range of values are assigned based on expected SOFC operating conditions. This defines the multi-dimensional design space for the problem, and random sampling is performed to define sets of parameters. Each sample set defines a modeling case to be run. The detailed stack model then runs each of the defined cases and collects the results. Based on the expected usage of the ROM, the output parameters of interest are also defined. The corresponding values for these parameters are then extracted from the case results, and regression is performed to a selected fitting function. The regression results provide a mathematical relationship describing the predicted response surface for each response variable as a function of the input variables. These response surfaces are then exported in a suitable format for integrating the ROM into the system model. This ROM then provides a computationally efficient predictor of a given stack's performance without integrating the entire detailed model directly into the system model and adding further nonlinear convergence iterations to that solution. Further details of PNNL-ROM, the regression methodology, and its validation can be found in "Use of a Reduced Order Model (ROM) to Simulate SOFC Performance in System Models." [6]

Although the ROM procedure is applicable to comprehensive 3-D models, the stack is presently modeled using PNNL's SOFC-multi-physics (SOFC-MP) software [7] that solves for the steady-state cell distributions of species, temperature, and current density. The underlying 1-D channel cell model represents a 550 cm² active area anode-supported cell with metal interconnects in a counter-flow configuration. The model assumes the water-gas shift reaction is in equilibrium but uses a first-order kinetic expression for the slower on-cell steam reforming of methane with an Ni/YSZ anode. [7]

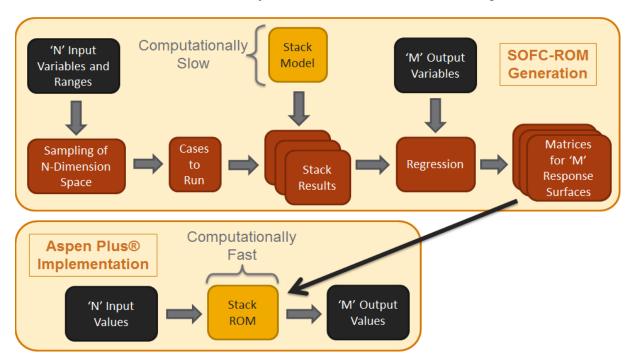


Exhibit 2-4. Overview of the ROM Generation Procedure and Usage

The voltage-current (V-I) relationship for the cell within the stack model is defined by a user-defined function that returns a voltage based on the local temperature, species concentrations, and current density at each location of the cell's active area. The stack model iterates on the current density distribution until the cell voltage is converged. The cell voltage is calculated by subtracting expressions for the activation, ohmic, and concentration polarization losses from the open circuit voltage as given by the equation:

$$V_{cell} = V_{OC} - \eta_{act} - i * R - \eta_{conc}^{anod} - \eta_{conc}^{cath}$$

Where V_{cell} is the cell voltage, V_{OC} is the open circuit potential, η_{act} is the voltage loss due to activation polarization, R is the overall ohmic resistance, and $\eta_{conc}{}^{anod}$ and $\eta_{conc}{}^{catd}$ are voltage losses due to diffusion polarization at the anode and cathode respectively. The coefficients used in the polarization equations were selected to provide a V-I response representative of high performance state-of-the-art (SOA) planar cells operating under atmospheric conditions. The selected cell performance provides 0.8V at 400 mA/cm² operating at a temperature of 750 °C for a wet hydrogen (H₂) fuel (97 percent H₂, 3 percent water [H₂O]) with 75 percent fuel utilization and 12.5 percent air utilization (see "Use of a Reduced Order Model (ROM) to Simulate SOFC Performance in System Models" [6] for the full V-I characteristics)

2.3.2 SOFC Carbon Deposition Control

The SOFC stack inlet anode gas composition can induce the formation of solid carbon deposits, which can disrupt the normal performance of the stack. [8] Anode gas recirculation is used to control the anode gas inlet conditions to maintain an atomic oxygen to carbon (OTC) ratio greater than 2.1, which is a generally used criterion to prevent carbon deposition anywhere in

the SOFC fuel flow domain. [9] Anode gas recirculation is accomplished using hot gas blowers and serves to keep the fuel utilization within the stack below acceptable limits from a flow distribution perspective.

2.3.3 Estimation of Steam Bottoming Cycle Performance

The anode off-gas stream is combusted with O_2 for the cases with carbon capture, while a portion of the SOFC cathode exhaust is utilized for combustion in cases without carbon capture. In both cases, the hot stream from the combustor exchanges heat in an HRSG to produce steam, which generates power in a subcritical steam bottoming cycle after satisfying process steam requirements. The subcritical steam cycle varies greatly in its steam conditions and capacity in the study cases, providing a relatively small proportion of the total plant generation output. In some cases, the heat recovery temperature available is relatively low and results in poor steam superheat conditions. Rather than perform detailed design for each of these unique steam bottoming cycles, the steam cycle performance was estimated using a nominal efficiency of 38.1 percent, which was based on simulations of steam cycles in select pathway cases. [4] This approach has been shown to result in efficiencies that could be ± 1.5 percentage points lower or higher than fully simulated steam cycle model values depending on whether the SOFC is operating at atmospheric or elevated pressures, respectively. The auxiliaries for the steam cycle were scaled from the BB report [10] based on the steam cycle power output.

2.4 PLANT CHARACTERISTICS

The basis for the selection of several key plant characteristics is discussed below.

2.4.1 Plant Capacity Factor

The capacity factor for the reference and NGFC baseline plants is assumed to be 80 percent, identical to that of the BB report's integrated gasification combined cycle (IGCC) plants, with the plant operating at 100 percent of its rated capacity. Other pathway study cases consider the economic benefits of increased plant capacity factors that will be realized with improved plant availability through greater operating experience, optimized maintenance procedures, and advanced monitoring. This report assumes that the plant would be dispatched any time it is available and would be capable of generating maximum capacity when online. Therefore, the capacity factor and plant availability are equal.

2.4.2 Plant Generating Capacity

The plant net generating capacity for all of the study cases is 650 MWe consistent with other fossil fuel plants assessed in the BB report to facilitate a direct comparison of costs.

2.4.3 Plant Sparing Philosophy and Number of Parallel Process Trains

No major equipment spares are utilized in the plant. In practice, degradation of SOFC performance is mitigated by providing additional capacity in the form of extra SOFC surface area, coupled with operational strategies to maintain a constant power output as discussed in Section 2.6.13.

The plants consist of single train processing for the ASU, the natural gas reformer area, the oxycombustion, and the steam-cycle power island, as illustrated in Exhibit 2-5 for an NGFC system with CCS, where the captured CO₂ is dehydrated, compressed, and purified in the CPU. The corresponding NGFC plant without CCS is shown in Exhibit 2-6. Syngas expansion and cathode gas expansion, additional components that are included for pressurized SOFC operation, are also assumed to interact with the SOFC power island that is highly modular, as explained in Section 2.4.6, and is designed for the shutdown and bypass of individual modules to enable turndown. Accordingly, the NGFC plant part-load performance is limited primarily by the syngas-supply component (reformer, ASU) and the heat recovery component (oxy-comb, HRSG, steam cycle) turndown limitations, and the turndown capability should be comparable to IGCC with CCS. The load-follow capability of the NGFC, on the other hand, is primarily limited by SOFC heat-up rate constraints.

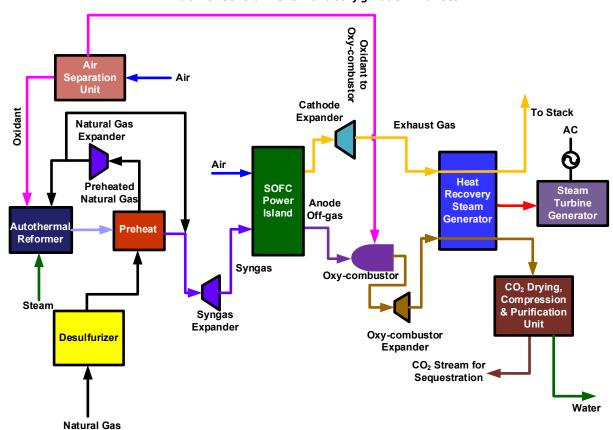


Exhibit 2-5. General NGFC Plant Configuration with CCS

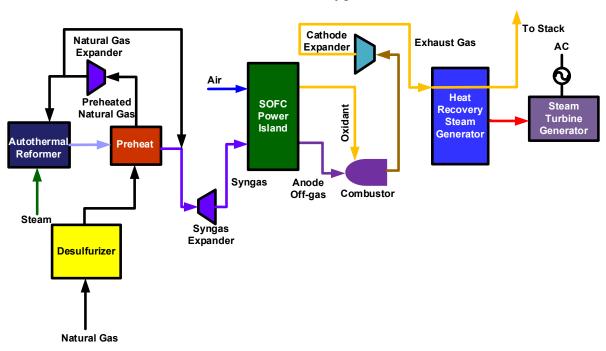


Exhibit 2-6. General NGFC Plant Configuration without CCS

2.4.4 Natural Gas Reforming Technology

The natural gas feed stream to the plant, delivered at 500 psia, is first preheated and expanded to the reformer working pressure. In the reference case with complete external reformation, all of the natural gas is reformed with steam and oxidant in an ATR to generate a high-heating value syngas, which is considered to be the most effective method to convert natural gas into a high-heating value syngas. [11], [12] In Case 1 and Case 2 only a portion of the natural gas feed (40 percent) is reformed in the ATR reflecting the SOA technology anticipated with the commercially viable DGFC system. This syngas is mixed with the remainder of the natural gas to yield a syngas having a methane content of about 30 mole-percent. In Case 3 and Case 4, the natural gas bypasses the ATR completely and is assumed to be reformed internally in an advanced SOFC unit.

2.4.5 Natural Gas Desulfurization Technology

The natural gas is desulfurized from its assumed 5 ppmv total sulfur content to 100 ppbv total sulfur using the low-temperature TDA Research Inc. (TDA) SulfaTrap TM sorbent before it is introduced to the plant. [13]

2.4.6 NGFC Power Island

The NGFC power island (refer Exhibit 2-5 and Exhibit 2-6) consists of a natural gas expander that expands the natural gas from its high-pressure condition down to the operating pressure of the reformer unit; a syngas expander that expands the syngas from its reformer outlet condition down to the operating pressure of the fuel cell unit; the SOFC power island with direct current

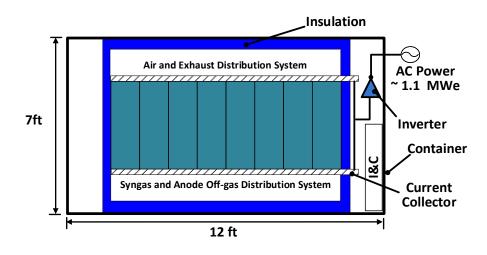
(DC) – alternating current (AC) inverters; an anode off-gas oxy-combustor; an HRSG that captures heat from the combusted anode off-gas; and a steam bottoming cycle.

The SOFC power island configuration is modular and is made up of a parallel train of 'sections' that are essentially assemblies of basic building blocks—the SOFC modules. SOFC modules are independently manufacturable units built upon the commercially viable 1 MWe class DGFC units that include planar SOFCs stacked and connected electrically in a convenient fashion. Each module is distinguished by an enclosure, which serves as a pressure and material boundary and houses the insulation system, the fuel and air distribution systems, the current collection systems, and the instrumentation and control (I&C) system in addition the SOFC stacks.

In the present study, the size of the modules was determined based on a nominal cell operating at a voltage of 0.8 V at a current density of 400 mA/cm², corresponding to a power density of 400 mW/cm². The module comprises several SOFC stacks, each consisting of 100 cells, each measuring 25 × 25 cm in cross-section, with an effective area of 550 cm². A 64-stack module was found to be suitable based on a variety of factors including the stack arrangement, module total current, module voltage rating, and shipping constraints. The 64-stack module, whose dimensions are listed in Exhibit 2-7 along with the salient assumptions, also aligns well with the development of a 1 MWe class systems currently being pursued under the fuel cell program. The enclosing pressure and material boundary for atmospheric and pressurized SOFC module are referred to as a "container" and "pressure" vessel respectively.

Exhibit 2-7. NGFC Module Sizing

Nominal Cell Potential (V)	0.8
Nominal Current Density (mA/cm²)	400
Nominal Power Density (mW/cm²)	320
Active Cell Area (cm²)	550
Nominal Cell Current (A)	220
Cell Width in (cm)	9.84 (25)
Cell Length in (cm)	9.84 (25)
Cell Thickness in (mm)	0.315 (8)
Number of Cells per Stack	100
Nominal Stack Potential (V)	80
Nominal Stack Current (A)	220
Nominal Stack Power (kWe DC)	17.6
Stack Height (in)	31.5
Stack Pitch in Module Spanwise (x) Direction (in)	12.0
Stack Pitch in Module Lengthwise (z) Direction (in)	12.0
Insulation Thickness (in)	5
Additional spacing allowance for sub-systems	24
Spacing above and below stack for flow distribution	36
Number of Stacks per Module	64
Number of Stacks in Module Spanwise (x) Direction	8
Number of Stacks in Module Lengthwise (z) direction	8
Number of Cells per Module	6400


Total Current per Module (A)	440
Total Voltage per Module (V)	2560
Atmospheric SOFC Module rating (MWe DC)	1.126
Container/Vessel Head	Flat
Atmospheric SOFC Container Dimensions (ft)	Width \times Length \times Height = $10 \times 12 \times 7$
Pressurized SOFC Vessel Dimensions (ft)	Diameter × Length = 10 × 12
Pressurized SOFC Vessel Diameter ft(in)	9.9 (118.8)

Plan and elevation views of the finalized SOFC module layout are shown schematically in Exhibit 2-8 (a) and (b), which also depict the major components that are considered to be within the module boundary for the present study.

Exhibit 2-8. NGFC Module Layout

(a) Plan View SOFC Insulation **Stacks** 100 Cells **AC Power** ~17.6` ~ 1.1 MWe kWe DC Inverter 10ft 1&C Container

12 ft

(b) Elevation View

35

Several SOFC modules are assembled into sections, which also houses SOFC BOP equipment such as heat exchangers, blowers, sectional I&C, and the power collection system for ease of thermal, flow, and power management. A section that consisted of 16 modules, as depicted by the layout in Exhibit 2-9, was deemed to be nominal in the present study from flow distribution and current collection perspectives. The power rating of the resulting section is ≈19 MWe and its salient electrical characteristics are listed in Exhibit 2-10. Trade-offs between the number of modules per section and the total system cost will be explored as a separate study.

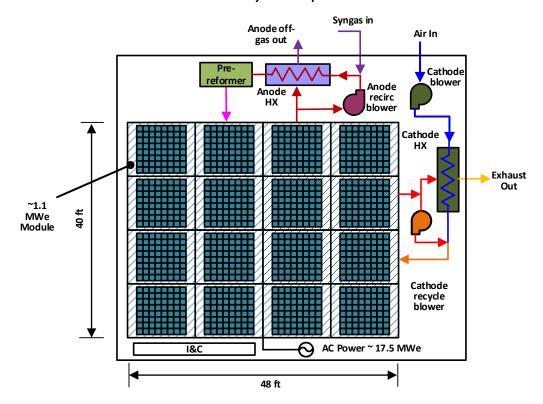


Exhibit 2-9. SOFC Section Layout: Components and Dimension

Exhibit 2-10. Characteristics of SOFC Section

Number of modules in parallel	4	
Number of modules in series	4	
Total current per section	1760	А
Total voltage per section	10240	V
Total power per section	17.6	MWe
Total current per section	1760	А

The overall system is a collection of sections, as shown in Exhibit 2-11, connected electrically in parallel, and pneumatically to produce the total rated power. A network of insulated pipes and ducts distribute the syngas from the central syngas expander to each section while the anode and cathode exhaust gases are collected and sent to a central oxy-combustor or combustor for

plants with and without CCS, respectively. The pressurized SOFC system is nearly identical to the atmospheric system layout and features, in addition, a central cathode gas expander and a central oxy-combustor expander (for systems without CCS).

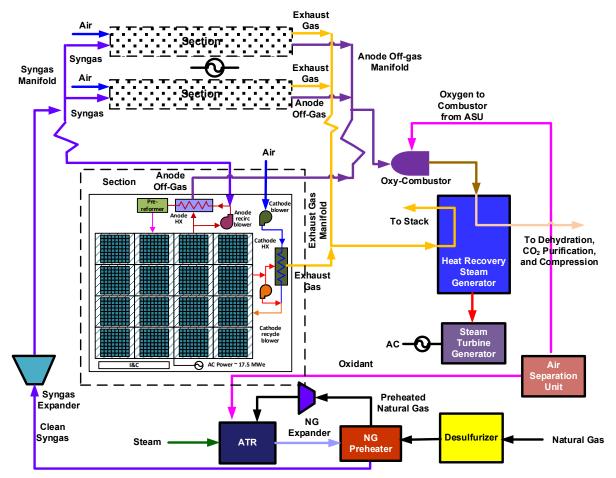


Exhibit 2-11. Atmospheric NGFC System Layout

2.4.7 VGR Concept

The process diagram of the VGR in its most general form is shown in Exhibit 2-12. Unlike the usual SOFC-based systems, there is no oxy-combustor; the anode exhaust from the fuel cell flows through a water gas shift (WGS) reactor, which converts most of the CO to CO₂, before being fed to the CPU unit subsequent to heat recovery and dehydration. The vent gas stream remaining after the CO₂ separation in the CPU is rich in fuel containing mainly H₂ and CO₂. The H₂ in this mixture is separated using an H₂ membrane and fed back to mix with the fuel from the syngas source before entering the SOFC module. Depending on the CO₂ capture rate and the H₂ capture rate, exhausting a small portion of the CPU vent stream may be necessary due to mass balance considerations. However, the fuel energy in the exhausted residual fuel can be recovered in a normal air blown combustor. A conventional pressure swing adsorption process could also be used in place of the H₂ membrane.

The proposed system has several advantages:

- 1. The single-pass fuel consumption across the fuel cell can be sufficiently low, even though an overall system fuel utilization of nearly 100 percent can be achieved by controlling the rate of VGR. This has a direct benefit on the system efficiency.
- 2. VGR also increases the chemical potential of the fuel entering the SOFC, thereby increasing the electrochemical (Nernst) potential and the system performance.
- 3. The oxy-combustor (along with its O₂ supply) is eliminated, lowering the ASU O₂ demand, and consequently, lowering the ASU parasitic load. In the case of an NGFC system with complete internal reformation, the ASU system is completely eliminated.
- 4. A higher VGR rate also makes the fuel cell system robust to fuel flow maldistributions and eases the design of fuel distribution systems.
- 5. At the same current load, the system allows operation at a cell voltage higher than conventional systems, alleviating performance degradation concerns.
- The airflow rate to the SOFC system, which constitutes a major parasitic load, is also reduced due to the VGR serving as an additional coolant for removing the SOFC waste heat.
- 7. No additional technological advancements are needed to enable the system. It can be used with current technology.

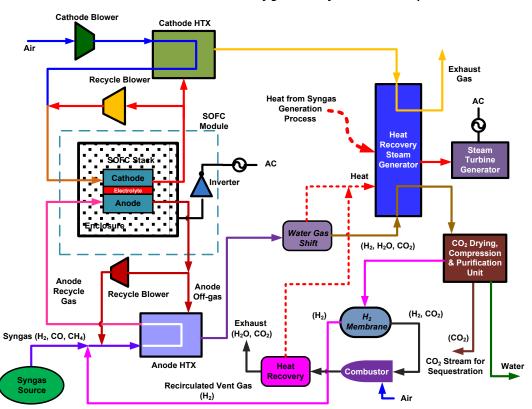


Exhibit 2-12. Generalized Configuration of the VGR Concept

A more attractive version of the system without the need for a H_2 membrane is shown in Exhibit 2-13, where the CPU vent stream is directly fed back into the SOFC module fuel inlet without any separation of the H_2 . The elimination of the feed stream compression required for the H_2 membrane, coupled with fuel losses due its < 100 percent effectiveness, are generally expected to offset adverse effects of the remnant CO_2 in the vent gas stream on the performance through dilution of the fuel entering the SOFC module. Further, elimination of the H_2 membrane, which is still in a developmental stage, results in improved cost savings and reliability.

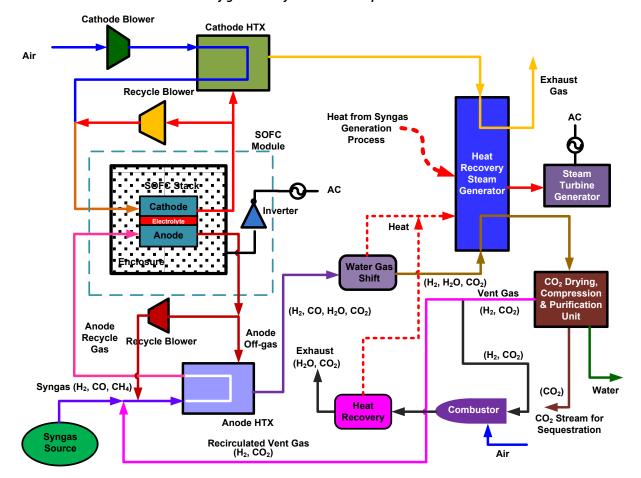


Exhibit 2-13. Configuration of the VGR concept without an H₂ Membrane

In this case, the recirculated vent gas contains CO and CO_2 and will need steam to maintain an oxygen-to-carbon ratio (OCR) of 2.1 to prevent carbon formation at the high temperatures within the SOFC module. The internal anode off-gas recirculation loop is accordingly an essential part of this system to avoid the need for external steam injection, which will have an adverse impact on the system efficiency and cost, to avoid carbon deposition due to any CO/CO_2 that mixes with the VGR. The combustor is located downstream of the CPU to maximize the rate of CO_2 capture and minimize any steam losses. Further, any valve needed to regulate the vent gas recirculation is in a cold region and can be easily controlled.

Exhibit 2-14 shows an alternate configuration of the proposed system, which eliminates the WGS reactor in addition to the H₂ membrane. This configuration is economically attractive and

formed the basis for the VGR cases in the present study. Similar to the configuration with the H_2 membrane, exhausting a small portion of the CPU vent stream may be necessary due to mass balance considerations in the variants shown in Exhibit 2-14 and Exhibit 2-13, which also serves to limit the accumulation of inert species such as Nitrogen (N_2) and Argon (Ar) in the recirculating vent gas.

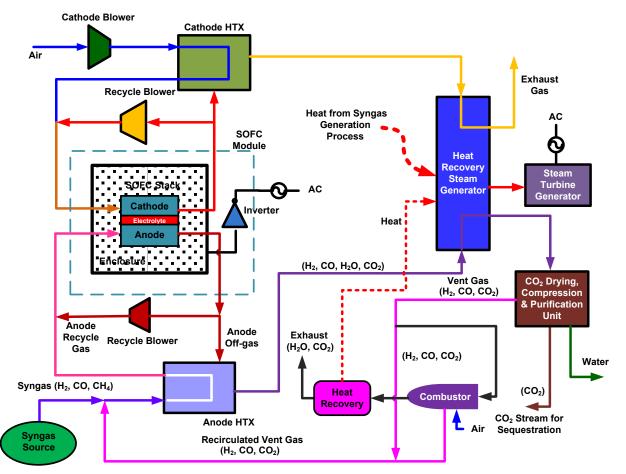


Exhibit 2-14. Configuration of the Proposed System without Both the WGS Reactor and the H2 Membrane

2.4.8 Air Separation Unit

The conventional cryogenic ASU generates oxidant for use in two sections of the NGFC plant: the natural gas ATR, and the anode off-gas oxy-combustor. In this report, the ASU main air compressor discharge pressure was set at 0.5 MPa (79 psia), providing O_2 product at sufficient pressure, 0.16 MPa (23 psia), to operate the oxy-combustor for the atmospheric pressure SOFC applications. The ASU is designed to generate 99.5 percent pure O_2 for NGFC applications to maintain the sequestered CO_2 stream with low nitrogen and argon content. There is no opportunity for ASU air-side integration in the NGFC plant like there is in IGCC plants, and there is no need or benefit from nitrogen dilution of syngas in the NGFC. In this report, the ASU nitrogen product is used only for inert gas needs, with the remainder vented. The plant is

designed with a single production train. The air compressor providing air to the process is powered by an electric motor.

2.4.9 CO₂ Capture Technology

The anode off-gas is combusted using 99.5 percent O_2 in an advanced oxy-combustor with excess O_2 limited to 1 mole percent. The combusted anode gas consisting of CO_2 , water vapor, excess O_2 , and minor traces of contaminants (sulfur species and oxides of nitrogen [NOx]) is sent to a CPU for compression, drying, and purification to pipeline/enhanced oil recovery (EOR) levels.^c [14] In the CPU, the CO_2 is purified by liquefaction followed by flash separation and distillation. The cooling for the liquefaction is accomplished by an auto-refrigeration process. The CPU was designed to yield an O_2 content of 10 ppm in the CO_2 product stream.^d The CPU cost was scaled based on an available quote.

2.5 ENVIRONMENTAL REQUIREMENTS

The emissions estimated to result from the NGFC plant are far lower than any current environmental regulations for fossil fuel power plants. It is assumed that plant permitting requirements will be based on these capabilities.

2.5.1 NGFC Emission Perspective

The NGFC plant emissions are insignificant because the total sulfur content in the natural gas must be less than 100 ppbv to protect the fuel cell materials. The oxy-combustor is a low NOx producing combustor, and all of the remaining contaminant species are sequestered with the CO₂. The plant has nearly 100 percent removal of all environmental contaminants, including CO₂. Water usage is also estimated to be extremely low in the NGFC plants. The pipeline natural gas is assumed to contain no particulate matter or trace elements, resulting in no control requirements being needed other than natural gas desulfurization.

2.6 ECONOMIC ANALYSIS

Capital and production cost estimates follow the economic basis applied in the BB report, which provides factored estimates developed for each plant section for conventional fossil fuel plants. [1] This report scales those costs for comparable plant sections that appear in the NGFC plants. Costs were factored using operating variables and scaling exponents appropriate for each system account. Costs for unique equipment in the NGFC plants were estimated using available generalized cost correlations or using cost estimates for comparable equipment reported in other power plant studies. In the case of the SOFC stack components, the estimated capital

 $^{^{\}circ}$ The QGESS reference [14] recommends a CO₂ purity of at least 95 percent as a conceptual design basis for EOR purposes; however, distillation methods used to meet the more stringent O₂ concentration requirement of 100 ppmv or less generally result in 99.9 percent + CO₂ purity.

 $^{^{\}rm d}$ An ${\rm O_2}$ concentration of 10 ppmv in the CO₂ product stream was selected as the basis for conceptual design since it represents the lower limit of the range of values recommended in literature for EOR applications. [14] The number of distillation stages can be reduced slightly to design to the upper limit of 100 ppmv for O₂ concentration. [14] However, the impact of the associated small decrement in distillation cost on the overall cost is expected to be insignificant.

costs were based on current NETL technology development cost goals and SOFC vendor projections.

2.6.1 Estimate Scope

The estimates represent a complete power plant facility on a generic site. Site-specific considerations such as unusual soil conditions, special seismic zone requirements, or unique local conditions such as accessibility or local regulatory requirements are not considered in the estimates.

The estimate boundary limit is defined as the total plant facility within the "fence line," including coal receiving and water supply system, but terminating at the high voltage side of the main power transformers. The single exception to the fence line limit is in the CO₂ capture cases where costs are included for transport and storage (T&S) of the sequestered CO₂.

2.6.2 Capital Costs

NETL with KeyLogic Systems, Inc., and Black & Veatch developed the capital cost estimates for NGCC plants in the BB report using the company's in-house database and conceptual estimating models for each of the specific technologies. The estimating models are based on a reference bottom-up estimate for each major component. This provides a basis for subsequent comparisons and easy modification when comparing between specific case-by-case variations.

Some equipment costs for the cases were calibrated to reflect recent quotations and/or purchase orders. [1] These include, but are not limited to, the following equipment:

- Steam Turbine Generators
- Circulating Water Pumps and Drivers
- Cooling Towers
- Condensers
- Air Separation Units (partial)
- Main Transformers

Other key estimate considerations include the following:

- Labor costs are based on Midwest Merit Shop. Costs would need to be re-evaluated for projects at different locations or for projects employing union labor.
- The estimates are based on a competitive bidding environment, with adequate skilled craft labor available locally.
- Labor is based on a 50-hour work week (5-10 h days). No additional incentives such as per-diem or bonuses have been included to attract craft labor.
- While not included at this time, labor incentives may ultimately be required to attract and retain skilled labor depending on the amount of competing work in the region and the availability of skilled craft in the area at the time the projects proceed to

construction. Current indications are that regional craft shortages are likely over the next several years. The types and amounts of incentives will vary based on project location and timing relative to other work. The cost impact resulting from an inadequate local work force can be significant.

- The estimates are based on a greenfield site.
- The site is considered to be Seismic Zone 1, relatively level, and free from hazardous materials, archeological artifacts, or excessive rock. Soil conditions are considered adequate for spread footing foundations. The soil bearing capability is assumed adequate, so piling is not needed to support the foundation loads.
- Costs are limited to within the fence line, terminating at the high-voltage side of the main power transformers with the exception of costs included for T&S of the sequestered CO₂ in all capture cases.
- Engineering and Construction Management were estimated as a percent of bare erected
 cost were based on the BB report [1] for NGCC technologies. These costs consist of all
 home office engineering and procurement services as well as field construction
 management costs. Site staffing generally includes construction manager, resident
 engineer, scheduler, and various personnel for project controls, document control,
 materials management, site safety, and field inspection.
- All capital costs are presented as "Overnight Costs" in June 2018 dollars. Escalation to period-of-performance is specifically excluded.

The current-dollar, LCOE was calculated for each case using economic parameters for high-risk technologies resulting in a capital charge factor of 0.124.^e The capital component of LCOE was calculated using the total overnight cost (TOC).

2.6.3 Plant Maturity

The pathway plants simulated include technologies at different commercial maturity levels, and the NGFC plants contain some advanced, immature technologies. The SOFC and oxycombustion technologies are immature and unproven at commercial scale in power generation applications.

The developing SOFC technology performance and cost has been estimated through scaling to commercial levels by the SOFC developers. While commercial pre-combustion CO_2 removal technology could be applied in place of the oxy-combustion-based CO_2 removal, the advantages of oxy-combustion approach over pre-combustion CO_2 removal are so large that the oxy-combustion technology merits development support.

43

[•] The value of capital charge factor that has been historically used in previous baseline studies [10] has been used in the present study since the financial calculations for the latest baseline studies [1] were not finalized at the time of writing this report.

2.6.4 Exclusions

The capital cost estimate includes all anticipated costs for equipment and materials, installation labor, professional services (Engineering and Construction Management), contingency, and owner's costs. The following items are <u>excluded</u> from the capital costs:

- Site specific considerations including, but not limited to, seismic zone, accessibility, local regulatory requirements, excessive rock, piles, laydown space
- Labor incentives in excess of a 5-day/10-hour work week
- Additional premiums associated with an engineer/procure/construct (EPC) contracting approach

2.6.5 Contingency

Both the project contingency and process contingency costs represent costs that are expected to be spent in the development and execution of the project that are not yet fully reflected in the design. It is industry practice to include project contingency in the total plant cost (TPC) to cover project uncertainty and the cost of any additional equipment that would result during detailed design. Likewise, the estimates include process contingency to cover the cost of any additional equipment that would be required because of continued technology development.

The project and process contingencies applied were taken from the BB report [1] for comparable equipment items. The contingencies applied are listed in Exhibit 2-15. No project contingency has been applied to the SOFC stack unit cost because these contingencies are already being incorporated by vendor estimates for the SOFC stack unit. A 15 percent project contingency has been applied to the ancillary components in the SOFC power island.

Exhibit 2-15. Project and Process Contingencies

Equipment Component	Project Contingency	Process Contingency
Natural Gas Desulfurization	0	0
ATR & Syngas Cooler	0	15
ASU & Oxidant Compressor	0	10
SOFC Power Island		
NG Expander/Syngas Expander/Oxy-combustor Expander	15	15
SOFC Reactor	O ^f	O ⁵
Cathode Air Blower/Compressor	15	15
Cathode Recycle Gas Blower	15	15
Cathode Heat Exchanger	15	15
Cathode Gas Expander	15	15

^f No contingency is applied; the SOFC reactor cost is based on an NETL development goal.

Equipment Component	Project Contingency	Process Contingency
Anode Heat Exchanger	15	15
Anode Recycle Gas Blower/Jet Pump	15	15
Oxy-Combustor	15	15
Oxy-Combustor Expander	15	15
Feedwater & Misc. BOP Systems	20	15-20 ^A
HRSG, Ducting & Stack	20	15-20 ^A
Steam Power System	20	15-20 ^A
Cooling Water System	20	15-20 ^A
Accessory Electric Plant	20	15-20 ^A
Instrumentation & Control	20	15
Improvements to Site	20	20
Buildings & Structures	20	15

^A Contingency varied for different cost items under the main category

2.6.6 Current-Dollar Levelized Cost of Electricity

The figure of merit, the LCOE without T&S, was determined as specified in the NETL Quality Guidelines for Energy System Studies (QGESS) using a simplified model derived from the NETL Power Systems Financial Model. [1] The cost premises applied in the BB report are applied in this report. The NGFC plants are treated as high-risk plants to generate LCOE values.

The first-year cost of natural gas used in this report is \$4.42/MMBtu (\$4.19/MMkJ) (cost of natural gas in 2018 dollars) in accordance with the BB report. [1]

2.6.7 Capital Costs

Following the basis in the BB report, [1] the capital costs at the TOC level include equipment, materials, labor, indirect construction costs, engineering, owner's costs, and contingencies. Where applicable, the cost of major plant sections in the study case plants were based on a scaled estimate from the BB report, applying the general cost-scaling equation

$$C = N * (C_{ref}/N_{ref}) * [(F/N)/(F_{ref}/N_{ref})]^{S}$$

where:

C is the cost of the study case plant section

N is the number of parallel sections in the study case plant

C_{ref} is the cost of the reference plant section

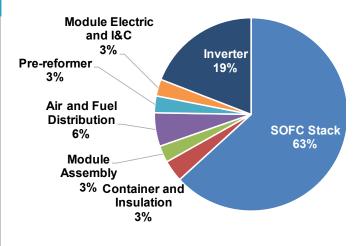
N_{ref} is the number of parallel sections in the reference plant

F is the scaling capacity for the study case plant section

 F_{ref} is the scaling capacity for the reference plant section

S is the scaling factor characteristic of the plant section equipment (a fraction usually between 0.5 and 0.8)

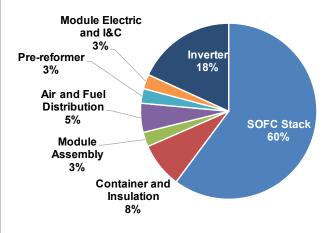
In addition:


- The estimates represent nth-of-a-kind (NOAK) offerings for everything except the natural gas reforming system, the natural gas desulfurization system, the CO₂ purification and compression system, and the oxy-combustor system, which are considered initial commercial offerings (i.e., first of a kind).
- The estimates represent a complete power plant facility, except for the exclusions listed in Section 2.6.4.
- The estimate boundary limit is defined as the total plant facility within the fence line and includes the water supply system and the CO₂ transport storage and monitoring. Electrical output within the fence line terminates at the high voltage side of the main power transformers.
- Costs are grouped according to a process/system-oriented code of accounts; all
 reasonably allocable components of a system or process are included in the specific
 system account in contrast to a facility, area, or commodity account structure.

2.6.8 SOFC Module Costs

The NETL goal of \$225/kWe in 2018\$ for the stack cost forms the basis for the SOFC cost calculations. The atmospheric SOFC module cost is itemized in Exhibit 2-16 according to the major components within the module (as in Exhibit 2-8). Wherever available, costs were scaled based on the references based on the references indicated. The cost of the container for atmospheric systems was estimated from commercial shipping container costs while costs for air distribution, fuel distribution, and current collectors were estimated based on authors' previous industrial experience. The SOFC stacks and Inverter account for nearly 85 percent of the module costs as shown by the cost distribution pie chart.

Module Costs (2018\$/kWe AC) Atmospheric **SOFC Stack** 225 Container 9 [15] 4 [16] **Module Assembly** [16] 10 **Air Distribution** 10 **Fuel Distribution** 10 **Estimate Module Current Collectors** 5 **Module I&C** 5 Inverter 68 [17] **Total Module** 356


Exhibit 2-16. Atmospheric SOFC Module Costs

The corresponding costs for the pressurized SOFC module are shown in Exhibit 2-17 and differ only by the enclosure cost, which was estimated using Aspen Activated analyses and reflects the significantly higher cost for the pressure vessels required for pressurized SOFC operation.

Module costs (2018\$/kWe AC) Pressurized **SOFC Stack** 225 Estimated from **Pressure Vessel** 27 Aspen Activated Analysis 4 [16] **Module Assembly** 10 [16] **Air Distribution** 10 **Fuel Distribution** 10 **Estimate Module Current** 5 **Collectors Module I&C** 5 **Inverter** 68 [17] **Total Module** 374

Exhibit 2-17. Pressurized SOFC Module Costs

2.6.9 Operation and Maintenance

The production costs or operating costs and related maintenance expenses pertain to those charges associated with operating and maintaining the power plants over their expected life. These costs include:

- Operating labor
- Maintenance material and labor
- Administrative and support labor
- Consumables
- Fuel

There are two components of O&M costs: fixed O&M, which is independent of power generation, and variable O&M, which is proportional to power generation. The approach followed in estimating these costs is consistent with that applied in the BB report. [1]

2.6.10 Operating Labor

Operating labor cost was determined based on the number of operators required for each specific case. The average base labor rate used to determine annual cost is \$38.50/h. The associated labor burden is estimated at 30 percent of the base labor rate. Six operators per shift are assumed in all cases.

2.6.11 Administrative and Support Labor

Labor administration and overhead charges are assessed at rate of 25 percent of the burdened O&M labor.

2.6.12 Maintenance Material and Labor

Maintenance cost was evaluated on the basis of relationships of maintenance cost to initial capital cost. This represents a weighted analysis in which the individual cost relationships were considered for each major plant component or section. The exception to this is the maintenance cost for the combustion turbines, which is calculated as a function of operating hours.

2.6.13 Stack Degradation and Production Costs

SOFCs have the potential to operate over a long period of time as demonstrated in laboratory scale tests, where operation for over five years has been demonstrated without appreciable loss of performance. [18] However, with current planar stack technologies, stack performance has been observed to decline over its lifetime, generally due to an increase in the apparent electrical resistance of the stack associated with a variety of material and design related factors, which limits the permissible current at the same voltage (in a constant potential operation mode). Performance degradation limits the operating lifetime of the capital intensive SOFC stack and forms a significant component of the production costs. The present study adopts the methodology developed in the previous pathway study [3] to estimate the production costs.

2.6.14 Consumables

The cost of consumables, including fuel, was determined based on individual rates of consumption, the unit cost of each specific consumable commodity, and the plant annual operating hours. Initial fills of the consumables, fuels, and chemicals are different from the initial chemical loadings, which are included with the equipment pricing in the capital cost. The quantities for initial fills and daily consumables were calculated on a 100 percent operating capacity basis. The annual cost for the daily consumables was then adjusted to incorporate the annual plant operating basis, or capacity factor. Exhibit 2-18 lists the catalyst and chemicals initial fill and consumption rate and the price bases applied in the evaluation.

Chemical/Catalyst	Initial Fill Scaling Factor	Use Rate Scaling Factor	Price Assumption	Source
MU & WT chemicals	N/A	Raw water consumption	\$0.28/lb	[1]
ATR catalyst	Syngas rate	Syngas rate	\$602/m³	Engineering Estimate
TDA natural gas sulfur sorbent	Sulfur capture rate	Sulfur capture rate	\$6.00/lb	Vendor data adjusted to 2018\$

Exhibit 2-18. Catalyst and Chemicals Consumption and Cost Basis

2.6.15 Owner's Costs

The owner's costs to be included in the TOC were estimated following the procedures described in the BB report. [1]

2.7 RAW WATER CONSUMPTION

A water balance was performed for each case on the major water consumers in the process. The total water demand for each subsystem was determined and internal recycle water available from various sources like boiler feedwater blowdown and condensate from CO₂ gas compression was applied to offset the water demand. The difference between demand and recycle is raw water withdrawal. Raw water withdrawal is the water removed from the ground or diverted from a surface-water source for use in the plant. Raw water consumption is also accounted for as the portion of the raw water withdrawn that is evaporated, transpired, incorporated into products, or otherwise not returned to the water source from where it was withdrawn.

Raw water makeup was assumed to be provided 50 percent by a publicly owned treatment works and 50 percent from groundwater. Raw water withdrawal is defined as the water metered from a raw water source and used in the plant processes for all purposes, such as cooling tower makeup, or boiler feedwater makeup. The difference between withdrawal and process water returned to the source is consumption. Consumption represents the net impact of the plant on the water source.

Boiler feedwater blowdown was assumed to be treated and recycled to the cooling tower. The cooling tower blowdown was assumed to be treated and 90 percent returned to the water source with the balance sent for evaporation.

The largest consumer of raw water in all cases is cooling tower makeup. It was assumed that all cases utilized a mechanical draft, evaporative cooling tower, and all process blowdown streams were assumed to be treated and recycled to the cooling tower. A cooling water temperature of 16°C (60°F) with an approach of 5°C (8.5°F) is used. The cooling water range was assumed to be 11°C (20°F). The cooling tower makeup rate was determined using the following: [1]

- Evaporative losses of 0.8 percent of the circulating water flow rate per 10°F of range
- Drift losses of 0.001 percent of the circulating water flow rate
- Blowdown losses were calculated as follows:
 - Blowdown Losses = Evaporative Losses / (Cycles of Concentration 1)

where Cycles of Concentration is a measure of water quality, and a mid-range value of 4 was chosen for this report.

The water balances presented in subsequent sections include the water demand of the major water consumers within the process, the amount of process water returned to the source, and the raw water consumption, by difference.

2.8 CO₂ Transport and Storage

The CO₂ T&S cost is calculated as \$10/tonne in accordance with the QGESS specifications. [19]

3 NGFC PLANT MAJOR PROCESS AREAS

The NGFC plant consists of several integrated process areas, the primary ones being ASU, the reformer area, the power island, and the CO_2 dehydration, compression, and purification area. Descriptions of these areas and their selected technologies are presented in this report section. Additional case-specific performance information is presented in the relevant pathway sections.

3.1 AIR SEPARATION UNIT

The conventional cryogenic ASU generates oxidant for two sections of the NGFC plant: the natural gas ATR, and the anode off-gas oxy-combustor. In this report, the ASU main air compressor discharge pressure was set at 0.5 MPa (79 psia), providing O₂ product at sufficient pressure, 0.16 MPa (23 psia), to operate the oxy-combustor for the atmospheric pressure SOFC applications. The ASU is designed to generate 99.5 percent pure O₂ for NGFC applications to maintain the sequestered CO₂ stream with low nitrogen and argon content. Unlike IGCC plants, the opportunity for ASU air-side integration is limited for NGFC systems. Nitrogen dilution of syngas, while being detrimental to the SOFC performance, could also adversely impact the CCS process. In this report, the ASU nitrogen product is used only for inert gas needs, with the remainder vented. The plant is designed with a single production train. The air compressor providing air to the process is powered by an electric motor.

The performance and cost of the ASU in the present study are based on available quotes for a cryogenic ASU designs that were optimized for atmospheric oxy-combustion and used in NETL's oxy-combustion studies. [20] The ASU design yielded a 95 vol% pure O_2 stream at nearly atmospheric pressures while imposing an auxiliary electrical load of 195 kWh/tonne O_2 on the overall plant, which is consistent with the range of values generally cited in the literature. [21] Based on quotes from the same vendor for O_2 purities higher than 95 vol%, the parasitic load increase and the cost penalty for generation of the 99.5 percent O_2 purity stream in the present study was estimated to be 3.5 percent (ASU load \approx 202 kWh/tonne O_2) and 4 percent respectively. As in the advanced oxy-combustion study, [20] an ASU performance improvement of 20 percent (ASU load \approx 160 kWh/tonne O_2) is assumed without any cost penalty to reflect advances in ASU technology in Case 4.

The ASU representation applied for this evaluation is greatly simplified with the ASU performance taken into consideration in post-processing. An O_2 compressor is utilized in conjunction with the atmospheric ASU to pressurize the oxidant for the pressurized cases. The O_2 compressor is directly modeled, and the cost was scaled based on air compressor.

3.2 NATURAL GAS REFORMING AREA

Various types of natural gas reformers are commercially available to generate a syngas suitable for the NGFC power generation application. The major types include the steam-methane reformers, the partial oxidation reformer, and the ATR. Of these, the ATR is expected to be the cheapest and most reliable reformer available for the simple generation of syngas containing H_2 and carbon monoxide (CO) [12], [13] and is selected for use in this evaluation.

The ATR was first developed by Haldor Topsoe in the late 1950s. It consists of a refractory-lined pressure vessel that contains two reaction zones, a combustion zone followed by a catalytic reforming zone. Steam is mixed with pressurized natural gas in proportions that prevent soot formation within the high-temperature combustion zone. This mixture is preheated and fed to a burner nozzle fired with a pressurized, preheated O_2 stream. The burner nozzle is directed into the ATR combustion zone where partial oxidation of the fuel, heating, and recirculation mixing occurs, with temperature reaching up to 1900°C. Soot is prevented from forming in this zone if sufficient steam is provided.

The partially oxidized mixture then flows uniformly through internal, refractory distribution devices, into the catalytic reaction zone where methane is reformed and the water gas shift reaction proceeds. A near equilibrium condition is reached in this Ni-based catalyst zone, with exit temperature in the range of 900 to 1100°C. The Ni-based catalyst may be in the form of a packed bed or a honeycomb-supported structure that allows greater space velocity with acceptable pressure drop. Pressurized operation of the ATR for various synthesis applications is typical at pressures up to 60 atm, but low-pressure operation is also feasible.

The process diagram for the reformer area and the syngas feed to the SOFC unit for Case 1 and Case 2 is shown in Exhibit 3-1 (a) and (b) for pressurized and atmospheric scenarios. A natural gas expander is used to expand the high pressure (500 psia) natural gas to near atmospheric pressure before it enters the atmospheric ATR utilized for atmospheric SOFC operation. In the case of pressurized scenarios, instead of the natural gas expander, a syngas expander downstream of the high-pressure ATR is employed to expand 85 percent of the syngas to the operating pressure of the SOFC. The remaining portion of the high-pressure syngas is used to supply the motive force for anode gas recirculation using a jet-pump.

ATR bypass paths are included in both pathway cases to achieve the desired amount of reformation carried out external to the stack. Only 40 percent of the natural gas is reformed in the ATR for Case 1 and Case 2. The reformer syngas product is mixed with the remaining 60 percent of the natural gas feed resulting in an SOFC fuel gas stream with a methane (CH₄) content that is close to the highest value supported by current SOFC technology. The ATR is eliminated, and the incoming natural gas is directly fed into the SOFC unit in Case 3 and Case 4, which assumes complete reformation of natural gas internal to the SOFC unit. Exhibit 3-2 summarizes the operating conditions selected and the assumptions applied for the ATR in the present study. The ATR is assumed to be capable of achieving the equilibrium syngas composition with no soot formation or carbon loss.

The ATR is driven by O_2 for the NGFC system featuring CCS while an air-blown ATR is assumed for systems without CCS.

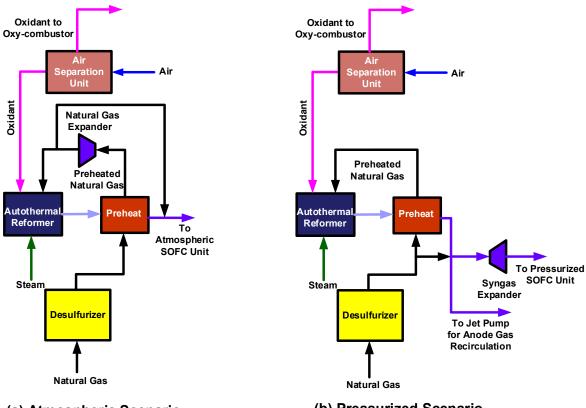
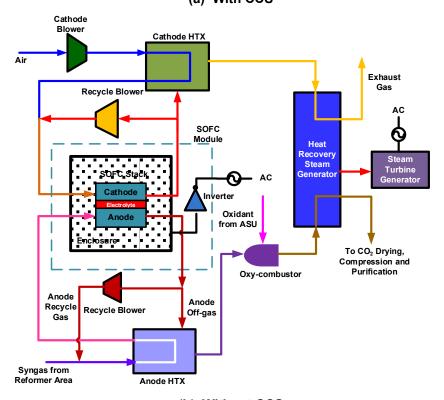


Exhibit 3-1. Autothermal Reforming and Syngas Feed to SOFC

(a) Atmospheric Scenario

Exhibit 3-2. Natural Gas Reformer Section Operating Conditions and Assumptions

Parameter	With	CCS	Witho	ut CCS
Scenario	Atmospheric	Pressurized	Atmospheric	Pressurized
Oxidant	Оху	gen	А	ir
NG reformed, % of total		4	0	
Natural gas reformer				
Technology		Auto Thermal	Reactor (ATR)	
Number reformers in parallel		1	L	
Exit temperature, °C (°F)	882 (1619)	938 (1721)	882 (1450)	788 (1450)
Exit pressure, MPa (psia)	0.14 (20)	3.10 (450)	0.14 (20)	3.10 (450)
Natural Gas preheat temperature, °C (°F)	477 (890)	204 (400)	477 (890)	204 (400)
Oxygen-to-reformer NG mass feed ratio		1.	.1	
Oxygen preheat temperature, °C (°F)	40 (104)	130 (265)	40 (104)	325 (617)
Steam-to-Natural Gas molar ratio		1.0	04	
Steam feed temperature, °C (°F)	149 (300)	466 (500)	149 (300)	466 (500)
Carbon loss, % of Natural gas carbon		()	
Raw syngas composition basis		Equili	brium	
SOFC feed gas methane content, mol%	25.0	17.8	27.6	22.5
Natural gas heater				
Technology	Tube-in-shell			
Number in parallel	1			
Outlet temperature, °C (°F)	129 (265)	804 (1480)	298 (569)	698 (1289)


3.3 POWER ISLAND

The NGFC power island for Scenario 1 with atmospheric SOFC operation is shown in Exhibit 3-3 and consists of the SOFC unit with DC-AC inverter expander, an anode off-gas combustor, an HRSG that captures heat from the combusted anode off-gas, and a steam bottoming cycle. The power island for Scenario 1 includes a natural gas expander (Exhibit 2-5) that is utilized within the natural gas reforming area. The primary difference between systems with and without CCS is the utilization of the vitiated cathode gas as the oxidant for the combustion of the anode off-gas in the latter.

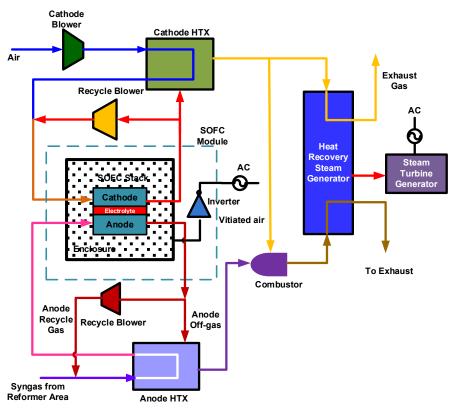

The NGFC power island for the pressurized Scenario 2, depicted in Exhibit 3-4, includes in addition, a syngas expander, a cathode gas expander, and, in the case of a system with CCS, an oxy-combustor expander.

Exhibit 3-3. Scenario 1 – Atmospheric NGFC Power Island with and without CCS

(a) With CCS

(b) Without CCS

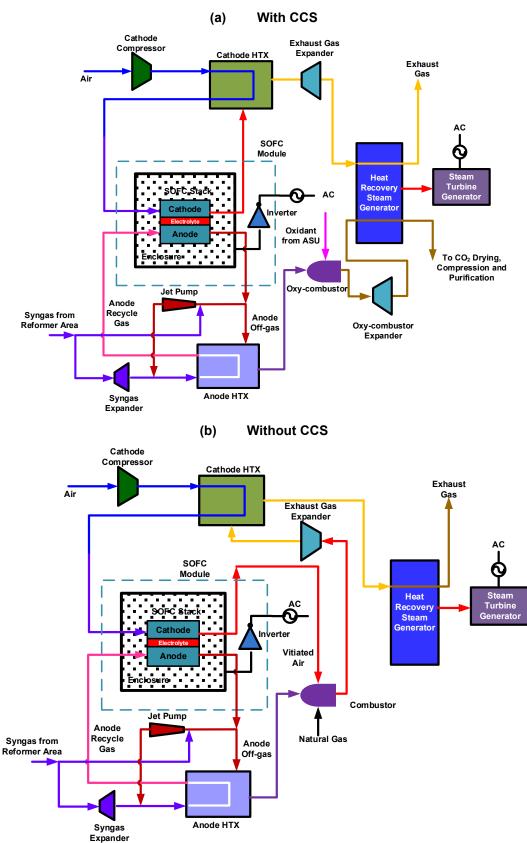


Exhibit 3-4. Scenario 2 – Pressurized NGFC Power Island with and without CCS

3.3.1 Solid Oxide Fuel Cell Unit

The SOFC unit ancillary components consist of cathode air blowers, cathode heat exchangers that recuperatively heat the cathode air up to the fuel cell inlet temperature, cathode hot gas recycle blowers, anode heat exchangers that recuperatively heat the anode gas up to the fuel cell inlet temperature, and anode hot gas recycle blowers. Hot gas blowers capable of operation at the required conditions of the anode and cathode recycle gas streams are currently under development. [22]

The HRSG produces low-pressure and high-pressure process steam, and high-pressure power steam for the subcritical steam bottoming cycle. The cooling water system uses a mechanical draft, wet cooling tower arrangement.

For the operation of SOFC at elevated pressures assumed in Scenario 2, the cathode air is compressed to the pressurized fuel gas inlet pressure, and no cathode gas recycle is used. The cathode off-gas is expanded to atmospheric pressure to generate power to drive the cathode gas compressor. Anode gas recycle is accomplished using a syngas-driven jet pump in this pressurized case.

The major assumptions for the SOFC power island for the pathway cases are listed in Exhibit 3-5. The SOFC overpotential and degradation rate were varied parameters along the developmental pathway (see Exhibit 1-5). The anode recycle rate was adjusted to maintain a total O_2 -to-carbon atomic ratio of at least 2.1 in the anode inlet gas in all the study cases to avoid carbon deposition in the fuel cell.

The anode off-gas is combusted using O_2 in an advanced oxy-combustor with excess O_2 limited to 1 mole percent. It is assumed that an anode off-gas oxy-combustor can be developed that can operate stably with 1 mole percent excess O_2 .

Parameters	Scenario 1	Scenario 2				
Natural Gas/Syngas Expander						
Outlet pressure, MPa (psia)	0.14 (20)	0.34 (50)				
Efficiency, adiabatic %		90				
Generator efficiency (%)		98				
Fuel Cell System						
Current density, mA/cm ²	4	400				
Reference case stack fuel utilization, %		70				
Cell stack inlet pressure, MPa (psia)	0.12 (15.1)	2.2 (285)				
Reference case overall fuel utilization, %		80				
Oxygen to Carbon ratio		2.1				
Reference case stack fuel utilization, %		80				
Cell stack inlet temperature, °C (°F)	Determined fr	Determined from PNNL model				
Cell stack outlet temperature, °C (°F)	Compute	d in Aspen®				

Exhibit 3-5. SOFC Power Island Conditions and Assumptions

Parameters	Scenario 1	Scenario 2
Stack anode-side pressure drop, MPa (psi)	0.00062 (0.11)	
Fuel Cell System Ancillary Components		
Anode gas recycle method	Hot gas fan	Fuel gas jet pump
Anode recycle gas fan efficiency, adiabatic %	80	N/A
Anode heat exchanger pressure drop, MPa (psi)	0.0014 (0.2)	
Cathode gas recycle method	Hot gas fan	None
Cathode recycle gas rate, %	50	0
Cathode recycle gas fan eff., adiabatic %	80	N/A
Cathode heat exchanger pressure drop, MPa (psi)	0.0055 (0.8)	
Cathode blower/compressor eff., adiabatic %	82	90
Cathode gas expander efficiency, adiabatic %	N/A	95
Reference Rectifier DC-to-AC efficiency, %	97	
Recycle blower motor drives eff., %	87.6	N/A
Other electric motor drives efficiency, %	95	95
Transformer efficiency, %	99.65	99.65

3.3.2 Heat Recovery Steam Generator and Steam Power Cycle

The BB report [1] provides a detailed description of the HRSG and steam power cycle process configuration and equipment in typical IGCC and NGCC power plants. The HRSG and steam power cycle for the NGFC cases evaluated in this report are expected to be similar in configuration and operating conditions to the comparable IGCC and NGCC systems. Only simplified simulation of the steam system was conducted in this evaluation, as described in Section 2.

3.4 CO₂ Dehydration, Purification, and Compression Area

After completion of heat recovery, the oxy-combustion off-gas stream is sent to the CPU for compression, drying, and purification to pipeline and EOR specifications.^{g, h} An autorefrigerated CPU process based on the process developed for the advanced oxy-combustion studies [20] is utilized in the present study.

Exhibit 3-6 depicts the block diagram of the auto-refrigerated CPU process, which was developed based on the patents issued to Air Products and Chemicals, Inc. [23] and to Air Liquide. [24] Wet CO_2 rich gas from the flue gas desulfurizer is compressed to an initial pressure, P_1 , (≈ 30 bar/435 psia) and is dried to remove moisture. The dried CO_2 rich gas is

 $^{^9}$ The QGESS reference [14] recommends a purity of the CO $_2$ at least 95 percent, as a conceptual design basis for EOR purposes; however, distillation methods used to meet the more stringent O $_2$ concentration requirement of 100 ppmv or less generally result in 99.9 percent + CO $_2$ purity.

^h An O₂ concentration of 10 ppmv in the CO₂ product stream was selected as the basis for conceptual design since it represents the lower limit of the range of values recommended in literature [14] for EOR applications. The number of distillation stages can be reduced slightly to design to the upper limit of 100 ppmv for O₂ concentration. [14] However, the impact of the associated small decrement in distillation cost on the overall cost is expected to be insignificant.

purified to the specified levels by liquefaction followed by flash phase separation and distillation as in the external refrigeration process. However, cooling of the dried CO_2 gas down to a temperature, T_1 (\approx -60 °F) is accomplished entirely through heat exchange with the cold non-condensables and the pure CO_2 product, part of which is expanded to satisfy the refrigeration needs, in heat exchangers HX1 and HX2 along with the reboiler of the distillation column. The reboiler boilup ratio of the distiller can be tuned to achieve the required CO_2 purity.

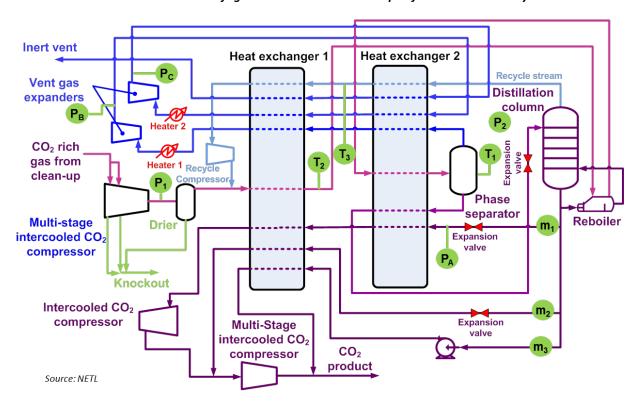


Exhibit 3-6. Auto-refrigerated CPU Process Developed for the Present Study

3.5 ACCESSORY ELECTRIC PLANT

The accessory electric plant consists of switchgear and control equipment, generator equipment, station service equipment, conduit and cable trays, and wire and cable. It also includes the main power transformer, all required foundations, and standby equipment.

3.6 Instrumentation and Control

An integrated plant-wide redundant microprocessor-based distributed control system (DCS) is provided. The control room houses an array of multiple monitors and keyboard units. The monitors/keyboard units are the primary interface between the generating process and operations personnel. The DCS incorporates plant monitoring and control functions for all the major plant equipment. The DCS is designed to be operational and accessible 99.5 percent of the time it is required. The plant equipment and the DCS are designed for automatic response to load changes from minimum load to 100 percent. Startup and shutdown routines are

manually implemented, with operator selection of modular automation routines available. The exception to this, and an important facet of the control system for gasification, is the critical controller system, which is a part of the license package from the gasifier supplier and is a dedicated and distinct hardware segment of the DCS.

This critical controller system is used to control the ATR process. The partial oxidation of the fuel feed and O_2 feed streams to form a syngas product is a stoichiometric, temperature- and pressure-dependent reaction. The critical controller utilizes a redundant microprocessor executing calculations and dynamic controls at 100- to 200-millisecond intervals. The enhanced execution speeds as well as evolved predictive controls allow the critical controller to mitigate process upsets and maintain the reactor operation within a stable set of operating parameters.

4 SCENARIO 1: ATMOSPHERIC-PRESSURE SOFC SYSTEM

The reference case is based on a commercially viable DGFC system and is subject to both performance and cost modifications in subsequent cases 1 through 4, representative of a pathway development scenario. Reference cases were evaluated for both systems with and without CCS.

4.1 Case 0: Atmospheric Reference Case Description

Case 0 assumes a plant featuring 60 percent internal reformation along with advanced cell technology. Exhibit 4-1 summarizes the performance and cost assumptions for this case, which are representative on the capabilities of a commercially viable DGFC system. The process diagrams for this case with and without CCS are depicted in Exhibit 4-5 and Exhibit 4-10 respectively.

Parameter	Value
Reformation	40% External
SOFC Operating Pressure	Atmospheric
Cell Technology	Advanced Cell
Fuel Utilization, %	80
Current Density, mA/cm ²	400
Degradation, %/1000 h	0.2
Inverter Efficiency (%)	97
Stack Cost (\$/kW)	225

Exhibit 4-1. SOFC Technology Parameters used for Reference Case 0

In the case with CCS (Exhibit 4-5), natural gas (Stream 1) delivered to the plant at 500 psia is desulfurized and preheated using the hot ATR syngas stream. This natural gas stream is expanded to a pressure of 20 psia (Stream 2) before 40 percent of it enters the ATR. The remaining 60 percent bypasses the ATR to be reformed internally at the anode. A conventional ASU delivers 99.5 percent pure O_2 to the ATR (Stream 5) as well as to the anode off-gas oxycombustor (Stream 6). The cooled ATR syngas stream is mixed with the ATR bypass, (Stream 8) and the recycled anode gas (Stream 9). The stream is then preheated by the anode heat exchanger and pre-reformed (Stream 10) to prevent cracking of higher-hydrocarbons and deleterious carbon formation. The anode off-gas (Stream 11) is combusted across the oxycombustor, generating a hot combustion gas (Stream 15) having 1 percent excess O_2 content. The cooled combustion gas is dehydrated, purified, and compressed to 2215 psia in the CPU (Stream 16). The HRSG raises high-pressure steam for the steam bottoming cycle, 50 psia steam for the ATR, and low-pressure steam for the auxiliary processing needs.

On the cathode side, air (Stream 12) pressurized by the cathode air blower is preheated through the cathode heat exchanger and mixes with the recycled cathode gas to achieve the desired cathode inlet temperature (Stream 13) before being delivered to the SOFC cathode. The cathode air mixture not only provides the O_2 needed for the SOFC oxidation reactions but also

acts as a coolant and serves to maintain an acceptable temperature distribution across the SOFC. The cathode off-gas passes through the cathode heat exchanger and is vented (Stream 14) after it exchanges heat in the HRSG.

Referring to the process diagram in Exhibit 4-10 for the case without CCS, the ATR is air blown, (Stream 3), while part of the vitiated air (Stream 13) is used to combust the residual fuel in the anode off-gas. The combustion gases are exhausted to the atmosphere after exchanging heat with the HRSG. The rest of the process diagram is identical to the CCS case.

4.1.1 Case 0: Atmospheric Reference Plant Performance

The performance of the reference atmospheric plant with and without CCS is summarized in Exhibit 4-2. In the reference plant, as shown in Exhibit 4-3, SOFC generates $\approx 81-82$ percent of the gross power while the steam cycle produces $\approx 15-16$ percent of the gross power. The auxiliary load for the plant without CCS is mainly dominated by the blower and steam cycle parasitic loads as shown as shown in Exhibit 4-4. The addition of CCS more than triples the auxiliary load, adversely affecting the performance of the reference plant with CCS whose HHV efficiency is lower by 3.7 percentage points relative to the HHV efficiency of the reference plant without CCS. For the reference CCS plant, the CO₂ compression and purification unit accounts for ≈ 41 percent of the auxiliary load followed by contributions from the ASU at 32 percent and the blowers at 13 percent.

The stream tables for the reference plants with and without CCS are listed in Exhibit 4-6 and Exhibit 4-11 for the corresponding points numbered in the process flow diagram shown in Exhibit 4-5 and Exhibit 4-10, respectively. Material and energy balance tables and the heat and material balance diagrams for the reference plant with CCS are shown in Exhibit 4-7, Exhibit 4-8, and Exhibit 4-9, respectively. The corresponding tables for the reference plant without CCS are shown in Exhibit 4-12, Exhibit 4-13, and Exhibit 4-14.

The reference NGFC plant with CCS consists of 34 parallel SOFC sections, each containing a single cathode heat exchanger, anode heat exchanger, cathode air blower, cathode recycle gas blower, and anode gas recycle blower. A single train configuration of oxy-combustor, HRSG, and steam power system is used in the plant.

4.1.2 Case 0: Atmospheric Reference Plant Costs

The capital costs and the O&M costs are listed in Exhibit 4-14 and Exhibit 4-15 for the reference plant with CCS. The ASU, CPU, and the steam cycle costs together make up about 45 percent of the plant capital costs while SOFC power island is the largest contributor at 32 percent as shown in Exhibit 4-16. The largest components of the BOP costs for the reference plant with CCS are the oxy-combustor (37 percent) and the cathode heat exchanger (24 percent) as shown in Exhibit 4-17. The costs for the reference plant without CCS are provided in Exhibit 4-18 to Exhibit 4-21 in a similar fashion. The addition of CCS results in 50 percent increase in capital costs, nearly 80 percent of which is attributable the ASU and CPU costs. The LCOE for Case 0 with CCS is estimated to be \$60.1/MWh and \$57.0/MWh with and without CO₂ T&S costs respectively. The addition of CCS to the reference plant is observed to increase the LCOE by \$12.8/MWh as shown in Exhibit 4-22.

Exhibit 4-2. Case 0 – Atmospheric Reference NGFC Plant with and without CCS – Performance Summary

Carbon Capture	With CCS	No CCS
Power Summary (Gross Power a	t Generator Terminals, l	(We)
SOFC Power	582,048	542,009
Natural Gas/Syngas Expander Power	21,000	19,700
Steam Turbine Power	110,000	107,700
Total Gross Power, kW _e	713,048	669,409
Auxiliary Load Su	ımmary, kWe	
Air Separation Unit Auxiliaries	0	0
Air Separation Unit Main Air Compressor	19,955	3,320 ^A
Oxygen Compressor	0	0
Nitrogen Compressors	0	0
CO ₂ Compressor	25,895	0
CO ₂ Refrigeration	0	0
Boiler Feedwater Pumps	2,022	1,979
Condensate Pump	63	61
Circulating Water Pump	2,780	2,300
Cooling Tower Fans	1,440	1,180
Gas Turbine Auxiliaries	-	-
Steam Turbine Auxiliaries	84	82
Cathode Air Blower	5,271	5,258
Cathode Recycle Blower	2,430	2,428
Anode Recycle Blower	218	254
Miscellaneous Balance of Plant ^B	454	427
Transformer Losses	2,311	2,057
Total Auxiliaries, kW _e	62,922	19,346
Net Power, kW _e	650,126	650,063
Net Plant Efficiency, % (HHV)	57.88	61.56
Net Plant Heat Rate, kJ/kWh (Btu/kWh)	6,220 (5,895)	5,848 (5,543)
CO ₂ Capture Rate, %	97.8	0.0
Condenser Cooling Duty, 10 ⁶ kJ/h (10 ⁶ Btu/h)	644 (610)	633 (600)
Natural Gas Feed Rate, kg/h (lb/h)	77,095 (169,965)	72,480 (159,790)
Thermal Input ^c , kWt	1,123,206	1,055,965
Raw Water Withdrawal, m³/min (gpm)	8.2 (2,162.8)	9.5 (2,509.7)
Raw Water Consumption, m ³ /min (gpm)	5.75 (1,519.9)	7.49 (1,979.6)

A Reflects power needed to compress air to ATR pressure.

^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads.

^c HHV of Natural Gas is 52,449 kJ/kg (22,549 Btu/lb).

Exhibit 4-3. Case 0 – Atmospheric Reference NGFC Plant with and without CCS – Gross Power Distribution

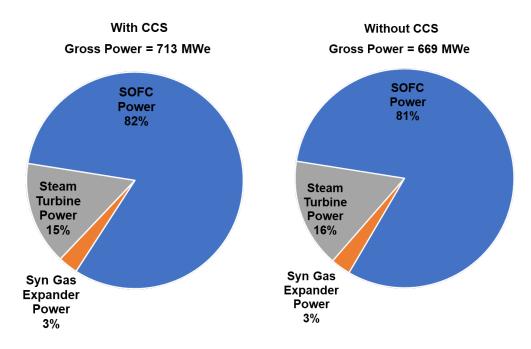
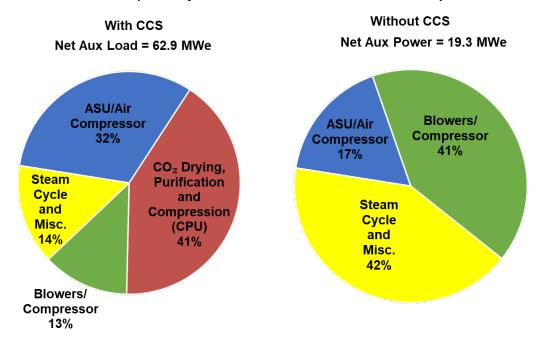



Exhibit 4-4. Case 0 – Atmospheric Reference Plant with and without CCS – Auxiliary Load Distribution

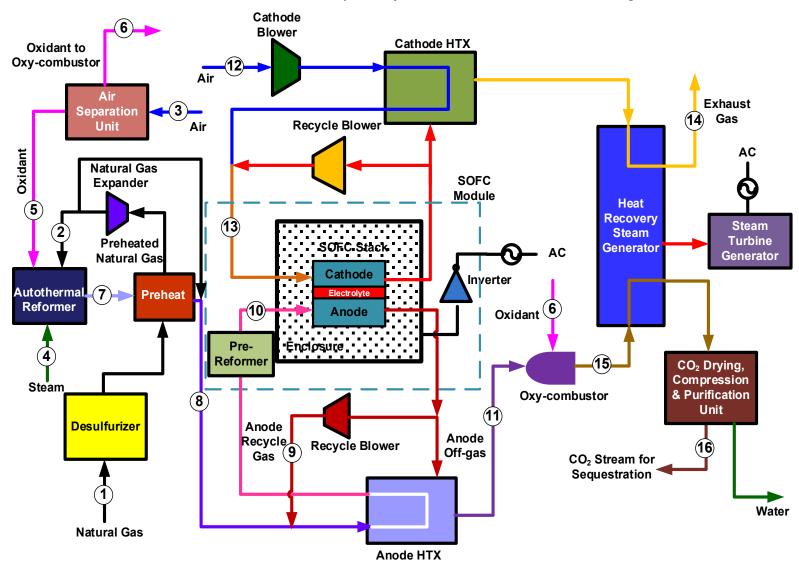


Exhibit 4-5. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – Process Diagram

Exhibit 4-6. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
V-L Mole Fraction																
Ar	0.0000	0.0000	0.0094	0.0000	0.0031	0.0031	0.0005	0.0003	0.0002	0.0003	0.0002	0.0094	0.0099	0.0104	0.0006	0.0000
CH ₄	0.9310	0.9310	0.0000	0.0000	0.0000	0.0000	0.0002	0.2511	0.0001	0.0955	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1895	0.1384	0.0439	0.0667	0.0439	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0100	0.0003	0.0000	0.0000	0.0000	0.0666	0.0514	0.2568	0.1959	0.2568	0.0003	0.0003	0.0003	0.2977	1.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5194	0.3794	0.1633	0.3420	0.1633	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.0104	1.0000	0.0000	0.0000	0.2196	0.1604	0.5309	0.2939	0.5309	0.0104	0.0109	0.0115	0.6874	0.0000
N_2	0.0160	0.0160	0.7722	0.0000	0.0019	0.0019	0.0042	0.0074	0.0047	0.0057	0.0047	0.7722	0.8124	0.8570	0.0049	0.0000
C ₂ H ₆	0.0320	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0086	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0,	0.0000	0.0000	0.2077	0.0000	0.9950	0.9950	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.1664	0.1206	0.0094	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	4,449	1,780	13,914	1,780	1,060	1,755	7,235	9,904	12,622	23,544	15,414	64,648	122,895	58,248	15,573	4,536
V-L Flowrate (kg/h)	77,095	30,838	401,485	32,062	33,922	56,199	96,822	143,078	284,857	427,936	347,873	1,865,360	3,525,926	1,660,566	404,072	199,630
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	477	15	149	40	27	882	268	706	559	531	15	617	132	1,574	36
Pressure (MPa, abs)	3.45	0.207	0.10	0.34	0.16	0.16	0.14	0.138	0.11	0.11	0.137	0.101	0.11	0.10	0.13	15.27
Enthalpy (kJ/kg) ^A		1,343.630		2,770.67	36.25	23.95			, , , , , , , , , , , , , , , , , , ,	,	1,926.152	31.06	672.14	153.49	3,924.20	-209.17
Density (kg/m³)	24.9	0.6	1.2	1.8	2.0	2.0	0.2	0.4	0.3	0.3	0.5	1.2	0.4	0.9	0.2	545.7
V-L Molecular Weight	17.328	17.328	28.854	18.015	32.016	32.016	13.383	14.446	22.568	18.176	22.568	28.854	28.690	28.509	25.947	44.010
V-L Flowrate (lb _{mol} /h)	0.000	0.004	00.070	0.004	0.000	0.070	45.050	04.005	07.007	E4 00E	00.000	440.504	070 000	400 444	04.000	40.000
V-L Flowrate (lb/h)	9,809 169,965	3,924 67,986	30,676 885,123	3,924 70,684	2,336 74,785	3,870	15,950 213,455	21,835 315,434	27,827 628,002	51,905	33,983	142,524	270,938 7,773,337	128,414	34,332	10,000
Solids Flowrate (lb/h)	0	07,900	000,123	0	0	0	0	0	020,002	0	0	0	0	0	090,620	0
Collas Flowrate (IB/11)	U		U	0	U	U	U		U	U	0	U	U	U	U	U
Temperature (°F)	59	890	59	300	104	80	1,619	515	1,302	1,039	987	59	1,143	270	2,864	97
Pressure (psia)	500.0	30.0	14.7	50.0	23.0	23.0	20.0	20.0	16.2	16.2	19.9	14.7	15.3	14.7	18.9	2,215.0
Enthalpy (Btu/lb) ^A	13.4	577.7	13.4	1,191.2	15.6	10.3	1,253.2	488.5	965.2	795.1	828.1	13.4	289.0	66.0	1,687.1	-89.9
Density (lb/ft ³)	1.557	0.036	0.076	0.113	0.122	0.127	0.012	0.028	0.019	0.018	0.029	0.076	0.026	0.054	0.014	34.069

^A Reference conditions are 32.02 F and 0.089 psia

Exhibit 4-7. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	55,685 (122,764)	Stack Gas	233 (514)
Air (CO2)	283 (624)	CO₂ Product	54,482 (120,112)
		Exhaust	1,201 (2,647)
		ASU Vent	50 (111)
		Water KO	2 (4)
		Convergence Tolerance	0 (0)
Total	55,968 (123,388)	Total	55,968 (123,388)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total						
Heat In GJ/hr (MMBtu/hr)										
NG	4,043.54 (3,832.54)			4,046.2 (3,835.1)						
Fuel cell Air		57.9 (54.9)		57.9 (54.9)						
Auxiliary Power			226.5 (214.7)	226.5 (214.7)						
TOTAL	4,044 (3,833)	60.6 (57.5)	226.5 (214.7)	4,330.7 (4,104.7)						
	Heat Ou	rt GJ/hr (MMBtu/i	hr)							
CO₂ Out		-41.8 (-39.6)		-41.8 (-39.6)						
Stack Flue Gas		254.9 (241.6)		254.88 (241.58)						
Vents		18.4 (17.4)		18.40 (17.44)						
Water outlets		30.5 (28.9)		30.53 (28.94)						
Process Losses**		1523.7 (1444.2)		1,523.67 (1,444.16)						
Difference***		-22.0 (-20.9)		-22.00 (-20.86)						
Power			2,567.0 (2,433.0)	2,567.0 (2,433.0)						
TOTAL	0.0 (0.0)	1,763.7 (1,671.7)	2,567.0 (2,433.0)	4,330.7 (4,104.7)						
* Includes ASU compr	essor intercoolers & CO2	compressor interc	oolers							
** Includes accounting	* Includes accounting of losses such as inverter, transformer, generator, and motor losses									

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.6 (154)	0.0 (0)	0.6 (154)	0.0 (0)	0.6 (154)
Reformer Steam	0.5 (141)	0.0(0)	0.5 (141)		
BFW Makeup	0.0 (13)	0.0 (0)	0.0 (13)		
Cooling Tower	10.8 (2,859)	3.22 (850)	7.6 (2,008)	2.4 (643)	5.2 (1,365)
CO2 Dehydration	0.0 (0)	3.22 (850)	-3.22 (-850)		
Total	11.4 (3,013)	3.22 (850)	8.2 (2,163)	2.4 (643)	5.8 (1,520)

	kg/GJ	Tonne/year	kg/MWh
	(lb/10 ⁶ Btu)	(tons/year)	(lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	1559 (3626)	33,442 (36,864)	7 (15)

^{***} Calculated by difference to close the energy balance

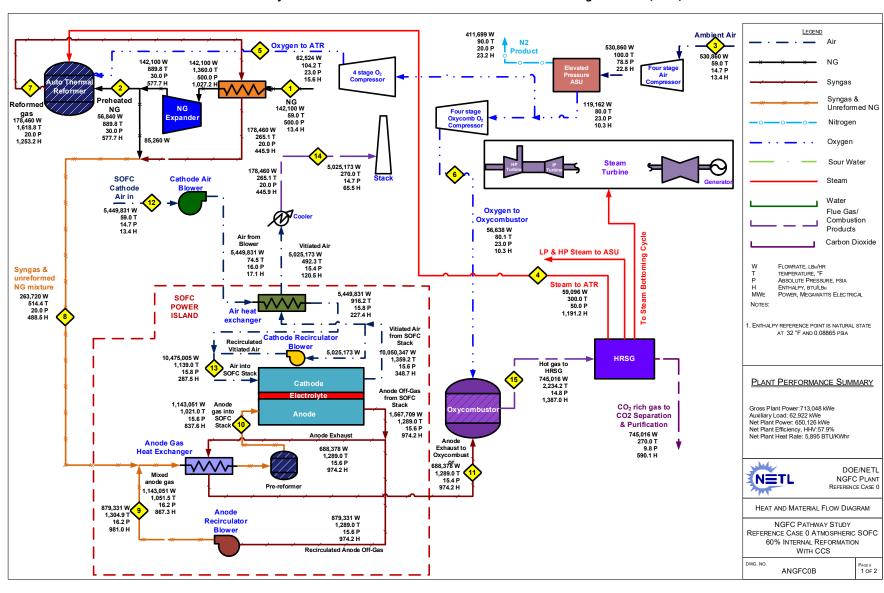


Exhibit 4-8. Case ANGFCOB - Reference Plant with CCS - Heat and Material Balance Diagram - ASU, ATR, and Power Island



Exhibit 4-9. Case ANGFCOB – Reference Plant with CCS – Heat and Material Balance Diagram – CO2 Dehydration, Purification, and Compression

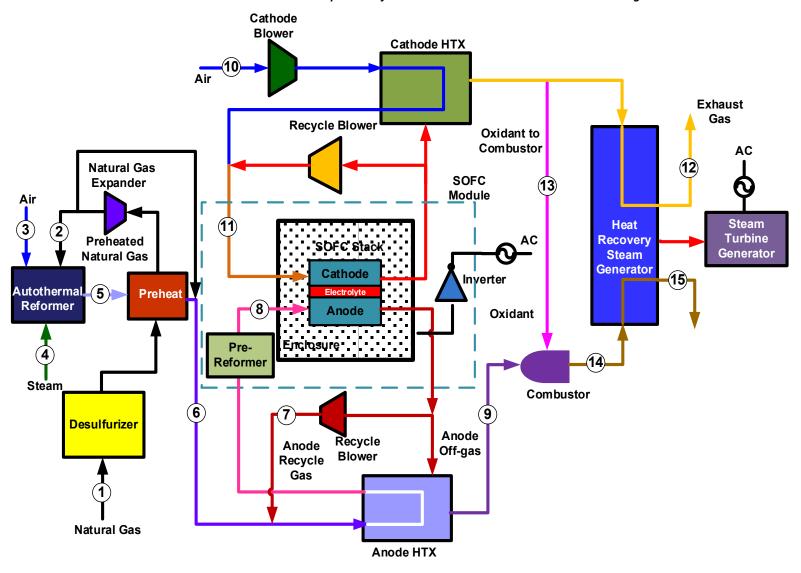


Exhibit 4-10. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – Process Diagram

Exhibit 4-11. Case ANGFCOA – Atmospheric NGFC Reference Plant without CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
V-L Mole Fraction															
Ar	0.0000	0.0000	0.0094	0.0000	0.0043	0.0034	0.0025	0.0028	0.0025	0.0094	0.0099	0.0104	0.0104	0.0061	0.0087
CH ₄	0.9310	0.9310	0.0000	0.0000	0.0000	0.1782	0.0000	0.0702	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.1129	0.0913	0.0348	0.0534	0.0348	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0100	0.0003	0.0000	0.0517	0.0437	0.2035	0.1482	0.2035	0.0003	0.0003	0.0003	0.0003	0.1444	0.2068
H ₂	0.0000	0.0000	0.0000	0.0000	0.3414	0.2761	0.1293	0.2691	0.1293	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.0104	1.0000	0.1377	0.1113	0.4235	0.2211	0.4235	0.0104	0.0109	0.0115	0.0115	0.3397	0.0543
N ₂	0.0160	0.0160	0.7722	0.0000	0.3520	0.2877	0.2063	0.2352	0.2063	0.7722	0.8100	0.8516	0.8516	0.5034	0.7210
C ₂ H ₆	0.0320	0.0320	0.0000	0.0000	0.0000	0.0061	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0070	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0040	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.2077	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.1690	0.1262	0.1262	0.0064	0.0092
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	4,183	1,673	4,798	1,673	10,602	13,111	14,675	28,908	18,290	64,496	122,979	45,042	13,442	30,230	21,108
V-L Flowrate (kg/h)	72,480	28,992	138,455	30,143	197,589	241,077	347,802	588,878	433,469	1,860,980	3,529,569	1,285,079	383,510	816,978	652,643
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1		1				1						
Temperature (°C)	15	477	15	149	788	353	708	561	557	15	618	132	204	1,077	38
Pressure (MPa, abs)	3.45	0.207	0.10	0.21	0.14	0.138	0.14	0.14	0.137	0.101	0.11	0.14	0.137	0.13	0.103
Enthalpy (kJ/kg) ^A	31.11	1,343.630	31.06	2,775.32	1,688.83	917.546	1,891.10	1,447.77	1,640.807	31.06	672.96	153.22	227.501	2,028.86	116.441
Density (kg/m³)	24.9	0.6	1.2	1.1	0.3	0.5	0.4	0.4	0.5	1.2	0.4	1.1	1.0	0.3	1.2
V-L Molecular Weight	17.328	17.328	28.854	18.015	18.638	18.387	23.700	20.371	23.700	28.854	28.700	28.531	28.531	27.025	30.919
VI Flourete (lb. /b)		0.000	10.550	0.000	00.070	00.00=	00.050	00 704	40.000	440.400	074.400	00.000	00.004	00.040	10.500
V-L Flowrate (lb _{mol} /h)	9,222	3,689	10,579	3,689	23,372	28,905	32,353	63,731	40,322	142,189	271,123	99,300	29,634	66,646	46,536
V-L Flowrate (lb/h)	159,790	63,916	305,240	66,453	435,609			1,298,254				2,833,113		1,801,129	1,438,832
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	890	59	300	1,450	668	1,306	1,042	1,035	59	1,144	270	399	1,971	100
Pressure (psia)	500.0	30.0	14.7	30.0	20.0	20.0	20.0	20.0	19.9	14.7	15.3	19.7	19.9	18.9	14.9
Enthalpy (Btu/lb) ^A	13.4	577.7	13.4	1,193.2	726.1	394.5	813.0	622.4	705.4	13.4	289.3	65.9	97.8	872.3	50.1
Density (lb/ft ³)	1.557	0.036	0.076	0.067	0.018	0.030	0.025	0.025	0.029	0.076	0.026	0.072	0.061	0.020	0.077
, (/					5.5.5										

^A Reference conditions are 32.02 F and 0.089 psia

TECHNO-ECONOMIC ANALYSIS OF NATURAL GAS FUEL CELL PLANT CONFIGURATIONS

Exhibit 4-12. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	52,351 (115,414)	Stack Gas	179 (395)
Air (CO ₂)	250 (550)	Exhaust	52,421 (115,570)
		Convergence Tolerance	0 (1)
Total	52,601 (115,965)	Total	52,601 (115,965)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible +	Power	Total						
		Latent								
Heat In GJ/hr (MMBtu/hr)										
NG	3,801.47 (3,603.10)	2.5 (2.4)		3,804.0 (3,605.5)						
ASU Air		4.3 (4.1)		4.3 (4.1)						
Fuel cell Air		57.8 (54.8)		57.8 (54.8)						
Auxiliary Power			69.6 (66.0)	69.6 (66.0)						
TOTAL	3,801 (3,603)	66.5 (63.1)	69.6 (66.0)	3,937.6 (3,732.2)						
	Heat Ou	t GJ/hr (MMBtu/l	hr)							
Stack Flue Gas		272.9 (258.6)		272.89 (258.65)						
Process Losses**		1326.1 (1256.9)		1,326.10 (1,256.90)						
Difference***		-71.2 (-67.5)		-71.21 (-67.49)						
Power			2,409.9 (2,284.1)	2,409.9 (2,284.1)						
TOTAL	0.0 (0.0)	1,527.8 (1,448.1)	2,409.9 (2,284.1)	3,937.6 (3,732.2)						
* Includes ASU compre	essor intercoolers & CO2	compressor interc	oolers							
** Includes accounting	of losses such as inverte	r, transformer, gen	erator, and motor los	ses						
*** Calculated by differ	rence to close the energy	balance								

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.6 (153)	0.0 (0)	0.6 (153)	0.0 (0)	0.6 (153)
Reformer Steam	0.5 (133)	0.0 (0)	0.5 (133)		
BFW Makeup	0.1 (20)	0.0 (0)	0.1 (20)		
Cooling Tower	8.9 (2,357)	0.00 (0)	8.9 (2,357)	2.0 (530)	6.9 (1,827)
0	0.0 (0)	0.00(0)	0.00(0)		
Total	9.5 (2,510)	0.00 (0)	9.5 (2,510)	2.0 (530)	7.5 (1,980)

	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year)	kg/MWh (lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	57124 (132871)	1,225,321	261 (576)

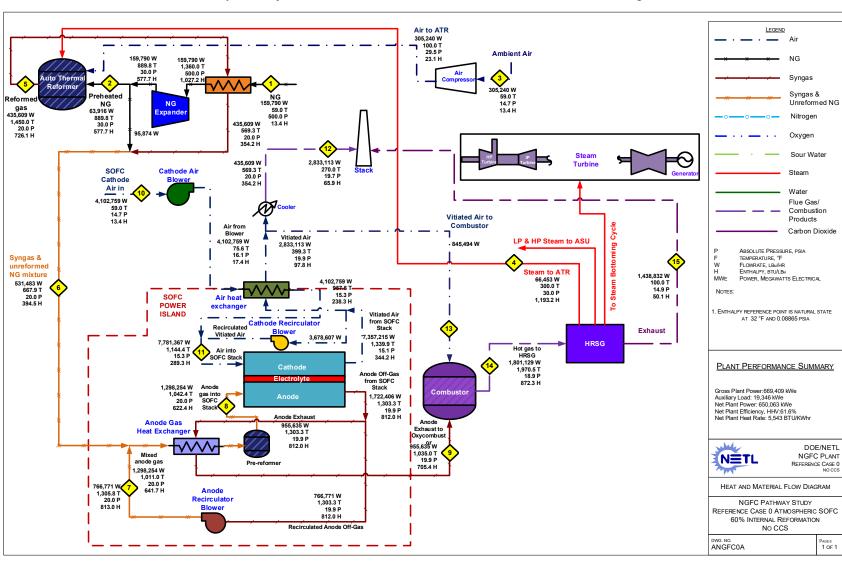


Exhibit 4-13. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – Heat and Material Balance Diagram – ASU, ATR, and Power Island

Exhibit 4-14. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – Capital Costs

Cost Component	Cost (\$1000)	Specific Cost (\$/kWe AC)
- Constant	2018\$	2018\$
SOFC Mod	lule	
SOFC Stack	133,735	206
Container	5,277	8
Insulation	2,378	4
Module Assembly	5,944	9
Air Distribution	5,944	9
Fuel Distribution	5,944	9
Pre-reformer	5,944	9
Module Current Collectors	2,972	5
Module I&C	2,972	5
Inverter Tatal SOFC Modulo with 10 % Fytre Installed Area	40,418	62 325
Total SOFC Module with 10 % Extra Installed Area NATURAL GAS EXPANDER	211,526	
SOFC BOP	7,455	11
	1 000	3
Desulfurization System	1,999 2,314	4
Cathode Air Compressor Cathode Gas Recycle Compressor	5,277	8
Cathode Gas Recycle Compressor Cathode Heat Exchanger	14.080	22
Anode Recycle Compressor	814	1
Anode Heat Exchanger	339	1
Oxy-Combustor	21,554	33
Air, Exhaust, Fuel Flow Piping system	1,646	3
Section and Overall Assembly	1,646	3
Section I&C	823	1
Total SOFC BOP	50,492	78
TOTAL SOFC POWER ISLAND	269,474	414
ASU	127,672	196
AUTOTHERMAL REFORMER and Natural Gas Preheater	23,477	36
STEAM CYCLE		
HRSG, Ducting, and Stack	50,207	77
Steam Power System	51,856	80
Feedwater and Miscellaneous BOP systems	76,389	117
TOTAL STEAM CYLCE	178,452	274
CO ₂ COMPRESSION & PURIFICATION	,	
CO ₂ Purification	89,001	137
TOTAL CO ₂ COMPRESSION & PURIFICATION	89,001	137
COOLING WATER SYSTEM	38,437	59
ACCESSORY ELECTRIC PLANT	75,508	116
INSTRUMENTATION & CONTROL	23,298	36
IMPROVEMENTS TO SITE	29,203	45
BUILDING & STRUCTURES	13,916	21
TOTAL PLANT COST (TPC)	868,437	1336
OWNER'S COSTS		
Preproduction Costs		
6 Months All Labor	6,125	
1 Month Maintenance Materials	1,031	
1 Month Non-fuel Consumables	410	
25% of 1 Months Fuel Cost at 100% CF	3,092	
2% of TPC	17,369	
Total Preproduction Costs	28,027	
Inventory Capital		
60-day supply of fuel and consumables at 100% CF	676	
0.5% of TPC (spare parts)	4,342	
Total Inventory Capital	5,018	
Initial Cost for Catalyst and Chemicals	1,756	
Land	300	
Other Owner's Costs	130,266	
Financing Costs	23,448	
TOTAL OWNER'S COSTS	188,815	
TOTAL OVERNIGHT COST (TOC)	1,057,252	1626
TASC Multiplier	1.093	
TOTAL AS-SPENT COST (TASC)	1,155,576	1777

Exhibit 4-15. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – O&M Costs

se: Apr 2018	Cost Base:				ANGFC0B	Case:
or: 80%	Capacity Factor:			650		Plant Size (MW, net):
		.abor	Maintenance l	Operating &		
ents per Shift	Labor Requirements	Operating			g Labor	Operatin
1.0	1.0	Skilled Operator:	\$/hour	38.50		Operating Labor Rate (base):
4.3	4.3	Operator:	% of base	30.00		Operating Labor Burden:
1.0	1.0	Foreman:	% of labor	25.00		Labor O-H Charge Rate:
1.0	1.0	Lab Techs, etc.:				
7.3	7.3	Total:				
			perating Costs	Fixed O		
nual Cost	Annual					
(\$/kW-net)	(\$)					
97 \$4.92	\$3,200,597	ual Operating Labor:	Annı			
.21 \$10.15	\$6,600,121	Maintenance Labor:				
.80 \$3.77	\$2,450,180	ve & Support Labor:	Administrati			
39 \$26.72	\$17,368,739	axes and Insurance:	Property T			
\$45.56	\$29,619,637	Total:				
		:S	Operating Cost	Variable		
(\$/MWh-net)	(\$)					
.81 \$2.17	\$9,900,181	intenance Material:	Ma			
			Replacement	Stack		
		\$/y per kW	\$/kW AC	Life (y)		
37 \$3.51	\$15,984,337	\$24.59	\$223	7.3		SOFC Stack Replacement Cost
			sumables	Cor		
		Initial Fill	Per Unit	Per Day	Initial Fill	
67 \$0.15	\$691,167	\$0	\$1.90	1,246	0	Water (gal/1000):
93 \$0.16	\$744,993	\$0	\$0.28	9,278	0	Makeup and Wastewater Treatment Chemicals (lb):
10 \$0.49	\$2,210,610	\$310,916	\$6.03	1256	51,564	NG Desulfur TDA Adsorbent (lb):
07 \$0.06	\$290,207	\$1,445,136	\$601.76	1.7	2,401	ATR Catalyst (m³):
77 \$0.86	\$3,936,977	\$1,756,052	Subtotal:			
			te Disposal	Was		
\$0.00	\$0	\$0	\$0.00	1.7	0	ATR Catalyst (m³):
\$0 \$0.00	\$0	\$0	Subtotal:			
96 \$6.54	\$29,821,496	\$1,756,052	g Costs Total:	ble Operatin	Varia	
			uel Cost			
81 \$26.06	\$118,719,581	\$0	\$4.42	91,981	0	Natural Gas (MMBtu):

Exhibit 4-16. Case ANGFCOB – Atmospheric Reference NGFC Plant with CCS – Capital Cost Components

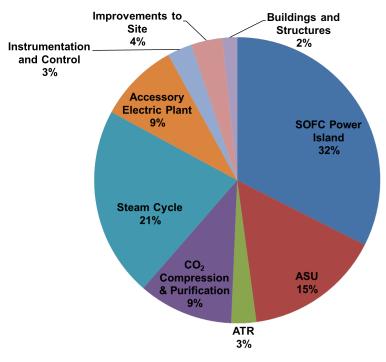


Exhibit 4-17. Case ANGFCOB - Atmospheric Reference NGFC Plant with CCS - BOP Cost Distribution

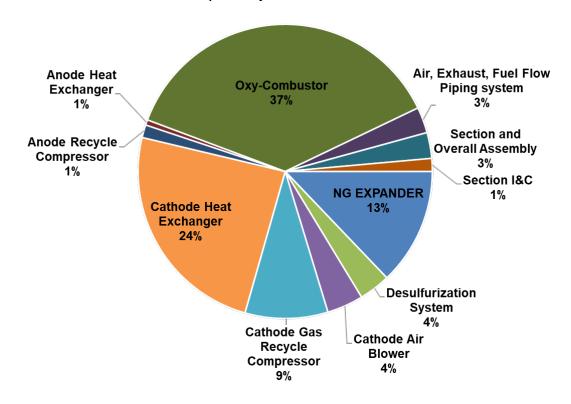


Exhibit 4-18. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – Capital Costs

Cost Component	Cost (\$1000)	Specific Cost (\$/kWe AC)
	2018\$	2018\$
SOFC Mo		194
Container	125,868 4,966	8
Insulation	2,238	3
Module Assembly	5,594	9
Air Distribution	5,594	9
Fuel Distribution	5,594	9
Pre-reformer	5,594	9
Module Current Collectors	2,797	4
Module I&C	2,797	4
Inverter	38,040	59
Total SOFC Module with 10 % Extra Installed Area	199,084	306
NATURAL GAS EXPANDER	6,994	11
SOFC BOP	-,	
Desulfurization System	1,894	3
Cathode Air Compressor	2,272	3
Cathode Gas Recycle Compressor	5,197	8
Cathode Heat Exchanger	14,956	23
Anode Recycle Compressor	830	1
Anode Heat Exchanger	10,150	16
Oxy-Combustor	20,482	32
Air, Exhaust, Fuel Flow Piping system	1,477	2
Section and Overall Assembly	1,477	2
Section I&C	738	1
Total SOFC BOP	59,472	91
TOTAL SOFC POWER ISLAND	265,549	408
ASU	1,191	2
AUTOTHERMAL REFORMER and Natural Gas Preheater	22,247	34
STEAM CYCLE	22,247	34
HRSG, Ducting, and Stack	42,731	66
Steam Power System	50,943	78
Feedwater and Miscellaneous BOP systems	75,243	116
TOTAL STEAM CYLCE	168,917	260
CO₂ COMPRESSION & PURIFICATION	100,517	200
CO ₂ Purification	0	0
TOTAL CO ₂ COMPRESSION & PURIFICATION	0	0
COOLING WATER SYSTEM	34,268	53
ACCESSORY ELECTRIC PLANT	40,390	62
INSTRUMENTATION & CONTROL	18,627	29
IMPROVEMENTS TO SITE	28,367	44
BUILDING & STRUCTURES	13,749	21
TOTAL PLANT COST (TPC)	593,305	913
OWNER'S COSTS	333,303	313
Preproduction Costs		
6 Months All Labor	4,462	
1 Month Maintenance Materials	705	-
1 Month Non-fuel Consumables	441	-
25% of 1 Months Fuel Cost at 100% CF	2,907	-
2% of TPC	11,866	1
Total Preproduction Costs	20,380	1
Inventory Capital	20,000	1
60-day supply of fuel and consumables at 100% CF	714	
0.5% of TPC (spare parts)	2,967	-
Total Inventory Capital	3,681	-
Initial Cost for Catalyst and Chemicals	2,727	-
Land	300	+
Other Owner's Costs	88,996	+
Financing Costs	16,019	+
TOTAL OWNER'S COSTS	132,103	+
TOTAL OWNER'S COSTS TOTAL OVERNIGHT COST (TOC)	725,408	1116
TOTAL OVERINIGHT COST (TOC)	<u> </u>	1116
TASC Multiplier	1.093	

Exhibit 4-19. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – O&M Costs

Case:	ANGFC0A				Cost Base:	Apr 2018
Plant Size (MW, net):		650			Capacity Factor:	80%
		Оре	erating & Maint	enance Labor		
Opera	ating Labor			Operating Lab	or Requirements per Sh	ift
Operating Labor Rate (base):		38.50	\$/hour	Skilled Operator:	1.0	
Operating Labor Burden:		30.00	% of base	Operator:	3.3	
Labor O-H Charge Rate:		25.00	% of labor	Foreman:	1.0	
				Lab Techs, etc.:	1.0	
				Total:	6.3	
			Fixed Operati	ng Costs		
					Annual Co	st
					(\$)	(\$/kW-net)
				Annual Operating Labor:	\$2,630,628	\$4.0
				Maintenance Labor:	\$4,509,117	\$6.9
			Admi	nistrative & Support Labor:	\$1,784,936	\$2.7
			Pro	perty Taxes and Insurance:	\$11,866,098	\$18.2
				Total:	\$20,790,780	\$31.9
			Variable Opera	ting Costs		
					(\$)	(\$/MWh-net
				Maintenance Material:	\$6,763,676	\$1.4
			Stack Replac	cement		
		Life (y)	\$/kW AC	\$/y per kW		
OFC Stack Replacement Cost		7.3	\$225	\$24.80	\$16,124,050	\$3.5
			Consuma	bles		
	Initial Fill	Per Day	Per Unit	Initial Fill		
Water (gal/1000):	0	1,441	\$1.90	\$0	\$799,728	\$0.1
Makeup and Waste Water Treatment Chemicals (lb):	0	10,735	\$0.28	\$0	\$862,008	\$0.1
NG Desulfur TDA Adsorbent	48,477	1180	\$6.03	\$292,303	\$2,078,271	\$0.4
(lb):	-,					
	4,046	2.8	\$601.76	\$2,434,946	\$488,978	\$0.1
(lb):		2.8	\$601.76 Subtotal :	\$2,434,946 \$2,727,250	\$488,978 \$4,228,986	· ·
(lb):		2.8	-	\$2,727,250		· ·
(lb):		2.8	Subtotal:	\$2,727,250		\$0.9
(lb): ATR Catalyst (m³):	4,046		Subtotal: Waste Dis	\$2,727,250 posal	\$4,228,986	\$0.9
(lb): ATR Catalyst (m³):	4,046	2.8	Subtotal: Waste Dis \$0.00	\$2,727,250 posal \$0	\$4,228,986 \$0	\$0.9 \$0.0 \$0.0
(lb): ATR Catalyst (m³):	4,046	2.8	Subtotal: Waste Dis \$0.00 Subtotal:	\$2,727,250 posal \$0 \$0 \$2,727,250	\$4,228,986 \$0 \$0	\$0.9 \$0.0 \$0.0
(lb): ATR Catalyst (m³):	4,046	2.8	Subtotal: Waste Dis \$0.00 Subtotal: g Costs Total:	\$2,727,250 posal \$0 \$0 \$2,727,250	\$4,228,986 \$0 \$0	\$0.5 \$0.6 \$0.6 \$5.6 \$24.5

Exhibit 4-20. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – Capital Cost Components

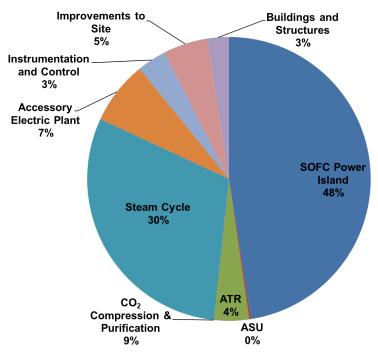


Exhibit 4-21. Case ANGFCOA – Atmospheric Reference NGFC Plant without CCS – BOP Cost Distribution

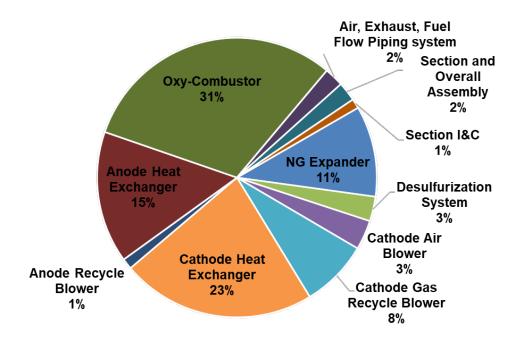


Exhibit 4-22. Case 0 – Atmospheric Reference NGFC Plant with and without CCS – Levelized Cost of Electricity

Levelized Cost of Electricity (2018\$/MWh)									
Carbon Capture	With CCS	No CCS							
Component	\$/M\	Wh							
Variable Costs	32.6	30.5							
Fuel Costs	26.1	24.5							
Variable O&M Costs	6.5	6.0							
Fixed O&M Costs	6.5	4.6							
Capital Costs	17.9	12.3							
Total LCOE (excluding T&S)	57.0	47.3							
T&S	3.1	0.0							
Total LCOE (including T&S)	60.1	47.3							

4.2 CASE 4: ADVANCED ATMOSPHERIC NGFC DESCRIPTION

Case 4 assesses an advanced NGFC plant featuring the improvements made in Cases 1–3 along with additional improvements to various BOP components. The BOP improvements specific to Case 4 are a 20 percent power reduction on the ASU, an increase in inverter efficiency from 97 percent to 98 percent, and a stack cost reduction from 225 to 200 \$/kWh. The SOFC technology parameters for this case are listed in Exhibit 4-23.

Exhibit 4-23. SOFC Technology Parameters Used for Case 4

Parameter	Value		
Reformation	100% Internal		
SOFC Operating Pressure	Atmospheric		
Cell Technology	Advanced Cell		
Fuel Utilization, %	85		
Current Density, mA/cm ²	400		
Degradation, %/1000 h	0.2		
Inverter Efficiency (%)	98		
Stack Cost (\$/kW)	200		

The major difference in the process diagrams between the advanced and reference atmospheric NGFC plants with CCS is the removal of the ATR due to the assumption of 100 percent internal reformation at the fuel cell anode, as seen in Exhibit 4-27. Desulfurized natural gas (Stream 1) is mixed with recycled anode gas (Stream 4) and preheated through the anode heat exchanger to achieve the anode inlet temperature (Stream 5). The preheated natural gas is pre-reformed before flowing through the anode. The anode off-gas (Stream 6) is mixed with 99.5 percent pure O₂ from a conventional ASU (Stream 3) and combusted across the oxy-

combustor, generating a hot combustion gas (Stream 10) having 1 percent excess O₂ content. The combustion gas is cooled by the HRSG, which raises high-pressure steam for the steam bottoming cycle and low-pressure steam for the auxiliary processing needs. The cooled combustion gas is dehydrated, purified, and compressed to 2215 psia in the CPU (Stream 11).

On the cathode side, air (Stream 7) pressurized by the cathode air blower is preheated through the cathode heat exchanger and mixes with the recycled cathode gas to achieve the desired cathode inlet temperature (Stream 8) before being delivered to the SOFC cathode. The cathode air mixture not only provides the O_2 needed for the SOFC oxidation reactions but also acts as a coolant and serves to maintain an acceptable temperature distribution across the SOFC. The cell cooling is aided greatly by the reforming of methane throughout the cells, reducing the required flow of cathode air. The cathode off-gas passes through the cathode heat exchanger and is vented (Stream 9).

The configuration of Case 4 without CCS eliminates the CPU, and the ASU as displayed in Exhibit 4-32. The excess fuel gas in the anode off-gas stream is combusted with a portion of the exhaust gas issued from the cathode and heat is recovered, for process steam and steam cycle power generation before the exhaust is vented.

4.2.1 Case 4: Advanced Atmospheric NGFC Performance

Exhibit 4-24 summarizes the performance of the advanced atmospheric plants with and without CCS. In both configurations, as shown in Exhibit 4-25, the SOFC generates ≈88 percent of the gross power with the steam cycle generating the remaining 12 percent. The contribution of the SOFC to gross generation in the advanced plants is ≈6–7 percentage points larger compared to the reference NGFC plants, primarily due to the increased fuel utilization. The auxiliary load for the advanced plant without CCS is approximately evenly divided between the blower and steam cycle parasitic loads as shown in Exhibit 4-26. Compared to the reference plant without CCS the net auxiliary load of the advanced plant without CCS decreased by ≈35 percent. The inclusion of CCS more than triples the auxiliary load to the advanced plant and decreases the HHV efficiency by almost 3.4 percentage points. Compared to the reference plant with CCS, the advanced plant with CCS uses 30 percent less auxiliary power. This contributes to an increase of 7.6 percentage points in the advanced plant's HHV efficiency. The gain in efficiency is primarily due to the increased overall plant fuel utilization, the removal of the ATR (which would have consumed some fuel energy), and the benefits of decreased airflow requirements associated with increased internal reformation. The largest component to the auxiliary load of the advanced plant with CCS is the CO₂ compression and purification parasitic load at ≈52 percent.

The stream tables for the advanced plants with and without CCS are listed in Exhibit 4-28 and Exhibit 4-33 for the corresponding points numbered in the process flow diagram shown in Exhibit 4-27 and Exhibit 4-32 respectively. Material and energy balance tables and the heat and material balance diagrams for the reference plant with CCS are shown in Exhibit 4-29, Exhibit 4-30, and Exhibit 4-31 respectively. The corresponding tables for the reference plant without CCS are shown in Exhibit 4-34, and Exhibit 4-35.

There are 36 parallel SOFC sections in the plant, each containing a single cathode heat exchanger, anode heat exchanger, cathode air blower, cathode recycle gas blower, and anode gas recycle blower.

4.2.2 Case 4: Advanced Atmospheric NGFC Costs

Exhibit 4-36 and Exhibit 4-37 itemize the capital and O&M costs for the advanced atmospheric NGFC plant with CCS. The largest contribution to capital cost is the SOFC power island, making up \approx 38 percent of the total as seen in Exhibit 4-38. Other significant costs include the steam cycle, the ASU, and the CPU, which contribute 21 percent, 11 percent, and 9 percent respectively. The largest component of the BOP costs is the cathode heat exchanger at 39 percent followed by the oxy-combustor at 34 percent as shown in Exhibit 4-39. The costs for the advanced plant without CCS are displayed in Exhibit 4-40 to Exhibit 4-43. The addition of CCS increases capital cost by over 40 percent, primarily due to the costs associated with the ASU and CPU. The LCOE for the advanced plant without CCS, as listed in Exhibit 4-44 is estimated to be \$40.5/MWh. The addition of CCS increases the LCOE (without T&S) by \$7.2/MWh. The LCOE with CO₂ T&S costs were observed to fall by \$9.7/MWh as a result of the improvements made between Case 0 and Case 4.

Exhibit 4-24. Case 4 - Advanced Atmospheric NGFC Plant with and without CCS - Performance Summary

Carbon Capture	With CCS	No CCS
Power Summary (Gross Power at G	enerator Terminals	, kWe)
SOFC Power	611,250	582,528
Natural Gas/Syngas Expander Power	0	0
Steam Turbine Power	82,700	80,000
Total Gross Power, kW _e	693,950	662,528
Auxiliary Load Sumr	nary, kWe	
Air Separation Unit Auxiliaries	0	0
Air Separation Unit Main Air Compressor ^A	7,499	0
Oxygen Compressor	0	0
Nitrogen Compressors	0	0
CO ₂ Compressor	22,883	0
CO ₂ Refrigeration	0	0
Boiler Feedwater Pumps	1,520	1,470
Condensate Pump	47	46
Circulating Water Pump	2,090	1,730
Cooling Tower Fans	1,080	910
Gas Turbine Auxiliaries	-	-
Steam Turbine Auxiliaries	63	61
Cathode Air Blower	4,041	3,843
Cathode Recycle Blower	1,743	1,655
Anode Recycle Blower	354	339
Miscellaneous Balance of Plant ^B	402	382
Transformer Losses	2,198	2,016

Carbon Capture	With CCS	No CCS
Total Auxiliaries, kW _e	43,920	12,452
Net Power, kW _e	650,030	650,076
Net Plant Efficiency, % (HHV)	65.47	68.84
Net Plant Heat Rate, kJ/kWh (Btu/kWh)	5,499 (5,212)	5,229 (4,956)
CO₂ Capture Rate, %	98.1	0.0
Condenser Cooling Duty, 10 ⁶ kJ/h (10 ⁶ Btu/h)	485 (460)	464 (440)
Natural Gas Feed Rate, kg/h (lb/h)	68,151 (150,248)	64,814 (142,890)
Thermal Input ^c , kWt	992,907	944,282
Raw Water Withdrawal, m³/min (gpm)	5.8 (1,530.4)	6.8 (1,787.9)
Raw Water Consumption, m ³ /min (gpm)	3.96 (1,047.3)	5.26 (1,388.9)

^A Reflects power needed to compress air to ATR pressure.

Exhibit 4-25. Case 4 - Advanced Atmospheric NGFC Plant with and without CCS - Gross Power Distribution

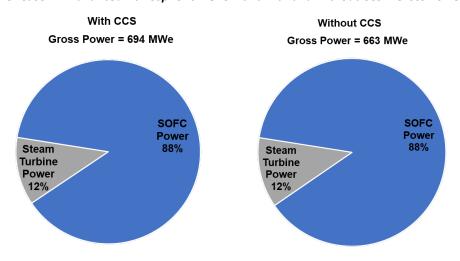
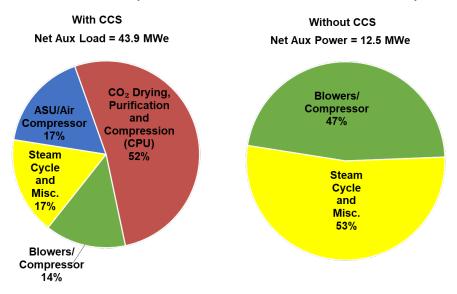



Exhibit 4-26. Case 4 - Advanced Atmospheric NGFC Plant with and without CCS - Auxiliary Load Distribution

^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads.

^c HHV of natural gas is 52,449 kJ/kg (22,549 Btu/lb).

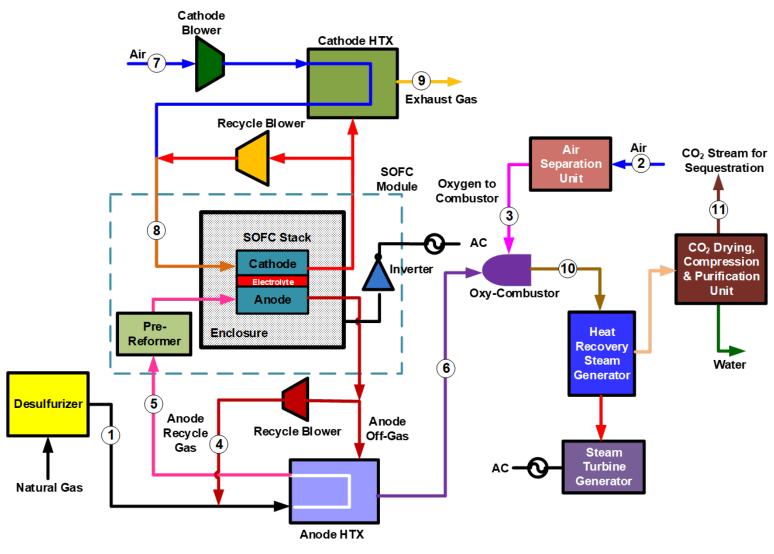


Exhibit 4-27. Case ANGFC4B – Advanced Atmospheric NGFC plant with CCS – Block Flow Diagram

Exhibit 4-28. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0000	0.0094	0.0031	0.0000	0.0000	0.0000	0.0094	0.0101	0.0109	0.0003	0.0000
CH ₄	0.9310	0.0000	0.0000	0.0001	0.1246	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0501	0.0392	0.0501	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0003	0.0000	0.2900	0.2611	0.2900	0.0003	0.0003	0.0003	0.3367	1.0000
H ₂	0.0000	0.0000	0.0000	0.1489	0.2371	0.1489	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0104	0.0000	0.5057	0.3316	0.5057	0.0104	0.0112	0.0121	0.6482	0.0000
N ₂	0.0160	0.7722	0.0019	0.0052	0.0065	0.0052	0.7722	0.8291	0.8951	0.0054	0.0000
C ₂ H ₆	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0,	0.0000	0.2077	0.9950	0.0000	0.0000	0.0000	0.2077	0.1493	0.0816	0.0094	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
							•	•	•	•	•
V-L Flowrate (kg _{mol} /h)	3,933	6,536	1,322	20,281	25,886	12,049	49,559	92,315	42,756	12,173	4,018
V-L Flowrate (kg/h)	68,151	188,597	42,334	481,137	549,287	285,849	1,429,991	2,642,284	1,212,293	328,183	176,853
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	15	27	717	510	594	15	624	132	1,580	36
Pressure (MPa, abs)	0.14	0.10	0.16	0.11	0.11	0.137	0.101	0.11	0.10	0.13	15.27
Enthalpy (kJ/kg) ^A	31.11	31.06	23.95	2,121.24	1,614.37	1,902.471	31.06	680.95	155.05	3,749.71	-208.83
Density (kg/m³)	1.0	1.2	2.0	0.3	0.4	0.5	1.2	0.4	0.9	0.2	544.5
V-L Molecular Weight	17.328	28.854	32.016	23.723	21.219	23.723	28.854	28.622	28.354	26.960	44.010
						ı	T		T		1
V-L Flowrate (lb _{mol} /h)	8,671	14,410	2,915	44,713	57,069	26,564	109,259	203,520	94,260	26,836	8,859
V-L Flowrate (lb/h)	150,248	415,784	93,331	1,060,725	1,210,971	630,189	3,152,591	5,825,239	2,672,648	723,519	389,893
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0
							_		_		
Temperature (°F)	59	59	80	1,323	950	1,102	59	1,155	270	2,877	97
Pressure (psia)	20.0	14.7	23.0	16.2	16.2	19.9	14.7	15.3	14.7	18.9	2,215.0
Enthalpy (Btu/lb) ^A	13.4	13.4	10.3	912.0	694.1	817.9	13.4	292.8	66.7	1,612.1	-89.8
Density (lb/ft ³)	0.062	0.076	0.127	0.020	0.023	0.028	0.076	0.025	0.053	0.014	33.993

^A Reference conditions are 32.02 F and 0.089 psia

Exhibit 4-29. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	49,225 (108,522)	Stack Gas	179 (394)
Air (CO2)	202 (446)	CO₂ Product	48,266 (106,408)
		Exhaust	957 (2,111)
		ASU Vent	24 (52)
		Water KO	1 (3)
		Convergence Tolerance	0 (0)
Total	49,427 (108,968)	Total	49,427 (108,968)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

		0,		
	HHV	Sensible + Latent	Power	Total
	Heat Ir	GJ/hr (MMBtu/hi	r)	1
NG	3,574.46 (3,387.94)	2.4 (2.3)	,	3,576.9 (3,390.2)
ASU Air		5.9 (5.6)		0.0 (0.0)
Fuel cell Air		44.4 (42.1)		44.4 (42.1)
Auxiliary Power			158.1 (149.9)	158.1 (149.9)
TOTAL	3,574 (3,388)	52.7 (49.9)	158.1 (149.9)	3,785.2 (3,587.7)
	Heat Ou	rt GJ/hr (MMBtu/l	hr)	
CO₂ Out		-36.9 (-35.0)		-36.9 (-35.0)
Stack Flue Gas		188.0 (178.2)		187.97 (178.16)
Vents		9.2 (8.7)		9.17 (8.69)
Water outlets		22.5 (21.3)		22.51 (21.34)
Process Losses**		1114.7 (1056.5)		1,114.68 (1,056.51)
Difference***		-10.4 (-9.8)		-10.38 (-9.84)
Power			2,498.2 (2,367.9)	2,498.2 (2,367.9)
TOTAL	0.0 (0.0)	1,287.0 (1,219.9)	2,498.2 (2,367.9)	3,785.2 (3,587.7)
* Includes ASU compre	ssor intercoolers & CO2	compressor interc	oolers	
** Includes accounting	of losses such as inverte	er, transformer, gen	erator, and motor los	ses
*** Calculated by differen	ence to close the eneray	balance		

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.0 (9)	0.0 (0)	0.0 (9)	0.0 (0)	0.0 (09)
Reformer Steam	0.0 (0)	0.0(0)	0.0 (0)		
BFW Makeup	0.0 (9)	0.0 (0)	0.0 (9)		
Cooling Tower	8.1 (2,148)	2.37 (627)	5.8 (1,522)	1.8 (483)	3.9 (1,038)
CO2 Dehydration	0.0 (0)	2.37 (627)	-2.37 (-627)		
Total	8.2 (2,157)	2.37 (627)	5.8 (1,530)	1.8 (483)	4.0 (1,047)

	kg/GJ	Tonne/year	kg/MWh
	(lb/10 ^e Btu)	(tons/year)	(lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	1312 (3053)	28,153	5 (12)

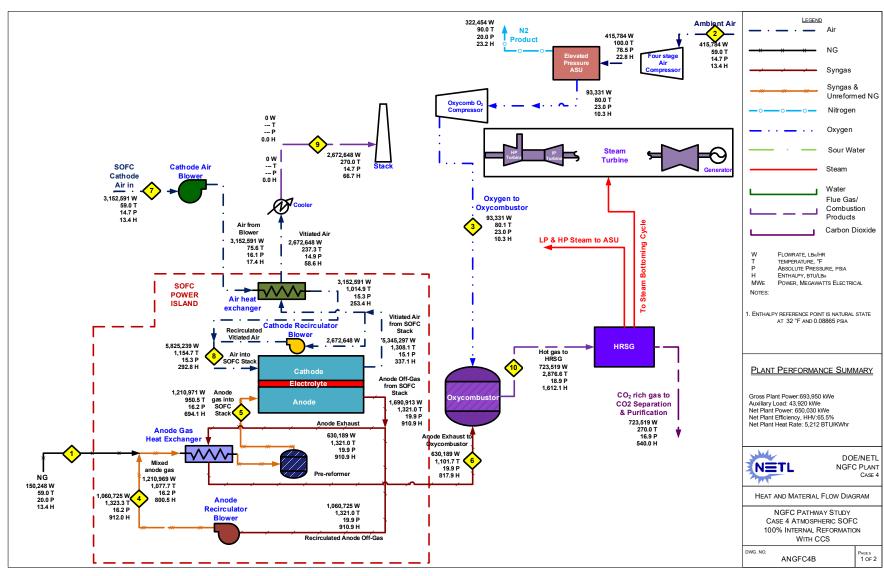


Exhibit 4-30. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Heat and Material Balance Diagram – ASU and Power Island

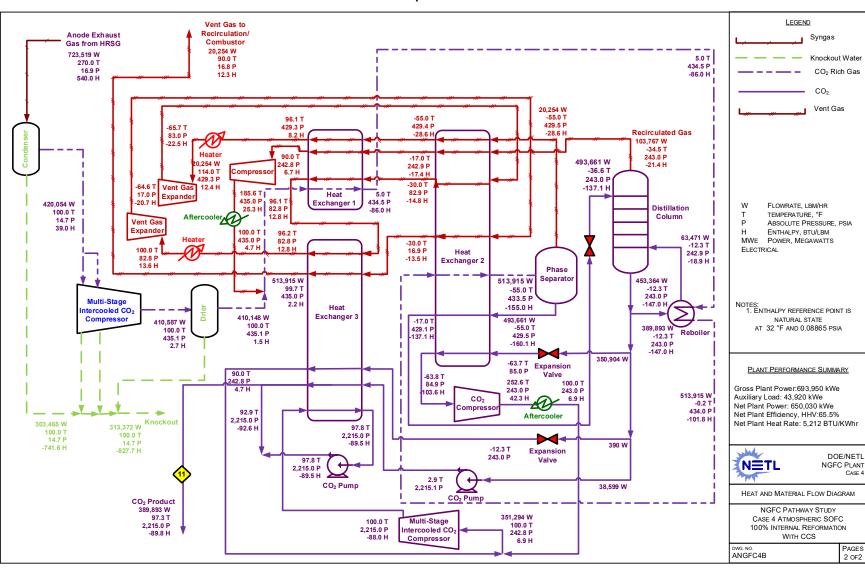


Exhibit 4-31. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Heat and Material Balance Diagram – CO₂ Dehydration, Purification, and Compression

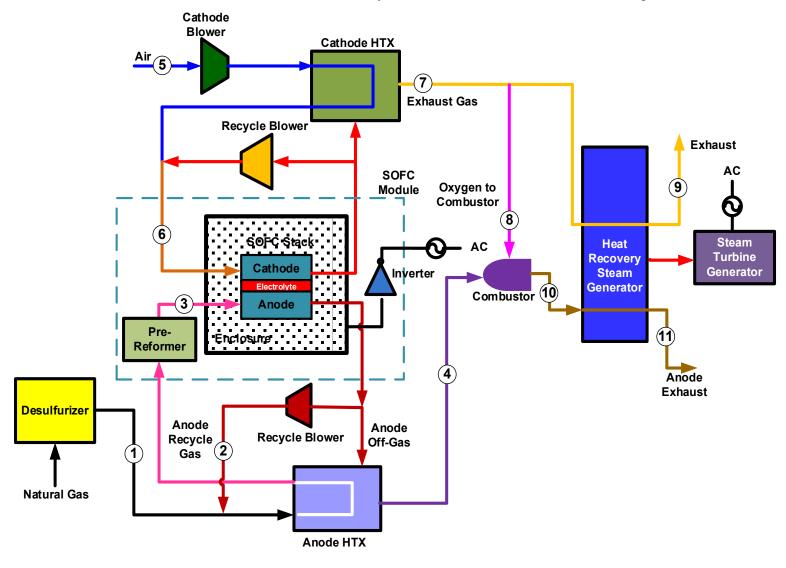


Exhibit 4-32. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Block Flow Diagram

Exhibit 4-33. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0000	0.0000	0.0000	0.0000	0.0094	0.0101	0.0109	0.0109	0.0109	0.0065	0.0088
CH ₄	0.9310	0.0001	0.1253	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0515	0.0409	0.0515	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.2886	0.2591	0.2886	0.0003	0.0003	0.0003	0.0003	0.0003	0.1513	0.2039
H ₂	0.0000	0.1476	0.2343	0.1476	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.5071	0.3339	0.5071	0.0104	0.0112	0.0121	0.0121	0.0121	0.2981	0.0543
N_2	0.0160	0.0052	0.0065	0.0052	0.7722	0.8291	0.8951	0.8951	0.8951	0.5393	0.7267
C ₂ H ₆	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.2077	0.1493	0.0816	0.0816	0.0816	0.0047	0.0063
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	3,741	19,242	24,553	11,460	47,132	87,794	40,662	15,476	25,186	25,795	19,144
V-L Flowrate (kg/h)	64,814	456,460	521,274	271,851	1,359,961	2,512,885	1,152,924	438,797	714,127	710,647	590,837
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	727	520	602	15	625	107	107	132	952	38
Pressure (MPa, abs)	0.14	0.14	0.14	0.137	0.101	0.11	0.1	0.137	0.14	0.13	0.103
Enthalpy (kJ/kg) ^A	31.11	2,141.21	1,637.85	1,917.800	31.06	682.31	128.8	128.832	155.01	1,730.88	116.628
Density (kg/m ³)	1.0	0.4	0.4	0.4	1.2	0.4	0.9	1.2	1.1	0.4	1.2
V-L Molecular Weight	17.328	23.722	21.230	23.722	28.854	28.622	28	28.354	28.354	27.550	30.862
		_		T	ı	1	ı		ı		
V-L Flowrate (lb _{mol} /h)	8,246	42,421	54,131	25,264	103,909	193,553	89,644	34,118	55,526	56,868	42,206
V-L Flowrate (lb/h)	142,890	1,006,322	1,149,212	599,329	2,998,201		2,541,762	967,381	1,574,381	1,566,710	1,302,573
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0
	T			r	1		1		1		1
Temperature (°F)	59	1,341	968	1,115	59	1,157	224	224	270	1,746	100
Pressure (psia)	20.0	20.0	20.0	19.9	14.7	15.3	14.9	19.9	19.7	18.9	14.9
Enthalpy (Btu/lb) ^A	13.4	920.6	704.1	824.5	13.4	293.3	55.4	55.4	66.6	744.1	50.1
Density (lb/ft ³)	0.062	0.025	0.028	0.028	0.076	0.025	0	0.077	0.071	0.022	0.077

^A Reference conditions are 32.02 F and 0.089 psia

TECHNO-ECONOMIC ANALYSIS OF NATURAL GAS FUEL CELL PLANT CONFIGURATIONS

Exhibit 4-34. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	46,814 (103,208)	Stack Gas	105 (232)
Air (CO2)	170 (374)	CO₂ Product	46,879 (103,350)
		0	0 (0)
		0	0 (0)
		0	0 (0)
		Convergence Tolerance	0 (1)
Total	46,984 (103,582)	Total	46,984 (103,582)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total
	Heat In	GJ/hr (MMBtu/hi	7)	
NG	3,399.41 (3,222.02)	2.3 (2.2)		3,401.7 (3,224.2)
ASU Air		0.0 (0.0)		0.0 (0.0)
Fuel cell Air		42.2 (40.0)		42.2 (40.0)
Auxiliary Power			44.8 (42.5)	44.8 (42.5)
TOTAL	3,399 (3,222)	44.5 (42.2)	44.8 (42.5)	3,488.7 (3,306.7)
	Heat Ou	t GJ/hr (MMBtu/h	hr)	
Stack Flue Gas		179.6 (170.2)		179.60 (170.23)
Process Losses*		899.3 (852.4)		899.29 (852.36)
Difference**		24.8 (23.5)		24.76 (23.47)
Power			2,385.1 (2,260.6)	2,385.1 (2,260.6)
TOTAL	0.0 (0.0)	1,103.6 (1,046.1)	2,385.1 (2,260.6)	3,488.7 (3,306.7)
* Includes accounting of lo	sses such as inverter	, transformer, gene	rator, and motor loss	es
** Calculated by difference	e to close the energy	balance		

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.1 (14)	0.0 (0)	0.1 (14)	0.0 (0)	0.1 (14)
Reformer Steam	0.0 (0)	0.0(0)	0.0 (0)		
BFW Makeup	0.1 (14)	0.0 (0)	0.1 (14)		
Cooling Tower	6.7 (1,774)	0.00 (0)	6.7 (1,774)	1.5 (399)	5.2 (1,375)
0	0.0 (0)	0.00 (0)	0.00(0)		
Total	6.8 (1,788)	0.00 (0)	6.8 (1,788)	1.5 (399)	5.3 (1,389)

	kg/GJ	Tonne/year	kg/MWh
	(lb/10 ⁶ Btu)	(tons/year)	(lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	54214	1,162,888	236 (520)
002	(126101)	(1,281,865)	200 (020)

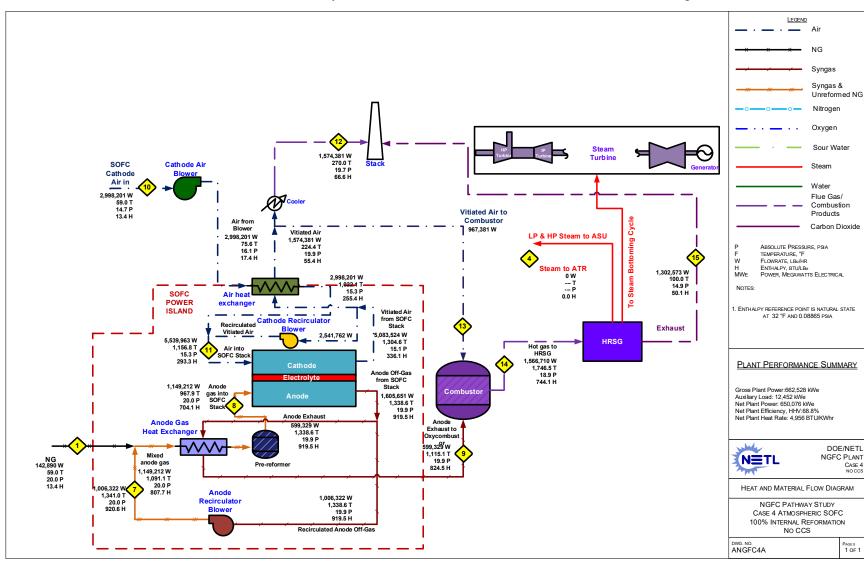


Exhibit 4-35. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Heat and Material Balance Diagram – Power Island

Exhibit 4-36. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – Capital Costs

	Cost (\$1000)	Specific Cost (\$/kWe AC)
Cost Component	2018\$	2018\$
SOFC Mo	odule	
SOFC Stack	127,166	196
Container	5,645	9
Insulation	2,543	4
Module Assembly	6,358	10
Air Distribution	6,358	10
Fuel Distribution	6,358	10
Pre-reformer	6,358	10
Module Current Collectors	3,179	5
Module I&C	3,179	5
Inverter	43,236	67
Total SOFC Module with 10 % Extra Installed Area	210,382	324
NG EXPANDER	0	0
SOFC BOP	1.002	2
Desulfurization System	1,802	3
Cathode Air Compressor	1,961	3
Cathode Gas Recycle Compressor	4,385	7
Cathode Heat Exchanger	19,577	30
Anode Recycle Compressor	1,018	2
Anode Heat Exchanger Oxy-Combustor	195	0
	17,125	26
Air, Exhaust, Fuel Flow Piping system	1,805	3
Section and Overall Assembly	1,805	3
Section I&C	902	1 70
Total SOFC BOP	50,575	78
TOTAL SOFC POWER ISLAND	260,957	401
ASU	75,232	116
AUTOTHERMAL REFORMER and Natural Gas Preheater	0	0
STEAM CYCLE		
HRSG, Ducting, and Stack	39,478	61
Steam Power System	40,376	62
Feedwater and Miscellaneous BOP systems	66,439	102
TOTAL STEAM CYLCE	146,293	225
CO ₂ COMPRESSION & PURIFICATION	04.024	126
CO ₂ Purification	81,931	126
TOTAL CO₂ COMPRESSION & PURIFICATION	81,931	126
COOLING WATER SYSTEM	32,260	50
ACCESSORY ELECTRIC PLANT	61,301	94
INSTRUMENTATION & CONTROL	22,013	34
IMPROVEMENTS TO SITE	28,841	44
BUILDING & STRUCTURES	12,651	19
TOTAL PLANT COST (TPC)	721,477	1110
OWNER'S COSTS		
Preproduction Costs	F 427	
6 Months All Labor	5,427	_
1 Month Maintenance Materials	806	_
1 Month Non-fuel Consumables	327	_
25% of 1 Months Fuel Cost at 100% CF	2,733	_
2% of TPC	14,430	-
Total Preproduction Costs	23,723	
Inventory Capital	EAC	
60-day supply of fuel and consumables at 100% CF	546	-
0.5% of TPC (spare parts)	3,607	-
Total Inventory Capital	4,153	_
Initial Cost for Catalyst and Chemicals	964	_
Land Coursella Conta	300	_
Other Owner's Costs	108,222	_
Financing Costs	19,480	_
TOTAL OWNER'S COSTS	156,842	
TOTAL OVERNIGHT COST (TOC)	878,320	1351
TASC Multiplier	1.093	1
TOTAL AS-SPENT COST (TASC)	960,003	1477

Exhibit 4-37. Case ANGFC4B – Advanced Atmospheric NGFC Plant with CCS – O&M Costs

Apr 2018	Cost Base:				ANGFC4B	Case:
85%	Capacity Factor:			650		Plant Size (MW, net):
		ance Labor	ating & Mainte	Oper		
ift	or Requirements per Shi	Operating Labo			ting Labor	Opera
	1.0	Skilled Operator:	\$/hour	38.50		Operating Labor Rate (base):
	4.3	Operator:	% of base	30.00		Operating Labor Burden:
	1.0	Foreman:	% of labor	25.00		Labor O-H Charge Rate:
	1.0	Lab Techs, etc.:				
	7.3	Total:				
		Costs	Fixed Operating			
st	Annual Co					
(\$/kW-net)	(\$)					
\$4.92	\$3,200,597	Annual Operating Labor:				
\$8.44	\$5,483,228	Maintenance Labor:				
\$3.34	\$2,170,956	nistrative & Support Labor:	Admi			
\$22.20	\$14,429,548	perty Taxes and Insurance:	Pro			
\$38.90	\$25,284,330	Total:				
		ng Costs	ariable Operati	V		
(\$/MWh-net)	(\$)					
\$1.70	\$8,224,842	Maintenance Material:				
		ment	Stack Replace			
		\$/y per kW	\$/kW AC	Life (y)		
\$3.03	\$14,669,537	\$22.57	\$205	7.3		SOFC Stack Replacement Cost
		es	Consumab			
		Initial Fill	Per Unit	Per Day	Initial Fill	
\$0.11	\$552,112	\$0	\$1.90	937	0	Water (gal/1000):
\$0.12	\$560,102	\$0	\$0.28	6,565	0	Makeup and Waste Water Treatment Chemicals (lb):
\$0.43	\$2,076,301	\$275,952	\$6.03	1110	45,765	NG Desulfur TDA Adsorbent (lb):
\$0.03	\$146,871	\$688,349	\$601.76	0.8	1,144	ATR Catalyst (m³):
\$0.69	\$3,335,386	\$964,301	Subtotal:			
		sal	Waste Dispo			
\$0.00	\$0	\$0	\$0.00	0.8	0	ATR Catalyst (m³):
\$0.00	\$0	\$0	Subtotal:			
\$5.42	\$26,229,765	\$964,301	g Costs Total:	ble Operatin	Varia	
			Fuel Cost			
\$23.04	\$111,506,580	\$0	\$4.42	81,311	0	Natural Gas (MMBtu):

Exhibit 4-38. Case ANGFC4B – Advanced Atmospheric NGFC plant with CCS – Capital Cost Components

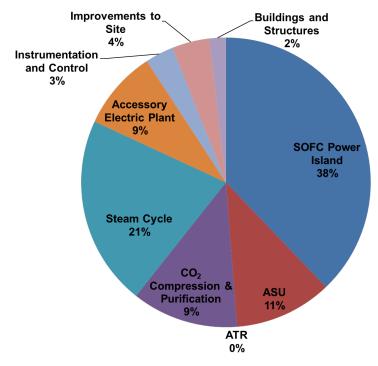


Exhibit 4-39. Case ANGFC4B - Advanced Atmospheric NGFC Plant with CCS - BOP Cost Distribution

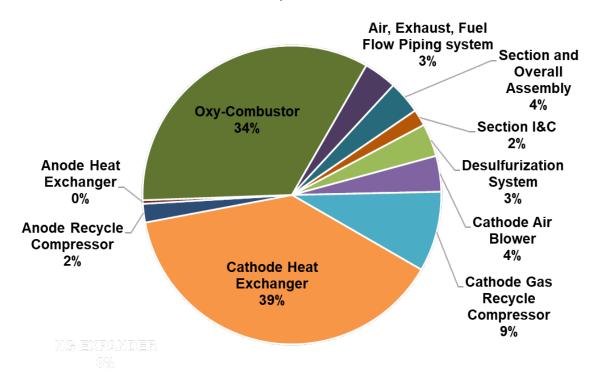


Exhibit 4-40. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – Capital Costs

	Cost (\$1000)	Specific Cost (\$/kWe AC)
Cost Component	2018\$	2018\$
SOFC Mo	odule	
SOFC Stack	120,101	185
Container	5,331	8
Insulation	2,402	4
Module Assembly	6,005	9
Air Distribution	6,005	9
Fuel Distribution	6,005	9
Pre-reformer	6,005	9
Module Current Collectors	3,003	5
Module I&C	3,003	5
Inverter	40,834	63
Total SOFC Module with 10 % Extra Installed Area	198,694	306
NATURAL GAS EXPANDER	0	0
SOFC BOP	1 726	2
Desulfurization System	1,726	3
Cathode Air Compressor Cathode Gas Recycle Compressor	1,861 4,159	3 6
Cathode Gas Recycle Compressor Cathode Heat Exchanger	19,891	31
Anode Recycle Compressor	963	1
Anode Recycle Compressor Anode Heat Exchanger	4,910	8
Oxy-Combustor	16,450	25
Air, Exhaust, Fuel Flow Piping system	1,646	3
Section and Overall Assembly	1,646	3
Section I&C	823	1
Total SOFC BOP	54,076	83
TOTAL SOFC POWER ISLAND	252,770	389
ASU	0	0
AUTOTHERMAL REFORMER and Natural Gas Preheater	0	0
STEAM CYCLE		0
HRSG, Ducting, and Stack	32,394	50
Steam Power System	39,316	60
Feedwater and Miscellaneous BOP systems	65,589	101
TOTAL STEAM CYLCE	137,299	211
CO ₂ COMPRESSION & PURIFICATION	137,233	211
CO ₂ Purification	0	0
TOTAL CO₂ COMPRESSION & PURIFICATION	0	0
COOLING WATER SYSTEM	28,813	44
ACCESSORY ELECTRIC PLANT	32,559	50
INSTRUMENTATION & CONTROL	17,377	27
IMPROVEMENTS TO SITE	28,233	43
BUILDING & STRUCTURES	12,485	19
TOTAL PLANT COST (TPC)	509,537	784
OWNER'S COSTS	303,337	, , , ,
Preproduction Costs		
6 Months All Labor	4,064	
1 Month Maintenance Materials	569	7
1 Month Non-fuel Consumables	334	7
25% of 1 Months Fuel Cost at 100% CF	2,599	7
2% of TPC	10,191	7
Total Preproduction Costs	17,758	7
Inventory Capital	*	•
60-day supply of fuel and consumables at 100% CF	542	
0.5% of TPC (spare parts)	2,548	7
Total Inventory Capital	3,090	7
Initial Cost for Catalyst and Chemicals	917	
Land	300	7
Other Owner's Costs	76,430	7
Financing Costs	13,757	7
TOTAL OWNER'S COSTS	112,253	7
TOTAL OVERNIGHT COST (TOC)	621,790	956
TASC Multiplier	1.093	1
		1

Exhibit 4-41. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – O&M Costs

Base: Apr 201	Cost Base:				ANGFC4A	Case:
ctor: 85	Capacity Factor:			650		Plant Size (MW, net):
		nance Labor	ating & Mainte	Oper		
per Shift	or Requirements per Sh	Operating Labor			ting Labor	Opera
1.0	1.0	Skilled Operator:	\$/hour	38.50		Operating Labor Rate (base):
3.3	3.3	Operator:	% of base	30.00		Operating Labor Burden:
1.0	1.0	Foreman:	% of labor	25.00		Labor O-H Charge Rate:
1.0	1.0	Lab Techs, etc.:				
6.3	6.3	Total:				
		Costs	Fixed Operating			
ual Cost	Annual Co					
(\$/kW-net)	(\$)					
,628 \$4.0	\$2,630,628	Annual Operating Labor:				
,477 \$5.9	\$3,872,477	Maintenance Labor:				
,776 \$2.5	\$1,625,776	nistrative & Support Labor:	Admi			
,730 \$15.6	\$10,190,730	perty Taxes and Insurance:	Pro			
,612 \$28.1	\$18,319,612	Total:				
		ng Costs	ariable Operati	V		
(\$/MWh-net	(\$)					
,716 \$1.2	\$5,808,716	Maintenance Material:				
		ment	Stack Replace			
		\$/y per kW	\$/kW AC	Life (y)		
,044 \$3.0	\$14,640,044	\$22.52	\$204	7.3		SOFC Stack Replacement Cost
		es	Consumabl			
		Initial Fill	Per Unit	Per Day	Initial Fill	
,104 \$0.1	\$643,104	\$0	\$1.90	1,091	0	Water (gal/1000):
,411 \$0.1	\$652,411	\$0	\$0.28	7,647	0	Makeup and Waste Water Treatment Chemicals (lb):
,620 \$0.4	\$1,974,620	\$262,438	\$6.03	1056	43,524	NG Desulfur TDA Adsorbent (lb):
,679 \$0.0	\$139,679	\$654,639	\$601.76	0.7	1,088	ATR Catalyst (m³):
,814 \$0.7	\$3,409,814	\$917,077	Subtotal:			
		sal	Waste Dispo			
\$0 \$0.0	\$0	\$0	\$0.00	0.7	0	ATR Catalyst (m³):
\$0 \$0.0	\$0	\$0	Subtotal:			
,574 \$4.9	\$23,858,574	\$917,077	g Costs Total:	ble Operatin	Varia	
			Fuel Cost			
,839 \$21.9	\$106,045,839	\$0	\$4.42	77,329	0	Natural Gas (MMBtu):
,839 \$21.9	\$106,045,839	\$0	Total:			

Exhibit 4-42. Case ANGFC4A - Advanced Atmospheric NGFC Plant without CCS - Capital Cost Components

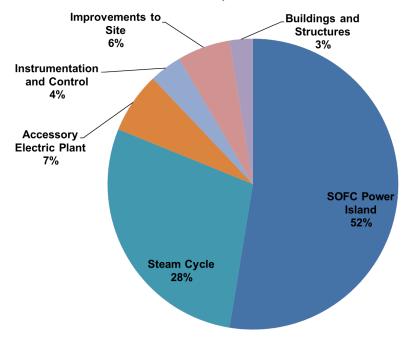


Exhibit 4-43. Case ANGFC4A – Advanced Atmospheric NGFC Plant without CCS – BOP Cost Distribution

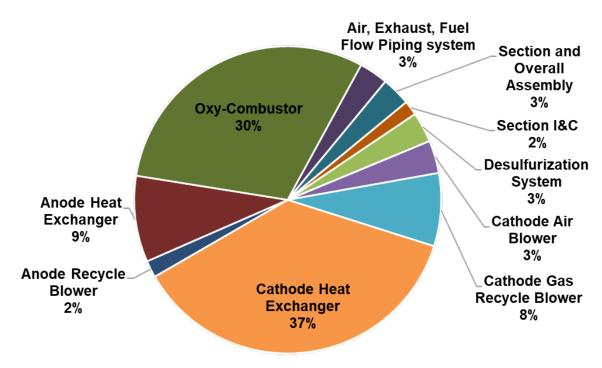


Exhibit 4-44. Case 4 - Advanced Atmospheric NGFC Plant with and without CCS - Levelized Cost of Electricity

Levelized Cost of Electricity (2018\$/MWh)						
Carbon Capture	With CCS	No CCS				
Component	\$/1	//Wh				
Variable Costs	28.5	26.8				
Fuel Costs	23.0	21.9				
Variable O&M Costs	5.4	4.9				
Fixed O&M Costs	5.2	3.8				
Capital Costs	14.0	9.9				
Total LCOE (excluding T&S)	47.7	40.5				
T&S	2.7	0.0				
Total LCOE (including T&S)	50.4	40.5				

4.3 CASE 4BV: ADVANCED ATMOSPHERIC NGFC WITH VGR DESCRIPTION

Case 4BV assesses a modified configuration of Case 4 with CCS using the high-efficiency VGR system. The SOFC technology parameters are the same as in Case 4, but the VGR configuration allows for 97.5 percent fuel utilization. The SOFC technology parameters for Case 4BV are displayed in Exhibit 4-45.

Exhibit 4-45. SOFC Technology Parameters Used for Case 4BV

Parameter	Value		
Reformation	100% Internal		
SOFC Operating Pressure	Atmospheric		
Cell Technology	Advanced Cell		
Fuel Utilization, %	85		
Current Density, mA/cm ²	400		
Degradation, %/1000 h	0.2		
Inverter Efficiency (%)	98		
Stack Cost (\$/kW)	200		

The advanced NGFC plant with VGR is a modified configuration of Case ANGFC4B that allows the removal of the ASU and oxy-combustor. As seen in Exhibit 4-49, desulfurized natural gas (Stream 1) is mixed with recycled anode gas (Stream 3) and recirculated vent gas (Stream 2) before being preheated by the anode heat exchanger. The anode exhaust is cooled by the anode heat exchanger and the HRSG before being dehydrated, purified, and compressed to 2215 psia in the CPU (Stream 9). Unconsumed fuel is recovered from the CPU as a vent gas

(Stream 10) and recirculated back toward the anode after a portion of the vent gas is purged to prevent buildup of impurities. The purge gas is combusted with air (Stream 11) and used for heat recovery before it is vented.

On the cathode side, air (Stream 6) pressurized by the cathode air blower is preheated through the cathode heat exchanger and mixes with the recycled cathode gas to achieve the desired cathode inlet temperature (Stream 7) before being delivered to the SOFC cathode. The cathode air mixture not only provides the O₂ needed for the SOFC oxidation reactions but also acts as a coolant and serves to maintain an acceptable temperature distribution across the SOFC. The cathode off-gas passes through the cathode heat exchanger and is vented (Stream 8) after it exchanges heat in the HRSG.

4.3.1 Case 4BV: Advanced Atmospheric NGFC with VGR Performance

The performance of the advanced atmospheric plant with VGR is summarized in Exhibit 4-46. The HHV efficiency of the VGR plant is 69.24 percent, an increase of 3.7 percentage points over Case 4 with CCS. As seen in Exhibit 4-47, 94 percent of power is generated by the SOFC power island, the most of any case studied thus far. As seen in Exhibit 4-48 the single largest contribution to the auxiliary load is the CPU at 74 percent. The auxiliary load of the VGR plant is nearly 15 percent larger than the advanced plant with CCS primarily due to the higher flow rate of the gas through the CPU. The VGR configuration is not as effective at capturing CO₂ as the standard configuration, capturing ≈93 percent compared to nearly 98 percent in all other atmospheric cases with CCS.

The stream tables for the advanced plant with VGR are listed in Exhibit 4-50. Material and energy balance tables and the heat and material balance diagrams are shown in Exhibit 4-51, Exhibit 4-52, and Exhibit 4-53, respectively.

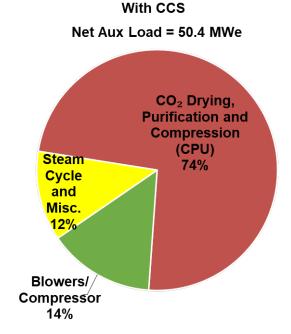
4.3.2 Case 4BV: Advanced Atmospheric NGFC with VGR Costs

Exhibit 4-54 and Exhibit 4-55 itemize the capital and O&M costs for the VGR baseline plant. The combined costs of the steam cycle and CPU make up \approx 27 percent of total capital costs with the SOFC power island being the largest contributor at 45 percent as seen in Exhibit 4-56. The cathode heat exchanger makes up half the total BOP cost as shown in Exhibit 4-57. The LCOE with and without CO₂ T&S is listed in Exhibit 4-58. Compared to Case 4, the VGR configuration reduces the LCOE (including T&S) by \$3.9/MWh.

Exhibit 4-46. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Performance Summary

Power Summary (Gross Power at Generator	Terminals, kWe)
SOFC Power	657,717
Natural Gas/Syn Gas Expander Power	0
Steam Turbine Power	42,900
Total Gross Power, kWe	700,617
Auxiliary Load Summary, kW	l _e
Air Separation Unit Auxiliaries	0
Air Separation Unit Main Air Compressor ^A	0
Oxygen Compressor	0
Nitrogen Compressors	0
CO ₂ Compressor	37,094
CO ₂ Refrigeration	0
Boiler Feedwater Pumps	788
Condensate Pump	24
Circulating Water Pump	1,740
Cooling Tower Fans	910
Gas Turbine Auxiliaries	-
Steam Turbine Auxiliaries	33
Cathode Air Blower	4,383
Cathode Recycle Blower	1,893
Anode Recycle Blower	959
Miscellaneous Balance of Plant ^B	380
Transformer Losses	2,234
Total Auxiliaries, kW _e	50,439
Net Power, kW _e	650,178
Net Plant Efficiency, % (HHV)	69.24
Net Plant Heat Rate, kJ/kWh (Btu/kWh)	5,706 (5,408)
CO ₂ Capture Rate, %	91.7
Condenser Cooling Duty, 10 ⁶ kJ/h (10 ⁶ Btu/h)	253 (240)
Natural Gas Feed Rate, kg/h (lb/h)	64,455 (142,100)
Thermal Input ^c , kWt	939,061
Raw Water Withdrawal, m³/min (gpm)	4.6 (1,213.7)
Raw Water Consumption, m³/min (gpm)	3.08 (812.7)

^A Reflects power needed to compress air to ATR pressure.


^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads.

^c HHV of natural gas is 52,449 kJ/kg (22,549 Btu/lb).

Exhibit 4-47. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Gross Power Distribution

Steam Turbine Power 6% With CCS Gross Power = 701 MWe SOFC Power 94%

Exhibit 4-48. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Auxiliary Load Distribution

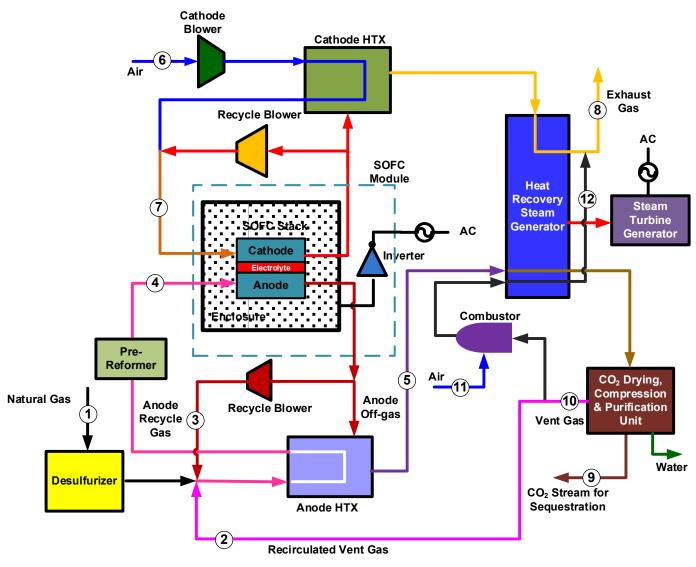


Exhibit 4-49. Case ANGFC4BV - Advanced Atmospheric NGFC Plant with VGR - Block Flow Diagram

Exhibit 4-50. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12
V-L Mole Fraction												
Ar	0.0000	0.0000	0.0000	0.0000	0.0000	0.0094	0.0101	0.0109	0.0000	0.0000	0.0094	0.0064
CH ₄	0.9310	0.0006	0.0003	0.0406	0.0003	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000
CO	0.0000	0.2190	0.1065	0.1106	0.1065	0.0000	0.0000	0.0000	0.0013	0.2190	0.0000	0.0000
CO ₂	0.0100	0.2964	0.3135	0.3031	0.3135	0.0003	0.0003	0.0003	0.9981	0.2964	0.0003	0.2369
H ₂	0.0000	0.3899	0.1893	0.2602	0.1893	0.0000	0.0000	0.0000	0.0000	0.3899	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.3446	0.2362	0.3446	0.0104	0.0112	0.0121	0.0000	0.0000	0.0104	0.1865
N_2	0.0160	0.0941	0.0458	0.0494	0.0458	0.7722	0.8291	0.8951	0.0006	0.0941	0.7722	0.5690
C ₂ H ₆	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.1493	0.0816	0.0000	0.0000		
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	3,720	9,565	54,250	69,611	20,961	53,764	100,148	46,384	3,563	10,175	907	1,331
V-L Flowrate (kg/h)	64,455	216,270	1,337,771	1,618,496			2,866,491	1,315,160	156,697	230,074	26,157	39,962
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0
	_											
Temperature (°C)	15	149	729	580	621	15	628	132	29	29	15	149
Pressure (MPa, abs)	0.14	0.122	0.11	0.11	0.137	0.101	0.11	0.10	15.27	0.12	0.10	0.101
Enthalpy (kJ/kg) ^A	31.11	211.591	1,747.39	1,376.22	1,565.779	31.06	686.38	155.05	-227.66	40.15	31.06	440
Density (kg/m ³)	1.0	0.8	0.3	0.4	0.5	1.2	0.4	0.9	639.9	1.1	1.2	0.9
V-L Molecular Weight	17.328	22.611	24.659	23.251	24.659	28.854	28.622	28.354	43.979	22.611	28.854	30.020
	1	ı					1		1	1	1	
V-L Flowrate (lb _{mol} /h)	8,201	21,087	119,601	153,466	46,212	118,530	220,789	102,259	7,855	22,433		2,935
V-L Flowrate (lb/h)					1,139,560					507,226		
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0	0
			4.045	4.0==	4.450			070	0.1	0.5		
Temperature (°F)	59 20.1	300 17.7	1,345 16.2	1,075 16.2	1,150 19.9	59 14.7	1,163 15.3	270 14.7	84 2,215.0	85 17.8	59 14.7	300 14.7
Pressure (psia)												
Enthalpy (Btu/lb) ^A	13.4	91.0	751.2	591.7	673.2	13.4	295.1	66.7	-97.9	17.3	13.4	189.3
Density (lb/ft ³)	0.063	0.049	0.021	0.023	0.028	0.076	0.025	0.053	39.945	0.069	0.076	0.054

^A Reference conditions are 32.02°F and 0.089 psia

Exhibit 4-51. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	46,555 (102,637)	Stack Gas	194 (427)
Air (CO2)	197 (434)	CO ₂ Product	42,769 (94,291)
		Exhaust	3,787 (8,350)
		ASU Vent	0 (0)
		Water KO	1 (2)
		Convergence Tolerance	1 (2)
Total	46,752 (103,071)	Total	46,752 (103,071)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total
	Hea	t In GJ/hr (MMBt	u/hr)	L
NG	380.62 (3,204.3	2.3 (2.1)		3,382.9 (3,206.4)
ASU Air		0.8 (0.8)		0.0 (0.0)
Fuel cell Air		48.2 (45.7)		48.2 (45.7)
Raw Water Makeup		0.0 (0.0)		0.0 (0.0)
Auxiliary Power			181.6 (172.1)	181.6 (172.1)
TOTAL	3,381 (3,204)	51.3 (48.6)	181.6 (172.1)	3,613.4 (3,424.9)
	Heat	Out GJ/hr (MMB	tu/hr)	
CO ₂ Out		-35.7 (-33.8)		-35.7 (-33.8)
Stack Flue Gas		203.9 (193.3)		203.92 (193.28)
Vents		17.6 (16.7)		17.60 (16.68)
Water outlets		20.6 (19.5)		20.58 (19.51)
Process Losses**		893.4 (846.8)		893.38 (846.77)
Difference***		-8.6 (-8.1)		-8.58 (-8.14)
Power			2,522.2 (2,390.6)	2,522.2 (2,390.6)
TOTAL	0.0 (0.0)	1,091.2 (1,034.3)	2,522.2 (2,390.6)	3,613.4 (3,424.9)
* Includes ASU compres	sor intercoolers	& CO2 compressor	intercoolers	
** Includes accounting of	of losses such as	inverter, transforme	er, generator, and mo	otor losses
*** Calculated by differe	nce to close the	energy balance		

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.0 (5)	0.0 (0)	0.0 (5)	0.0 (0)	0.0 (05)
Reformer Steam	0.0 (0)	0.0 (0)	0.0(0)		
BFW Makeup	0.0 (5)	0.0 (0)	0.0 (5)		
Cooling Tower	6.7 (1,783)	2.17 (574)	4.6 (1,209)	1.5 (401)	3.1 (808)
CO2 Dehydration	0.0 (0)	2.17 (574)	-2.17 (-574)		
Total	6.8 (1,787)	2.17 (574)	4.6 (1,214)	1.5 (401)	3.1 (813)

Emissions

	kg/GJ	Tonne/year	kg/MWh
	(lb/10 ⁶ Btu)	(tons/year)	(lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	4595	98,558	19 (42)
002	(10687)	(108 642)	19 (42)

100% INTERNAL REFORMATION

WITH CCS WITH VGR

ANGFC4BV

PAGES 1 OF 2

DWG. NO

30.434 W

Recirculated Vent Gas 476,793 W

Air NG Syngas Syngas & Unreformed NG Nitrogen Oxygen Sour Water 2.899.431 W SOFC Cathode Air Steam 14 7 P Cathode Air in Water 3,420,099 W Flue Gas/ 59.0 T Combustion Products 13.4 H Air from Blower Carbon Dioxide Vitiated Air 3,420,099 W LP & HP Steam to ASU 2,899,431 W 75.6 T 220.0 T 16.1 P FLOWRATE, LBM/HR 17.4 H 54.3 H ABSOLUTE PRESSURE, PSIA H MWE ENTHALPY, BTU/LBM 3,420,099 W POWER, MEGAWATTS ELECTRICAL SOFC 1,029.9 T To Stack NOTES: **POWER** 15 3 P Air heat 88,100 W ISLAND 257.4 H 300.0 T exchanger . ENTHALPY REFERENCE POINT IS NATURAL STATE 14.7 P AT 32 °F AND 0.08865 PSIA 189.3 H from SOFC Stack Recirculated Cathode Vitiated Air *5,798,863 W 2,899,431 W 6,319,530 W 1,309.5 T 15.1 P HRSG 1,163.3 T Air into CO₂ rich gas to 15 3 P SOFC Stack 337.5 H Hot gas to HRSG 295.1 H CO2 Separation PLANT PERFORMANCE SUMMARY 1,139,560 W 1,150,4 T & Purification Anode Off-Gas 1,139,560 W from SOFC 3,568,172 W Anode 1,075.2 T gas into Stack 673 2 H Gross Plant Power:700,617 kWe Auxiliary Load: 50.439 kWe 16.9 P 4,088,840 W 348.4 H 16.2 P 591.7 H 1,342.3 T 19.9 P Net Plant Power: 650,178 kWe Stack Net Plant Efficiency, HHV:69.2% Net Plant Heat Rate: 4,928 BTU/KWhr Anode Exhaust 750.2 H **Anode Gas** Heat Exchanger 1,139,560 W Vent Gas from CPU 1,342.3 T 19.9 P 507,226 W 85 0 T DOE/NETL 750.2 H Anode Exhaust 17 8 F N≜TL NGFC PLANT NG 142,100 W anode gas 17.3 H 1,139,560 W 1,150.4 T 19.9 P CASE 4 3,568,171 W 59.0 T 1,126.4 T 16.2 P 57,667 W 20.1 P 2,949,280 W 59.0 T HEAT AND MATERIAL FLOW DIAGRAM 633.6 H Anode 673.2 H 1,344.8 1 14.7 P 300.0 T 2,949,280 W 1,342.3 T Recirculator 16.2 P 17.7 P NGFC PATHWAY STUDY CASE 4 ATMOSPHERIC SOFC 750.2 H

Exhibit 4-52. Case ANGFC4BV - Advanced Atmospheric NGFC Plant with VGR - Heat and Material Balance Diagram - ASU, ATR, and Power Island

Recirculated Anode Off-Gas

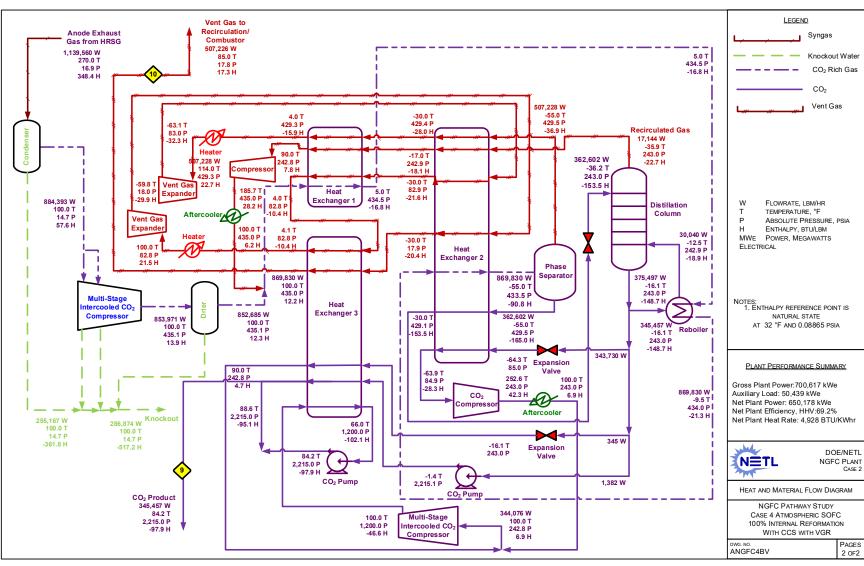


Exhibit 4-53. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Heat and Material Balance Diagram – CO₂ Dehydration, Purification, and Compression

Exhibit 4-54. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – Capital Costs

	Cost (\$1000)	Specific Cost (\$/kWe AC)
Cost Component	2018\$	2018\$
SOFC Mo		
SOFC Stack	137,763	212
Container	6,115	9
Insulation	2,755	4
Module Assembly	6,888	11
Air Distribution	6,888	11
Fuel Distribution	6,888	11
Pre-reformer Module Current Collectors	6,888	5
Module I&C	3,444	5
Inverter	46,839	72
Total SOFC Module with 10 % Extra Installed Area	227,914	351
NATURAL GAS EXPANDER	0	0
SOFC BOP	<u> </u>	
Desulfurization System	1,711	3
Cathode Air Compressor	2,126	3
Cathode Gas Recycle Compressor	4,754	7
Cathode Gas Necycle Compressor Cathode Heat Exchanger	23,664	36
Anode Recycle Compressor	1,782	3
Anode Recycle Compressor Anode Heat Exchanger	7,207	11
Oxy-Combustor	0	0
Air, Exhaust, Fuel Flow Piping system	2,043	3
Section and Overall Assembly	2,043	3
Section I&C	1,021	2
Total SOFC BOP	46,351	71
TOTAL SOFC POWER ISLAND	274,265	422
ASU	0	0
AUTOTHERMAL REFORMER and Natural Gas Preheater	0	0
STEAM CYCLE		0
HRSG, Ducting, and Stack	26,954	41
Steam Power System	23,891	37
Feedwater and Miscellaneous BOP systems	60,448	93
TOTAL STEAM CYLCE	111,294	171
CO ₂ COMPRESSION & PURIFICATION	111,254	1,1
CO ₂ Purification	96,016	148
TOTAL CO ₂ COMPRESSION & PURIFICATION	96,016	148
COOLING WATER SYSTEM	28,778	44
ACCESSORY ELECTRIC PLANT	65,667	101
INSTRUMENTATION & CONTROL	22,514	35
IMPROVEMENTS TO SITE	28,970	45
BUILDING & STRUCTURES	10,765	17
TOTAL PLANT COST (TPC)	638,269	982
OWNER'S COSTS	030,203	302
Preproduction Costs		
6 Months All Labor	5,032	
1 Month Maintenance Materials	713	_
1 Month Non-fuel Consumables	293	
25% of 1 Months Fuel Cost at 100% CF	2,585	
2% of TPC	12,765	
Total Preproduction Costs	21,388	
Inventory Capital	21,300	1
60-day supply of fuel and consumables at 100% CF	499	
0.5% of TPC (spare parts)	3,191	
Total Inventory Capital	3,691	
Initial Cost for Catalyst and Chemicals	911	\dashv
Land	300	\dashv
Other Owner's Costs	95,740	-
Financing Costs	17,233	-
TOTAL OWNER'S COSTS	139,263	-
TOTAL OWNER'S COSTS TOTAL OVERNIGHT COST (TOC)	777,532	1196
TASC Multiplier	1.093	1130
		1207
TOTAL AS-SPENT COST (TASC)	849,843	1307

Exhibit 4-55. Case ANGFC4BV – Advanced Atmospheric NGFC Plant with VGR – O&M Costs

Case: ANGFO	4BV			Cost Base:	Apr 2018
Plant Size (MW, net):	6.	50		Capacity Factor:	85%
		Operating & Main	tenance Labor		
Operating La	bor		Operating La	bor Requirements per Sh	ift
rating Labor Rate (base):	38.5	50 \$/hour	Skilled Operator:	1.0	
Operating Labor Burden:	30.0	00 % of base	Operator:	4.3	
Labor O-H Charge Rate:	25.0	00 % of labor	Foreman:	1.0	
			Lab Techs, etc.:	1.0	
			Total:	7.3	
		Fixed Operat	ting Costs		
				Annual Co	st
				(\$)	(\$/kW-net)
			Annual Operating Labor:	\$3,200,597	\$4.92
			Maintenance Labor:	\$4,850,844	\$7.46
		Adm	inistrative & Support Labor:	\$2,012,860	\$3.10
		Pro	operty Taxes and Insurance:	\$12,765,380	\$19.64
			Total:	\$22,829,682	\$35.1
		Variable Oper	ating Costs		
				(\$)	(\$/MWh-net
			Maintenance Material:	\$7,276,266	\$1.50
		Stack Repla	cement		
	Life (y) \$/kW AC	\$/y per kW		
Stack Replacement Cost	7	.3 \$207	\$22.75	\$14,790,600	\$3.00
		Consum	ables		
Initial	Fill Per Da	y Per Unit	Initial Fill		
Water (gal/1000):	0 74	\$1.90	\$0	\$437,614	\$0.09
akeup and Waste Water reatment Chemicals (lb):	0 5,20	03 \$0.28	\$0	\$443,947	\$0.09
Desulfur TDA Adsorbent (lb): 43,	068 105	\$6.03	\$259,688	\$1,963,702	\$0.4
ATD 0 + 1 + / 2)	082 0	.7 \$601.76	\$651,020	\$138,907	\$0.0
ATR Catalyst (m³): 1,			¢010.700	\$2,984,170	\$0.6
ATR Catalyst (m³): 1,		Subtotal:	\$910,708	72,301,170	
ATR Catalyst (m³): 1,		Subtotal: Waste Di		Ψ2,350 1,170	
ATR Catalyst (m³): 1, ATR Catalyst (m³):	0 0			\$0	\$0.0
	0 0	Waste Di	sposal		· ·
ATR Catalyst (m³):		Waste Di	sposal \$0	\$0	\$0.0 \$0.0 \$5.1
ATR Catalyst (m³):		Waste Dis	\$posal \$0 \$0 \$0 \$910,708	\$0 \$0	\$0.0
ATR Catalyst (m³):		Waste Dis .7 \$0.00 Subtotal: rating Costs Total: Fuel C	\$posal \$0 \$0 \$0 \$910,708	\$0 \$0	\$0.0

Exhibit 4-56. Case ANGFC4BV - Advanced Atmospheric NGFC Plant with VGR - Capital Cost Components

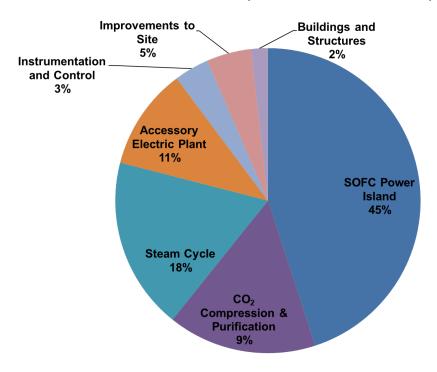


Exhibit 4-57. Case ANGFC4BV - Advanced Atmospheric NGFC Plant with VGR - BOP Cost Distribution

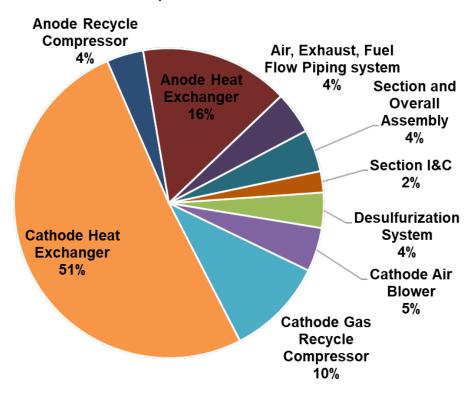


Exhibit 4-58. Case ANGFC4BV - Advanced Atmospheric NGFC Plant with VGR - Levelized Cost of Electricity

Levelized Cost of Electricity (2018\$/MWh)							
Component	\$/MWh						
Variable Costs	27.0						
Fuel Costs	21.8						
Variable O&M Costs	5.2						
Fixed O&M Costs	4.7						
Capital Costs	12.4						
Total LCOE (excluding T&S)	44.1						
T&S	2.4						
Total LCOE (including T&S)	46.5						

4.4 PATHWAY 1 RESULTS

The atmospheric pathway modifications of increased fuel utilization (Case 1), increased capacity factor (Case 2), 100 percent internal reformation (Case 3), BOP improvements (Case 4), and VGR configurations (Case 2BV, Case 4BV) all contribute to lowering cost.

Exhibit 4-59 displays the major results for all the Pathway 1 steps, all cases having carbon capture. The tabulation shows an increase in the plant efficiency and a reduction in the plant cost as technological advancements and cost reductions are introduced. For the standard atmospheric pathway, the realization of 100 percent internal natural gas reformation (Case 3) reduces the cost by \approx \$5.0/MWh, followed by a \approx \$1.7/MWh cost benefit attributable to enhanced plant run time (increased capacity factor) Case 2. Both VGR off-shoot pathways, Case 2BV and 4BV, result in LCOE reductions of \approx \$3.6/MWh. Across the total pathway (ending with Case 4BV) the LCOE is reduced by \approx 23 percent (13.6 \$/MWh) relative to the reference plant along with a plant efficiency increase of \approx 11 percentage-points. The results for the Pathway 1 NGFC plants without carbon capture are listed in Exhibit 4-60.

Exhibit 4-59. Pathway 1 – Atmospheric NGFC Plants with CCS Results Summary

	Case	Case 0	Case 1	Case 2	Case 2BV	Case 3	Case 4	Case 4BV
Internal Reforma				60			100	
	n Rate (%/1000 h)				0.2			
Fuel Utilization (80	8		97.5	8		97.5
Capacity Factor (8	30			85		
Inverter Efficience				97			9	8
SOFC Stack Cost				225			20	00
			Perform	ance				
	Current Density (mA/cm²)	400	400	400	400	400	400	400
SOFC	Cell Potential (V)	0.875	0.866	0.866	0.865	0.855	0.855	0.848
Parameters	Power Density (mW/cm²)	350	346	346	346	342	342	339
Gross Power (kW	e)	713,048	710,326	710,326	712,709	694,360	693,950	700,617
Auxiliary Loads (k	:We)	62,922	60,279	60,279	62,732	46,224	43,920	50,439
Air Separation	Unit (kWe)	19,955	16,754	16,754	6,889	9,464	7,499	0
CO₂ Drying, Pui Compression (C	•	25,895	25,323	25,323	39,259	23,104	22,883	37,094
Blowers (kWe)		7,919	9,862	9,862	9,671	6,197	6,138	7,235
Steam Cycle an	d Miscellaneous (kWe)	9,153	8,341	8,341	6,912	7,452	7,400	6,110
Net Power (kWe)		650,126	650,047	650,047	649,978	648,136	650,030	650,178
NG Flowrate (lb/l	NG Flowrate (lb/h)		166,190	166,190	155,900	151,700	150,248	142,100
Net Electric Effici	ency, HHV (%)	57.9	59.2	59.2	63.1	64.7	65.5	69.2
Net Plant Heat Ra	ate, HHV (Btu/kWh)	5,895	5,765	5,765	5,408	5,278	5,212	4,928
CO ₂ Capture rate	(%)	97.8	97.8	97.8	93.3	98.1	98.1	91.7
CO ₂ Captured (to	nnes per year)	1,399,003	1,367,654	1,453,133	1,299,505	1,329,578	1,316,844	1,165,365
CO ₂ Emissions (lb	/MWhgross)	14.8	15.2	15.2	37.9	12.1	12.0	41.7
CO ₂ Emissions (lb	/MWhnet)	16.2	16.6	16.6	41.5	12.9	12.8	44.9
Raw Water Consu	umption (gpm/MWnet)	2.34	2.03	2.03	1.63	1.63	1.61	1.25
			Cos	t				
Total Plant Cost (TPC) (1000\$)	868,437	838,860	838,860	770,233	739,560	721,477	638,269
Total Overnight C	Cost (TOC) (1000\$)	1,057,252	1,021,362	1,021,308	938,024	900,205	878,320	777,532
Total As-Spent Co	ost (TASC) (1000\$)	1,155,576	1,116,349	1,116,289	1,025,260	983,924	960,003	849,843
Levelized Cost of Electricity (\$/MWh)								
Variable Costs		32.6	31.9	31.6	29.8	29.2	28.5	27.0
Fuel Costs		26.1	25.5	25.5	23.9	23.3	23.0	21.8
Variable O&M Costs		6.5	6.5	6.1	5.9	5.8	5.4	5.2
Fixed O&M Cos	Fixed O&M Costs		6.3	5.9	5.5	5.3	5.2	4.7
Capital Costs		17.9	17.3	16.3	15.0	14.4	14.0	12.4
Total LCOE (exc	cluding T&S)	57.0	55.6	53.9	50.3	48.9	47.7	44.1
T&S		3.1	3.0	3.0	2.7	2.8	2.7	2.4
Total LCOE (inc	luding T&S)	60.1	58.6	56.9	53.0	51.7	50.4	46.5

Exhibit 4-60. Pathway 1 – Atmospheric NGFC Plants without CCS Results Summary

	Case	Case 0	Case 1	Case 2	Case 3	Case 4
Internal Reformation ((%)	60 100				
SOFC Degradation Rat	e (%/1000 h)			0.2		
Fuel Utilization (%)		80		8	35	
Capacity Factor (%)		8	30		85	
Inverter Efficiency (%)			9	7		98
SOFC Stack Cost (\$/kW	<i>I</i>)		22	25		200
	Perf	ormance				
	Current Density (mA/cm²)	400	400	400	400	400
SOFC Parameters	Cell Potential (V)	0.867	0.862	0.862	0.857	0.857
	Power Density (mW/cm²)	347	345	345	343	343
Gross Power (kWe)		669,409	670,720	670,720	662,670	662,528
Auxiliary Loads (kWe)		19,346	20,603	20,603	12,545	12,452
Air Separation Unit (kWe)	3,320	3,260	3,260	0	0
CO₂ Drying, Purificat	ion and Compression (CPU) (kWe)	0	0	0	0	0
Blowers (kWe)		7,940	10,011	10,011	5,890	5,837
Steam Cycle and Mis	cellaneous (kWe)	8,087	7,332	7,332	6,655	6,615
Net Power (kWe)		650,063	650,117	650,117	650,125	650,076
NG Flowrate (lb/h)		159,790	157,070	157,070	144,200	142,890
Net Electric Efficiency,	61.6	62.6	62.6	68.2	68.8	
Net Plant Heat Rate, H	HV (Btu/kWh)	5,543	5,448	5,448	5,001	4,956
CO ₂ Capture rate (%)		0.0	0.0	0.0	0.0	0.0
CO ₂ Captured (tonnes	per year)	0	0	0	0	0
CO ₂ Emissions (lb/MW	hgross)	575.8	565.6	565.6	524.3	519.7
CO ₂ Emissions (lb/MW	hnet)	593.0	583.6	583.6	534.5	529.6
Raw Water Consumpti	on (gpm/MWnet)	3.05	2.73	2.73	2.16	2.14
		Cost				
Total Plant Cost (TPC) (1000\$)	593,305	584,869	584,869	530,446	509,537
Total Overnight Cost (T	TOC) (1000\$)	725,408	715,072	715,036	647,086	621,790
Total As-Spent Cost (TA	ASC) (1000\$)	792,871	781,574	781,534	707,265	679,616
Levelized Cost of Electr	ricity (\$/MWh)					
Variable Costs		30.5	30.0	29.7	27.4	26.8
Fuel Costs		24.5	24.1	24.1	22.1	21.9
Variable O&M Costs		6.0	5.9	5.6	5.3	4.9
Fixed O&M Costs	4.6	4.5	4.2	3.9	3.8	
Capital Costs	12.3	12.1	11.4	10.3	9.9	
Total LCOE (excludin	g T&S)	47.3	46.6	45.4	41.7	40.5
T&S		0.0	0.0	0.0	0.0	0.0
Total LCOE (including		47.3	46.6	45.4	41.7	40.5

5 SCENARIO 2: PRESSURIZED-SOFC SYSTEM

Pressurization of the SOFC stack provides the potential for enhanced power plant efficiency. However, pressurization affects adversely the costs of the SOFC stack enclosures, which have to be designed as pressure vessels to operate at design pressures. The Case 0 baseline plant assumes the same plant technology as the start of the atmospheric pathway. Improvements in the pressurized pathway are made in parallel with improvements from the atmospheric pathway. Each pathway has equivalent cases with the exception that there are no VGR cases in the pressurized pathway.

5.1 Case 0: Pressurized Reference Plant Description

The reference NGFC plant for pressurized SOFC technology utilizes a high-pressure (≈450 psia) ATR system for external natural gas reformation along with a pressurized-SOFC. The SOFC technology parameters for this case are listed in Exhibit 5-1, and 40 percent external reformation of the incoming natural gas is assumed as in the atmospheric reference. SOFC module configurations operating at elevated pressures (as high as 3 atm [44.1 psia]) are assumed to have been concurrently developed along the atmospheric timeline. Further, 60 percent internal reformation is assumed to be feasible at these elevated pressures despite equilibrium considerations, which predict the need for higher temperatures (relative to atmospheric systems) to achieve the desired reformation in the stack as the pressure is increased.

Parameter	Value
Reformation	40% External
SOFC Operating Pressure	≈44.1 psia
Cell Technology	Advanced Cell
Fuel Utilization, %	80
Current Density, mA/cm ²	400
Degradation, %/1000 h	0.2
Inverter Efficiency (%)	97
Stack Cost (\$/kW)	225

Exhibit 5-1. SOFC Technology Parameters Used for Reference Case 0

The block flow diagram for pressurized Case 0 is shown in Exhibit 5-5 for the configuration with CCS. NGFC with pressurized-SOFC can be configured for CCS in two alternative arrangements:

- The anode off-gas oxy-combustor is followed by hot gas expander power generation. A
 HRSG produces steam for power generation, and the remaining, low-pressure, wet CO₂
 stream is dried and compressed.
- The anode off-gas oxy-combustor is followed directly by a HRSG for steam bottoming power generation. The remaining, high-pressure, wet CO₂ stream is dehydrated and compressed.

Sensitivity studies have shown that the first approach can result in slightly higher plant efficiencies than the second with lower LCOE, the first configuration requires the development of an advanced, high-temperature, CO₂-cooled turbine expander. In this pathway, the required technology is assumed to exist, and the first approach is utilized for this evaluation. In both cases the steam cycle conversion efficiency was reduced to 30 percent to reflect the reduced temperatures available for heat recovery.

Referring to the block flow diagram for the Case 0 pressurized reference plant with CCS shown in Exhibit 5-5, natural gas (Stream 1), delivered to the plant at 500 psia, is split into two streams, a 40 percent stream to be reformed (Stream 2), and a 60 percent stream to be mixed with the reformer syngas product. The 40 percent stream to be reformed is fed to the ATR mixed with steam (Stream 4) after preheating with the hot syngas stream. Complete reformation (Stream 7) of this stream achieved through partial combustion with the oxidant (Stream 5) accompanied by reaction in a catalytic reactor zone.

A conventional ASU generates oxidant (99.5 percent pure) for the ATR (Stream 5) as well as for the anode off-gas oxy-combustor (Stream 6). The ASU product oxidant streams are pressurized for the ATR (500 psia) and for the oxy-combustor (44 psia). The cooled syngas output from the ATR is mixed with the remaining (unreformed) natural gas and fed to the SOFC unit after expansion to the SOFC inlet pressure (Stream 8, at 44.1 psia). A portion of the pressurized syngas bypasses the expander and is used as motive gas to operate the anode gas recycle jet pump. There are 32 parallel SOFC sections in the plant, each containing a single cathode heat exchanger, anode heat exchanger, cathode air compressor, cathode off-gas expander, and anode gas recycle jet pump.

The SOFC fuel gas stream is mixed with recycled anode gas and preheated through the anode heat exchanger to achieve the anode inlet temperature (Stream 10). A pre-reformer is required to prevent cracking of higher-hydrocarbons and deleterious carbon formation. Air (Stream 12) is boosted in pressure by the cathode air compressor (45 psia) and is preheated through the cathode heat exchanger to achieve the cathode inlet temperature (Stream 13). There is no cathode gas recycle due to the technical challenge of boosting the pressure of hot, pressurized gas. The cathode inlet gas provides the O_2 needed for the SOFC oxidation reactions and provides cooling of the cells to maintain temperatures at an acceptable distribution. The cell cooling is aided by the reforming of methane (based on the fraction of internal reformation) throughout the cells, reducing the required flow of cathode air.

The cathode off-gas passes through the cathode heat exchanger and is then expanded through the cathode gas expander before providing heat to the HRSG and being vented. The anode off-gas (Stream 11) is combusted across the oxy-combustor, generating a hot, pressurized combustion gas (Stream 15, at 44.1 psia) having 1 percent excess O_2 content. The pressurized gas is expanded before giving heat to the HRSG. The HRSG raises high-pressure steam for the steam bottoming cycle, 500 psia steam for the ATR, and low-pressure steam for the auxiliary processing needs.

The cooled combustion gas is dehydrated, purified, and compressed from 44.1 to 2215 psia in the CPU to generate the plant's CO_2 product for sequestration (Stream 17).

Exhibit 5-10 shows the analogous Case 0 NGFC power plant without CCS, which obviates the need for the oxy-combustor, the ASU, and the CO_2 purification unit. The excess fuel gas in the anode off-gas is combusted with the exhaust gas from the cathode. Initial analysis indicated the temperature after expansion of this gas from the exhaust expander was low for any additional heat recovery. Accordingly, natural gas (Stream 12) was additionally injected to the combustor such that the temperature downstream of the expander is still high enough for heat recovery with a bottoming cycle.

5.1.1 Case 0: Pressurized Reference Plant Performance

The stream tables for the NGFC plants with and without the CCS option are listed in Exhibit 5-6 and Exhibit 5-11, respectively and correspond to the state point numbers identified in Exhibit 5-5, and Exhibit 5-10. The pressurized reference plant power summary is shown in Exhibit 5-2. For the NGFC plant with CCS, the dominant power generator in the plant is the SOFC system while the steam bottoming cycle generates about 10 percent of the plant's gross output, as seen in Exhibit 5-3. In this case, the CO_2 capture rate is 97.7 percent and is smaller than in Case 0 for the atmospheric pathway because at high pressure more CO_2 is absorbed in the condensate water streams.

For the pressurized reference plant without CCS, the SOFC generates 57 percent of the total power and the syngas and cathode gas expanders together account for 37 percent of the total power. The increased power output from the expander is a direct result of the additional natural gas injection to the combustor in this case, which enables the cathode gas expander to generate additional power beyond the needs of the air compressor.

For both the case with and without CCS, the dominant auxiliary loads in the plant come from compressors and blowers as seen in Exhibit 5-4. The CPU imposes additional auxiliary load for the plant with CCS with the total plant auxiliary power being ≈ 19 percent of the gross generating capacity of the plant resulting in an HHV efficiency of ≈ 61.1 percent. The plant efficiency is only ≈ 0.3 percentage points higher without carbon capture is mainly due to the additional natural gas that is utilized to generate power at a combination of Brayton and Rankine cycle efficiencies, which are low relative to electrochemical efficiencies.

The stream tables for the pressurized reference plants with and without CCS are listed in Exhibit 4-6 and Exhibit 4-11 for the corresponding points numbered in the process flow diagram shown in Exhibit 4-5 and Exhibit 4-10, respectively. Material and energy balance tables and the heat and material balance diagrams for the reference plant with CCS are shown in Exhibit 4-7, Exhibit 4-8, and Exhibit 4-9, respectively. The corresponding tables for the reference plant without CCS are shown in Exhibit 4-12 and Exhibit 4-13.

5.1.2 Case 0: Pressurized Reference Plant Costs

Breakdown of the capital and O&M costs for the pressurized reference plant with CCS are displayed in Exhibit 5-14 and Exhibit 5-15, respectively. Together, the accessory electric plant, the steam cycle, the CPU, and the ASU make up 53 percent of the total capital cost for the plant with CCS as seen in Exhibit 5-16 while the largest contributor to capital costs is the SOFC power island at 36 percent. The cathode heat exchanger (38 percent) and the oxy-combustor (19

percent) make up the largest portions of the BOP costs as seen in Exhibit 5-17. The corresponding costs for the pressurized reference plant without CCS are shown in Exhibit 5-18 to Exhibit 5-21. The LCOEs for Case 0 are listed in Exhibit 5-22. The addition of CCS increases the LCOE from \$44.4/MWh to \$60.5/MWh (≈36 percent).

Exhibit 5-2. Case 0 – Pressurized Reference NGFC Plant with and without CCS – Performance Summary

Carbon Capture	With CCS	No CCS
Power Summary (Gross Power at	Generator Terminals,	kWe)
SOFC Power	570,499	443,408
Natural Gas/Syngas Expander Power	156,190	288,600
Steam Turbine Power	78,400	51,500
Total Gross Power, kW _e	805,089	783,508
Auxiliary Load Sur	nmary, kWe	
Air Separation Unit Auxiliaries	0	0
Air Separation Unit Main Air Compressor ^A	19,036	16,980
Oxygen Compressor	4,300	0
Nitrogen Compressors	0	0
CO ₂ Compressor	24,458	0
CO ₂ Refrigeration	0	0
Boiler Feedwater Pumps	1,441	947
Condensate Pump	45	29
Circulating Water Pump	2,360	920
Cooling Tower Fans	1,220	470
Gas Turbine Auxiliaries	-	-
Steam Turbine Auxiliaries	60	39
Cathode Air Blower	98,710	110,855
Cathode Recycle Blower	0	0
Anode Recycle Blower	1	1
Miscellaneous Balance of Plant ^B	431	428
Transformer Losses	2,839	2,714
Total Auxiliaries, kW _e	154,900	133,384
Net Power, kW _e	650,189	650,124
Net Plant Efficiency, % (HHV)	61.06	61.40
Net Plant Heat Rate, kJ/kWh (Btu/kWh)	5,896 (5,588)	5,864 (5,558)
CO ₂ Capture Rate, %	97.7	0.0
Condenser Cooling Duty, 10 ⁶ kJ/h (10 ⁶ Btu/h)	454 (430)	433 (410)
Natural Gas Feed Rate, kg/h (lb/h)	73,092 (161,140)	72,682 (160,235)
Thermal Input ^c , kWt	1,064,886	1,058,908
Raw Water Withdrawal, m³/min (gpm)	6.7 (1,765.4)	4.0 (1,049.3)
Raw Water Consumption, m³/min (gpm)	4.62 (1,220.6)	3.18 (840.4)

 $^{^{\}rm A}$ Reflects power needed to compress air to ATR pressure.

^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads.

^c HHV of natural gas is 52,449 kJ/kg (22,549 Btu/lb).

Exhibit 5-3. Case 0 - Pressurized Reference NGFC Plant with and without CCS - Gross Power Distribution

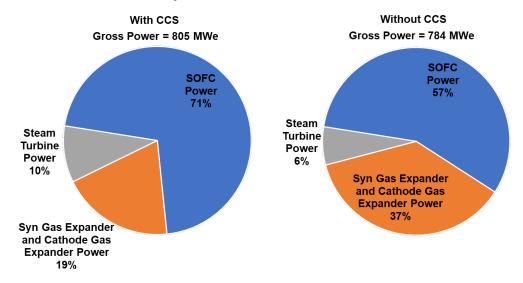
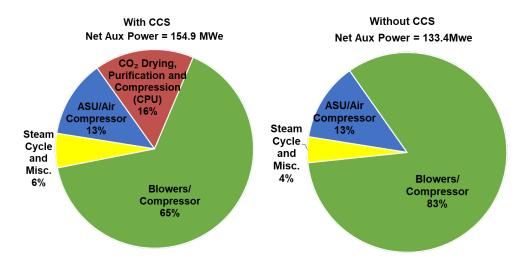



Exhibit 5-4. Case 0 – Pressurized Reference NGFC Plant with and without CCS – Auxiliary Load Distribution

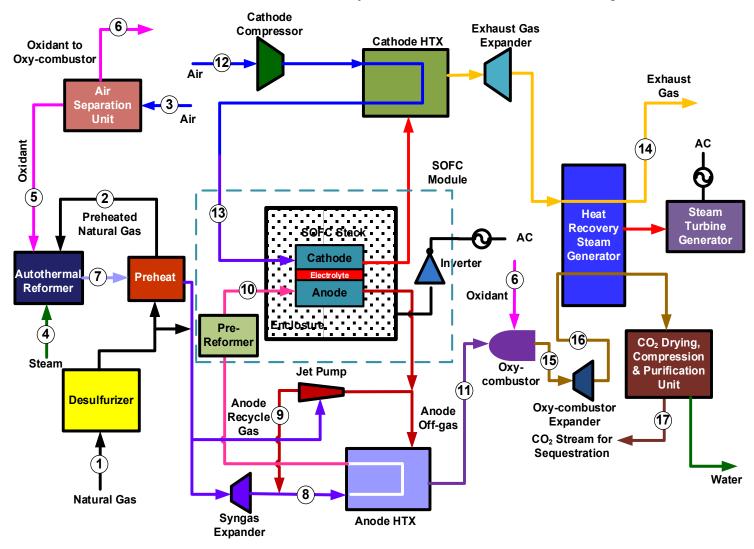


Exhibit 5-5. Case PNGFC0B - Pressurized Reference NGFC Plant with CCS - Block Flow Diagram

Exhibit 5-6. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0000	0.0000	0.0094	0.0000	0.0031	0.0031	0.0005	0.0003	0.0002	0.0003	0.0002	0.0094	0.0094	0.0101	0.0006	0.0006	0.0000
CH ₄	0.9310	0.9310	0.0000	0.0000	0.0000	0.0000	0.0235	0.2763	0.0288	0.1121	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1771	0.1277	0.0530	0.0658	0.0445	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0100	0.0003	0.0000	0.0000	0.0000	0.0677	0.0516	0.2350	0.1902	0.2560	0.0003	0.0003	0.0003	0.2974	0.2974	1.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4718	0.3404	0.1796	0.2996	0.1612	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.0104	1.0000	0.0000	0.0000	0.2551	0.1840	0.4970	0.3262	0.5328	0.0104	0.0104	0.0111	0.6866	0.6866	0.0000
N ₂	0.0160	0.0160	0.7722	0.0000	0.0019	0.0019	0.0044	0.0076	0.0050	0.0058	0.0048	0.7722	0.7722	0.8260	0.0049	0.0049	0.0000
C ₂ H ₆	0.0320	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0089	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.2077	0.0000	0.9950	0.9950	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.1525	0.0105	0.0105	0.0000
Total	1.0000	1.0000	1.0000			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	4,218	1,687	13,274	1,687	1,005	1,681	6,555	7,723	13,273	21,679	14,602	93,193	93,193	87,125	14,781	14,781	4,294
V-L Flowrate (kg/h)	73,092	29,237	382,998	30,397	32,160	53,811	91,794	115,302	289,362	404,667	329,812	2,689,006	2,689,006	2,494,845	383,623	383,623	188,958
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	•																
Temperature (°C)	15	210	15	241	130	94	938	299	696	601	565	15	606	132	1,601	1,352	36
Pressure (MPa, abs)	3.45	3.447	0.10	3.45	3.45	0.30	3.10	0.338	0.34	0.34	0.338	0.101	0.31	0.10	0.34	0.13	15.27
Enthalpy (kJ/kg) ^A	31.11	478.892	31.06	2,867.29	114.27	86.06	3,113.37	1,256.195	2,240.73	1,985.52	1,988.436	31.06	656.52	152.22	3,977.07	3,475.62	-209.44
Density (kg/m³)	24.9	15.0	1.2	16.7	33.1	3.2	4.3	1.1	0.9	0.9	1.1	1.2	1.2	0.9	0.6	0.3	546.7
V-L Molecular Weight	17.328	17.328	28.854	18.015	32.016	32.016	14.004	14.930	21.800	18.666	22.587	28.854	28.854	28.635	25.954	25.954	44.010
	ı	ı			г	ı			ı	1							
V-L Flowrate (lb _{mol} /h)	9,300	3,720	29,263	3,720	2,215		14,451	17,026	29,263	47,794	32,192	205,455	205,455	192,078	32,586	32,586	9,466
V-L Flowrate (lb/h)		64,456					202,372			892,137			5,928,244				
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T (0F)		400	50	400	005	000	4.704	570	4.005	4 445	4.040	50	4.400	070	0.044	0.405	0.7
Temperature (°F)	59 500.0	409 500.0	59 14.7	466 500.0	265 500.0	202 44.1	1,721 450.0	570 49.1	1,285 49.1	1,115 49.0	1,049 49.0	59 14.7	1,123 44.3	270 14.7	2,914 49.0	2,465 19.0	97 2,215.0
Pressure (psia)																	
Enthalpy (Btu/lb) ^A	13.4	205.9	13.4	1,232.7	49.1	37.0	1,338.5	540.1	963.3	853.6	854.9	13.4	282.3	65.4	1,709.8	1,494.2	-90.0
Density (lb/ft ³)	1.557	0.937	0.076	1.045	2.067	0.199	0.268	0.066	0.057	0.054	0.068	0.076	0.075	0.054	0.035	0.016	34.128

^A Reference conditions are 32.02 F and 0.089 psia

TECHNO-ECONOMIC ANALYSIS OF NATURAL GAS FUEL CELL PLANT CONFIGURATIONS

Exhibit 5-7. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	52,793 (116,390)	Stack Gas	336 (740)
Air (CO2)	384 (846)	CO₂ Product	51,570 (113,692)
		Exhaust	1,222 (2,695)
		ASU Vent	48 (105)
		Water KO	2 (4)
		Convergence Tolerance	0 (-1)
Total	53,177 (117,235)	Total	53,177 (117,235)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total
	Heat Ir	GJ/hr (MMBtu/h	r)	
NG	3,833.59 (3,633.54)	2.6 (2.4)		3,836.2 (3,636.0)
Fuel cell Air		83.5 (79.2)		83.5 (79.2)
Auxiliary Power			557.6 (528.5)	557.6 (528.5)
TOTAL	3,834 (3,634)	86.1 (81.6)	557.6 (528.5)	4,477.3 (4,243.7)
	Heat Ou	t GJ/hr (MMBtu/i	hr)	
CO ₂ Out		-39.6 (-37.5)		-39.6 (-37.5)
Stack Flue Gas		379.8 (360.0)		379.77 (359.95)
Vents		16.4 (15.5)		16.37 (15.51)
Water outlets		28.9 (27.4)		28.95 (27.44)
Process Losses**		1265.4 (1199.4)		1,265.45 (1,199.41)
Difference***		-72.0 (-68.2)		-71.97 (-68.22)
Power			2,898.3 (2,747.1)	2,898.3 (2,747.1)
TOTAL	0.0 (0.0)	1,579.0 (1,496.6)	2,898.3 (2,747.1)	4,477.3 (4,243.7)
* Includes ASU compr	essor intercoolers & CO2	compressor interc	oolers	
** Includes accounting	of losses such as inverte	er, transformer, gen	erator, and motor los	ses
*** Calculated by diffe	rence to close the energy	balance		

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.6 (149)	0.0 (0)	0.6 (149)	0.0 (0)	0.6 (149)
Reformer Steam	0.5 (134)	0.0 (0)	0.5 (134)		
BFW Makeup	0.1 (15)	0.0 (0)	0.1 (15)		
Cooling Tower	9.2 (2,423)	3.05 (806)	6.1 (1,617)	2.1 (545)	4.1 (1,072)
CO2 Dehydration	0.0 (0)	3.05 (806)	-3.05 (-806)		
Total	9.7 (2,572)	3.05 (806)	6.7 (1,765)	2.1 (545)	4.6 (1,221)

Emissions

	kg/GJ (lb/10 ⁸ Btu)	Tonne/year (tons/year)	kg/MWh (lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	1694 (3940)	36,337 (40,054)	6 (14)

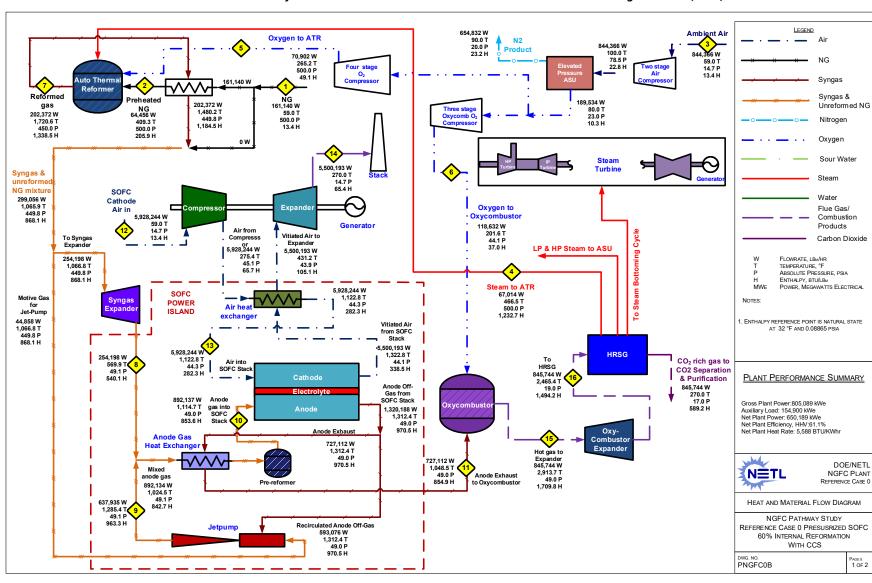


Exhibit 5-8. Case PNGFCOB - Pressurized Reference NGFC Plant with CCS - Heat and Material Balance Diagram - ASU, ATR, and Power Island

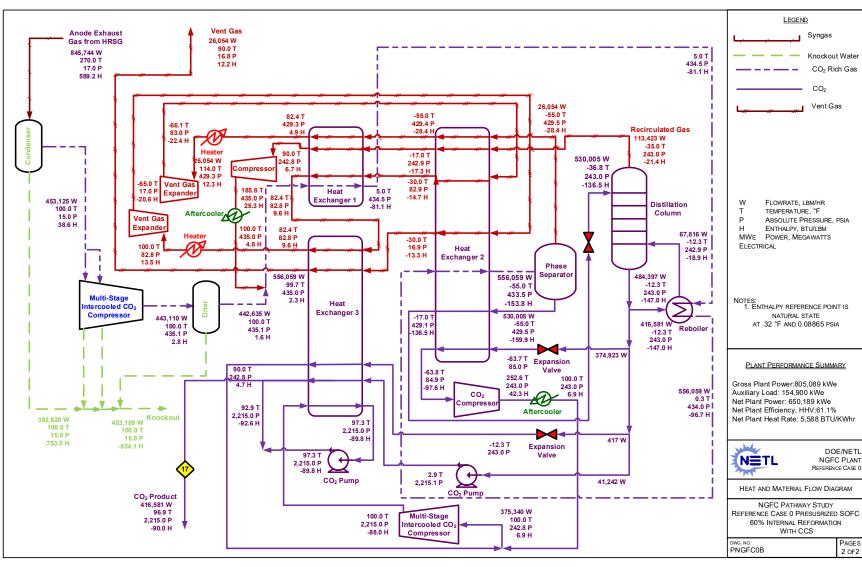


Exhibit 5-9. Case PNGFC0B – Pressurized Reference NGFC Plant with CCS – Heat and Material Balance Diagram – CO₂ Dehydration, Purification, and Compression

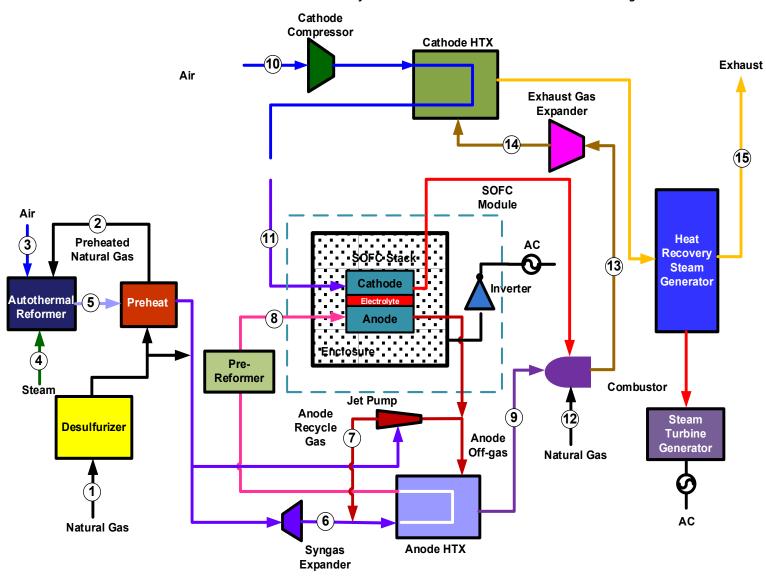


Exhibit 5-10. Case PNGFCOA – Pressurized Reference NGFC Plant without CCS – Block Flow Diagram

Exhibit 5-11. Case PNGFCOA – Pressurized Reference NGFC Plant without CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
V-L Mole Fraction															
Ar	0.0000	0.0000	0.0094	0.0000	0.0046	0.0037	0.0026	0.0029	0.0025	0.0094	0.0094	0.0000	0.0089	0.0089	0.0089
CH ₄	0.9310	0.9310	0.0000	0.0000	0.0440	0.2257	0.0254	0.0929	0.0003	0.0000	0.0000	0.9310	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0725	0.0577	0.0369	0.0403	0.0343	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0100	0.0003	0.0000	0.0625	0.0518	0.1869	0.1495	0.2039	0.0003	0.0003	0.0100	0.0387	0.0387	0.0387
H ₂	0.0000	0.0000	0.0000	0.0000	0.2457	0.1953	0.1363	0.2154	0.1289	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.0104	1.0000	0.1876	0.1492	0.3932	0.2544	0.4238	0.0104	0.0104	0.0000	0.0961	0.0961	0.0961
N ₂	0.0160	0.0160	0.7722	0.0000	0.3830	0.3079	0.2177	0.2446	0.2064	0.7722	0.7722	0.0160	0.7341	0.7341	0.7341
C ₂ H ₆	0.0320	0.0320	0.0000	0.0000	0.0000	0.0066	0.0007	0.0000	0.0000	0.0000	0.0000	0.0320	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0070	0.0000	0.0000	0.0000	0.0014	0.0002	0.0000	0.0000	0.0000	0.0000	0.0070	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0040	0.0000	0.0000	0.0000	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000	0.0040	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.2077	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.0000	0.1223	0.1223	0.1223
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
						•				•	•				
V-L Flowrate (kg _{mol} /h)	3,480	1,392	3,992	1,392	8,107	8,666	13,731	23,129	15,208	104,073	104,073	714	113,773	113,773	113,773
V-L Flowrate (kg/h)	60,305	24,122	115,198	25,079	164,400	170,495	319,435	489,931	360,630	3,002,960	3,002,960	12,376	3,215,891	3,215,891	3,215,891
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	210	15	241	788	274	686	573	541	15	613	15	976	976	132
Pressure (MPa, abs)	3.45	3.447	0.10	3.45	3.10	0.338	0.34	0.34	0.338	0.101	0.31	0.34	0.34	0.30	0.11
Enthalpy (kJ/kg) ^A	31.11	478.883	31.06	2,867.29	1,731.67	811.234	1,835.53	1,502.65	1,614.615	31.06	664.28	27.06	1,284.61	1,284.61	293.16
Density (kg/m³)	24.9	15.0	1.2	16.7	7.1	1.5	1.0	1.0	1.2	1.2	1.2	2.5	0.9	0.8	0.9
V-L Molecular Weight	17.328	17.328	28.854	18.015	20.279	19.675	23.263	21.182	23.713	28.854	28.854	17.328	28.266	28.266	28.266
										1					
V-L Flowrate (lb _{mol} /h)	7,673	3,069	8,802	3,069	17,873	19,105	30,272	50,991	33,528	229,443	229,443	1,575	250,827	250,827	250,827
V-L Flowrate (lb/h)	132,950	53,180	253,969	55,291	362,440	375,878	704,235	1,080,113	795,053	6,620,395		27,285	, ,	, ,	7,089,826
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T (05)		400	50	100	4.454	504	4.007	4.000	4.007		4.405		4.700	4.700	070
Temperature (°F) Pressure (psia)	59 500.0	409 500.0	59 14.7	466 500.0	1,451 450.0	524 49.1	1,267 49.1	1,063 49.0	1,007 49.0	59 14.7	1,135 44.3	59 49.0	1,789 49.0	1,789 44.0	270 15.3
Enthalpy (Btu/lb) ^A	13.4	205.9	13.4	1,232.7	744.5	348.8	789.1	646.0	694.2	13.4	285.6	11.6	552.3	552.3	126.0
Density (lb/ft ³)	1.557	0.937	0.076	1.045	0.442	0.091	0.062	0.064	0.074	0.076	0.075	0.154	0.057	0.052	0.055

 $^{^{\}rm A}$ Reference conditions are 32.02 F and 0.089 psia

Exhibit 5-12. Case PNGFCOA – Pressurized Reference NGFC Plant without CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	52,497 (115,736)	Stack Gas	52,883 (116,587)
Air (CO2)	389 (858)	CO₂ Product	0 (0)
		Convergence Tolerance	3 (8)
Total	52,886 (116,595)	Total	52,886 (116,595)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total
	Heat In	n GJ/hr (MMBtu/hi	r)	
NG	3,812.07 (3,613.14)	2.1 (2.0)		3,814.2 (3,615.1)
Fuel cell Air		93.3 (88.4)		93.3 (88.4)
Auxiliary Power			480.6 (455.5)	480.6 (455.5)
TOTAL	3,812 (3,613)	95.4 (90.4)	480.6 (455.5)	4,388.1 (4,159.1)
	Heat Οι	t GJ/hr (MMBtu/l	hr)	
Stack Flue Gas		942.8 (893.6)		942.76 (893.56)
Vents		0.0 (0.0)		0.00 (0.00)
Water outlets		0.0 (0.0)		0.00 (0.00)
Process Losses**		552.4 (523.6)		552.41 (523.59)
Difference***		72.3 (68.5)		72.26 (68.49)
Power			2,820.6 (2,673.4)	2,820.6 (2,673.4)
TOTAL	0.0 (0.0)	1,567.4 (1,485.6)	2,820.6 (2,673.4)	4,388.1 (4,159.1)
* Includes ASU compre	essor intercoolers & CO2	compressor interc	oolers	
** Includes accounting	of losses such as inverte	er, transformer, gen	erator, and motor los	ses
*** Calculated by differ	rence to close the energy	balance		

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.5 (121)	0.0 (0)	0.5 (121)	0.0 (0)	0.5 (121)
Reformer Steam	0.4 (111)	0.0(0)	0.4 (111)		
BFW Makeup	0.0 (10)	0.0 (0)	0.0 (10)		
Cooling Tower	3.5 (929)	0.00 (0)	3.5 (929)	0.8 (209)	2.7 (720)
0	0.0 (0)	0.00(0)	0.00(0)		
Total	4.0 (1,049)	0.00 (0)	4.0 (1,049)	0.8 (209)	3.2 (840)

Emissions

	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year)	kg/MWh (lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	57431 (133584)	1,231,902 (1,357,939)	224 (495)

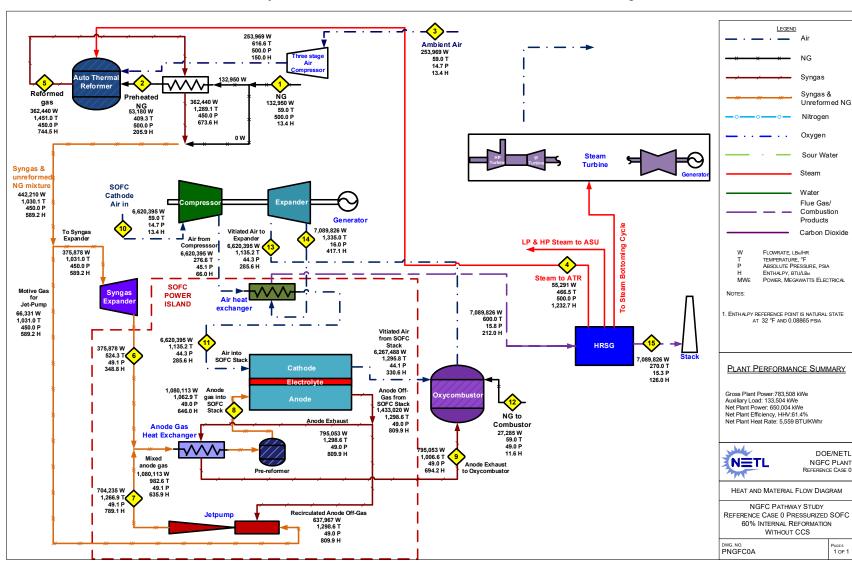


Exhibit 5-13. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Heat and Material Balance Diagram – ASU, ATR, and Power Island

Exhibit 5-14. Case PNGFCOB – Pressurized Reference NGFC Plant with CCS – Capital Costs

Cost (\$1000)					
Cost Component	Cost (\$1000) 2018\$	Specific Cost (\$/kWe AC) 2018\$			
SOFC Pow					
SOFC Module					
SOFC Stack	125,868	194			
Container	15,103	23			
Insulation	2,238	3			
Module Assembly	5,594	9			
Air distribution	5,594	9			
Fuel distribution	5,594	9			
Pre-reformer Module Current Collectors	5,594	9			
Module I&C	2,797	4 4			
Inverter	38,040	59			
Total SOFC Module with 10 % Extra Installed Area	209,220	322			
NG EXPANDER	8,414	13			
SOFC BOP	3,111	15			
Desulfurization System	1,908	3			
Cathode Air Compressor	12,820	20			
Cathode Expander	10,439	16			
Cathode Heat Exchanger	42,158	65			
Anode Recycle Blower	598	1			
Anode Heat Exchanger	8,704	13			
Oxy-Combustor	20,618	32			
Oxy-Combustor Expander	7,352	11			
Air, Exhaust, Fuel Flow Piping system	3,080	5			
Section and Overall Assembly	1,540	2			
Section I&C	770	1			
Total SOFC BOP	109,988	169			
TOTAL SOFC POWER ISLAND	327,622	504			
ASU	124,956	192			
AUTOTHERMAL REFORMER and Natural Gas Preheater	19,912	31			
STEAM CYCLE					
HRSG, Ducting, and Stack	33,049	51			
Steam Power System	42,906	66			
Feedwater and Miscellaneous BOP systems	71,868	111			
TOTAL STEAM CYLCE	147,823	227			
CO₂ COMPRESSION & PURIFICATION					
CO ₂ Purification	85,691	132			
TOTAL CO₂ COMPRESSION & PURIFICATION	85,691	132			
COOLING WATER SYSTEM	34,723	53			
ACCESSORY ELECTRIC PLANT	129,365	199			
INSTRUMENTATION & CONTROL	26,857	41			
IMPROVEMENTS TO SITE	30,881	47			
BUILDING & STRUCTURES	12,864	20			
TOTAL PLANT COST (TPC)	940,693	1447			
OWNER'S COSTS					
Preproduction Costs		T			
6 Months All Labor	6,469	-			
1 Month Maintenance Materials	1,117	-			
1 Month Non-fuel Consumables	365	_			
25% of 1 Months Fuel Cost at 100% CF	2,931	-			
2% of TPC Total Preproduction Costs	18,814	_			
•	29,695				
Inventory Capital	612	1			
60-day supply of fuel and consumables at 100% CF 0.5% of TPC (spare parts)	4,703	-			
Total Inventory Capital	5,315	-			
Initial Cost for Catalyst and Chemicals	'	-			
•	1,459	-			
Land Other Owner's Costs	300	-			
Other Owner's Costs	141,104	-			
Financing Costs	25,399	-			
TOTAL OVERNIGHT COST (TOC)	203,273	1750			
TOTAL OVERNIGHT COST (TOC) TASC Multiplior	1,143,966	1759			
TASC Multiplier TOTAL AS SPENT COST (TASC)	1.093	1022			
TOTAL AS-SPENT COST (TASC)	1,250,355	1923			

Exhibit 5-15. Case PNGFCOB – Pressurized Reference NGFC Plant with CCS – O&M Costs

Case:	PNGFC0B				Cost Base:	Apr 2018
Plant Size (MW, net):		650			Capacity Factor:	80%
		Ор	erating & Maint	enance Labor		
Opera	ating Labor			Operating Lab	or Requirements per Sh	ift
perating Labor Rate (base):		38.50	\$/hour	Skilled Operator:	1.0	
Operating Labor Burden:		30.00	% of base	Operator:	4.3	
Labor O-H Charge Rate:		25.00	% of labor	Foreman:	1.0	
				Lab Techs, etc.:	1.0	
				Total:	7.3	
			Fixed Operati	ing Costs		
					Annual Co	st
					(\$)	(\$/kW-net)
				Annual Operating Labor:	\$3,200,597	\$4.92
				Maintenance Labor:	\$7,149,270	\$11.00
			Admi	nistrative & Support Labor:	\$2,587,467	\$3.98
	perty Taxes and Insurance:	\$18,813,869	\$28.94			
				Total:	\$31,751,203	\$48.83
			Variable Opera	ting Costs		
					(\$)	(\$/MWh-net
				Maintenance Material:	\$10,723,905	\$2.35
			Stack Replac	cement		
		Life (y)	\$/kW AC	\$/y per kW		
FC Stack Replacement Cost		7.3	\$216	\$23.78	\$15,462,671	\$3.39
			Consuma	bles		
	Initial Fill	Per Day	Per Unit	Initial Fill		
Water (gal/1000):	0	1,016	\$1.90	\$0	\$563,789	\$0.12
Makeup and Waste Water Treatment Chemicals (lb):	0	7,568	\$0.28	\$0	\$607,695	\$0.13
NG Desulfur TDA Adsorbent (lb):	48,887	1190	\$6.03	\$294,773	\$2,095,830	\$0.46
ATR Catalyst (m³):	1,935	1.3	\$601.76	\$1,164,586	\$233,868	\$0.0
			Subtotal:	\$1,459,358	\$3,501,183	\$0.7
			Waste Dis	posal		
ATR Catalyst (m³):	0	1.3	\$0.00	\$0	\$0	\$0.0
			Subtotal:	\$0	\$0	\$0.0
		hla Oparatio	g Costs Total:	\$1,459,358	\$29,687,759	\$6.6
	Varia	bie Operatii	8			
	Varia	bie Operatii	Fuel Co	ost		
Natural Gas (MMBtu):	Varia 0	87,205		\$0	\$112,555,369	\$24.7

Exhibit 5-16. Case PNGFC0B - Pressurized Reference NGFC Plant with CCS - Capital Cost Components

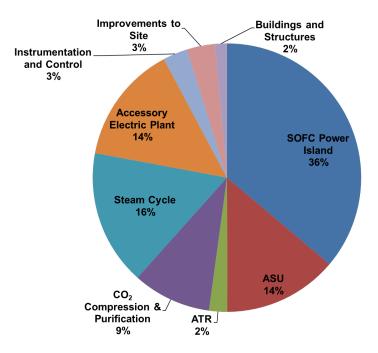


Exhibit 5-17. Case PNGFC0B - Pressurized Reference NGFC Plant with CCS - BOP Cost Distribution

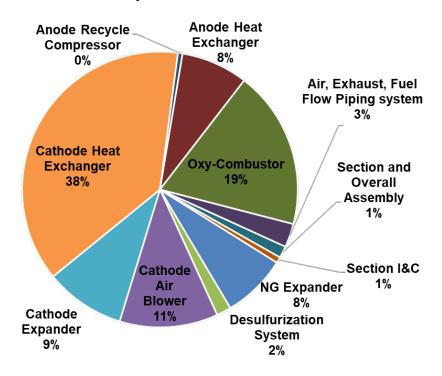


Exhibit 5-18. Case PNGFCOA – Pressurized Reference NGFC Plant without CCS – Capital Costs

Cost Comment	Cost (\$1000)	Specific Cost (\$/kWe AC)
Cost Component	2018\$	2018\$
SOFC Pow	ver Island	
SOFC Module		
SOFC Stack	106,201	163
Container	12,743	20
Insulation	1,888	3
Module Assembly	4,720	7
Air distribution	4,720	7
Fuel distribution	4,720	7
Pre-reformer	4,720	7
Module Current Collectors	2,360	4
Module I&C	2,360	4
Inverter	32,096	49
Total SOFC Module with 10 % Extra Installed Area	176,530	272
NG EXPANDER	9,124	14
SOFC BOP		
Desulfurization System	1,618	2
Cathode Air Blower	13,905	21
Cathode Expander	23,497	36
Cathode Heat Exchanger	32,918	51
Anode Recycle Blower	526	1
Anode Heat Exchanger	8,856	14
Oxy-Combustor	29,845	46
Oxy-Combustor Expander	0	0
Air, Exhaust, Fuel Flow Piping system	2,198	3
Section and Overall Assembly	1,099	2
Section I&C	549	1
Total SOFC BOP	115,011	177
TOTAL SOFC POWER ISLAND	2,127	3
ASU	17,421	27
AUTOTHERMAL REFORMER and Natural Gas Preheater	17,721	27
STEAM CYCLE	32,782	50
HRSG, Ducting, and Stack	29,978	46
		
Steam Power System	55,876	86
Feedwater and Misc BOP systems	118,636	182
TOTAL STEAM CYLCE		
CO ₂ COMPRESSION & PURIFICATION	0	0
CO ₂ Purification	0	0
TOTAL CO ₂ COMPRESSION & PURIFICATION	19,530	30
COOLING WATER SYSTEM	117,334	180
ACCESSORY ELECTRIC PLANT	25,257	39
INSTRUMENTATION & CONTROL	30,497	47
IMPROVEMENTS TO SITE	11,368	17
BUILDING & STRUCTURES	642,834	989
TOTAL PLANT COST (TPC)		
OWNER'S COSTS		
Preproduction Costs		
6 Months All Labor	4,698	
1 Month Maintenance Materials	763	
1 Month Non-fuel Consumables	288]
25% of 1 Months Fuel Cost at 100% CF	2,418	
2% of TPC	12,857	1
Total Preproduction Costs	21,024	1
Inventory Capital	22,027	I
60-day supply of fuel and consumables at 100% CF	507	
0.5% of TPC (spare parts)	3,214	-
Total Inventory Capital	3,722	-
		-
Initial Cost for Catalyst and Chemicals	1,965	-
Land	300	-
Other Owner's Costs	96,425	-
Financing Costs	17,357	_
TOTAL OWNER'S COSTS	140,793	
TOTAL OVERNICHT COST (TOC)	702 (27	1205
TOTAL OVERNIGHT COST (TOC)	783,627	1205
TASC Multiplier TOTAL AS-SPENT COST (TASC)	1.093 856,504	1317

Exhibit 5-19. Case PNGFCOA – Pressurized Reference NGFC Plant without CCS – O&M Costs

Case:	PNGFC0A				Cost Base:	Apr 2018
Plant Size (MW, net):		650			Capacity Factor:	80%
		Оре	erating & Maint	enance Labor		
Opera	ating Labor			Operating Lab	or Requirements per Sh	ift
perating Labor Rate (base):		38.50	\$/hour	Skilled Operator:	1.0	
Operating Labor Burden:		30.00	% of base	Operator:	3.3	
Labor O-H Charge Rate:		25.00	% of labor	Foreman:	1.0	
				Lab Techs, etc.:	1.0	
				Total:	6.3	
			Fixed Operati	ng Costs		
					Annual Co	st
					(\$)	(\$/kW-net)
				Annual Operating Labor:	\$2,630,628	\$4.0
				Maintenance Labor:	\$4,885,540	\$7.5
			Admi	nistrative & Support Labor:	\$1,879,042	\$2.8
			Pro	perty Taxes and Insurance:	\$12,856,683	\$19.7
				Total:	\$22,251,893	\$34.2
			Variable Opera	ting Costs		
					(\$)	(\$/MWh-ne
				Maintenance Material:	\$7,328,309	\$1.6
			Stack Replac	ement		
		Life (y)	\$/kW AC	\$/y per kW		
FC Stack Replacement Cost		7.3	\$229	\$25.23	\$16,400,495	\$3.6
			Consuma	bles		
	Initial Fill	Per Day	Per Unit	Initial Fill		
Water (gal/1000):	0	602	\$1.90	\$0	\$334,230	\$0.0
Makeup and Waste Water Treatment Chemicals (lb):	0	4,486	\$0.28	\$0	\$360,258	\$0.0
NG Desulfur TDA Adsorbent	40,334	982	\$6.03	\$243,205	\$1,729,183	\$0.3
(lb):					¢245.047	\$0.0
	2,862	2.0	\$601.76	\$1,722,055	\$345,817	ŞU.U
(lb):	2,862	2.0	\$601.76 Subtotal:	\$1,722,055 \$1,965,260	\$345,817	· ·
(lb):	2,862	2.0	-	\$1,965,260		· ·
(lb):	2,862	2.0	Subtotal:	\$1,965,260		\$0.6
(lb): ATR Catalyst (m³):	,		Subtotal: Waste Dis	\$1,965,260 posal	\$2,769,489	\$0.6
(lb): ATR Catalyst (m³):	0	2.0	Subtotal: Waste Dis \$0.00	\$1,965,260 posal \$0	\$2,769,489 \$0	\$0.6 \$0.0 \$0.0
(lb): ATR Catalyst (m³):	0	2.0	Subtotal: Waste Dis \$0.00 Subtotal:	\$1,965,260 posal \$0 \$0 \$1,965,260	\$2,769,489 \$0 \$0	\$0.6 \$0.0 \$0.0
(lb): ATR Catalyst (m³):	0	2.0	Subtotal: Waste Dis \$0.00 Subtotal: ag Costs Total:	\$1,965,260 posal \$0 \$0 \$1,965,260	\$2,769,489 \$0 \$0	\$0.6

Exhibit 5-20. Case PNGFC0A – Pressurized Reference NGFC Plant without CCS – Capital Cost Components

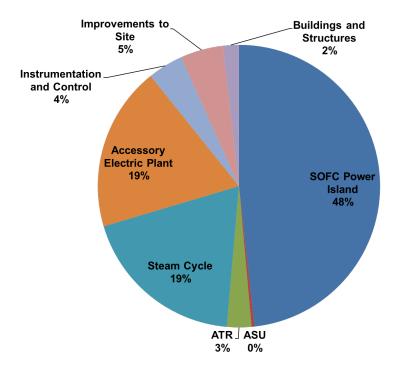


Exhibit 5-21. Case PNGFCOA - Pressurized Reference NGFC Plant without CCS - BOP Cost Distribution

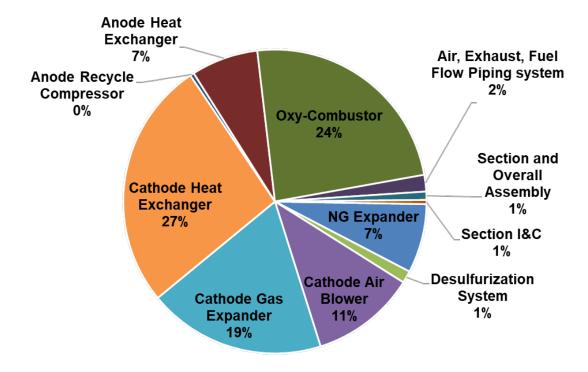


Exhibit 5-22. Case 0 - Pressurized Reference Plant with and without CCS - Levelized Cost of Electricity

Levelized Cost of Electricity (2018\$/MWh)								
Carbon Capture	With CCS	No CCS						
Component	\$/1	/IWh						
Variable Costs	31.2	26.2						
Fuel Costs	24.7	20.4						
Variable O&M Costs	6.5	5.8						
Fixed O&M Costs	7.0	4.9						
Capital Costs	19.4	13.3						
Total LCOE (excluding T&S)	57.6	44.4						
T&S	2.9	0.0						
Total LCOE (including T&S)	60.5	44.4						

5.2 CASE 4: ADVANCED PRESSURIZED NGFC PLANT DESCRIPTION

Case 4 represents the final stage of the pressurized pathway in parallel with the atmospheric pathway. The improvements made prior to Case 4 include increased fuel utilization, an increased capacity factor, and 100 percent internal reformation. Case 4 examines improvements to the BOP such as decreased ASU power consumption, increased inverter efficiency, along with decreased stack costs. The SOFC technology parameters for Case 4 are shown in Exhibit 5-23.

Exhibit 5-23. SOFC technology parameters used for Case 4

Parameter	Value
Reformation	100% Internal
SOFC Operating Pressure	≈44.1 psia
Cell Technology	Advanced Cell
Fuel Utilization, %	85
Current Density, mA/cm ²	400
Degradation, %/1000 hr	0.2
Inverter Efficiency (%)	98
Stack Cost (\$/kW)	200

The realization of 100 percent internal reformation removes the need for the ATR and reduces the load of the ASU, as oxidant is only required for the oxy-combustor in the plant with CCS. Natural gas is sent directly to the anode heat exchanger after desulfurization. The remainder of the plant operates the same as in Case 0. In the configuration without CCS, neither the ATR, ASU, nor CPU are required. The analysis show that the additional natural gas injection is not required for the plant without CCS in this case.

5.2.1 Case 4: Advanced Pressurized NGFC Plant Performance

The stream tables for the Case 4 plants with and without the CCS option are listed in Exhibit 5-28 and Exhibit 5-33, respectively and correspond to the state point numbers identified in Exhibit 5-27 and Exhibit 5-32. The Case 4 plant power summary is shown in Exhibit 5-24. For the plant with CCS, the SOFC generates 81 percent of the gross power while the expanders and steam cycle generate the rest as seen in Exhibit 5-25. In the advanced plant without CCS the expanders contribute more to the generation. In the advanced pressurized plant without CCS, 94 percent of the auxiliary load is due to the blowers and compressors as seen in Exhibit 5-26. When CCS is included, the ASU and CPU impose additional auxiliary loads.

The HHV efficiency (68.1 percent) of the advanced plant with CCS is 2.6 percentage points higher than the HHV efficiency of the Pathway 1 end point Case 4 (65.5 percent). The advanced plant without CCS results in the highest HHV efficiency value of 71.4 percent among all the plants in the present study.

The material and energy balances for Case 4 with CCS option are summarized in Exhibit 5-29 while process flow diagrams are shown in Exhibit 5-30 and Exhibit 5-31. Cooling tower makeup is the dominant water demand in the plant. The material and energy balance diagrams and process flow diagrams for the case without CCS are shown in Exhibit 5-34 and Exhibit 5-35.

5.2.2 Case 4: Advanced Pressurized NGFC Plant Costs

Exhibit 5-36 and Exhibit 5-37 itemize the capital and O&M costs for the Case 4 plant with CCS. The capital cost for the pressurized advanced plant with CCS is not significantly different from the capital cost for the atmospheric pathway plant (\approx 2 percent less). Exhibit 5-39 shows that the oxy-combustor and cathode heat exchanger together account for 56 percent of the BOP costs. The LCOE for the advanced pressurized plant with and without CCS is shown in Exhibit 5-44. Imposing a CCS constraint increases the LCOE by \approx 26 percent to \$50.2/MWh. The LCOE of the pressurized plant with CCS is \approx \$0.2/MWh lower relative to the corresponding atmospheric pathway case.

Exhibit 5-24. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Performance Summary

Carbon Capture	With CCS	No CCS	
Power Summary (Gross Power a	t Generator Terminals, l	¢We)	
SOFC Power	596,593	541,288	
Natural Gas/Syngas Expander Power	77,020	148,600	
Steam Turbine Power	63,800	31,600	
Total Gross Power, kW _e	737,413	721,488	
Auxiliary Load Su	ımmary, kWe		
Air Separation Unit Auxiliaries	0	0	
Air Separation Unit Main Air Compressor	7,282	0 ^A	
Oxygen Compressor	790	0	
Nitrogen Compressors	0	0	
CO ₂ Compressor	21,918	0	
CO₂ Refrigeration	0	0	
Boiler Feedwater Pumps	1,173	581	
Condensate Pump	36	18	
Circulating Water Pump	1,830	590	
Cooling Tower Fans	960	300	
Gas Turbine Auxiliaries	-	-	
Steam Turbine Auxiliaries	49	24	
Cathode Air Blower	50,470	66,743	
Cathode Recycle Blower	0	0	
Anode Recycle Blower	1	1	
Miscellaneous Balance of Plant ^B	386	369	
Transformer Losses	2,453	2,353	
Total Auxiliaries, kW _e	87,342	70,979	
Net Power, kW _e	650,071	650,509	
Net Plant Efficiency, % (HHV)	68.10	71.35	
Net Plant Heat Rate, kJ/kWh (Btu/kWh)	5,287 (5,011)	5,046 (4,782)	
CO ₂ Capture Rate, %	97.9	0.0	
Condenser Cooling Duty, 10 ⁶ kJ/h (10 ⁶ Btu/h)	369 (350)	264 (250)	
Natural Gas Feed Rate, kg/h (lb/h)	65,525 (144,458)	62,581 (137,966)	
Thermal Input ^c , kWt	954,644	911,744	
Raw Water Withdrawal, m³/min (gpm)	4.9 (1,289.7)	2.3 (596.4)	
Raw Water Consumption, m ³ /min (gpm)	3.28 (866.6)	1.75 (463.5)	

^A Reflects power needed to compress air to ATR pressure.

^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads.

 $^{^{\}rm C}$ HHV of natural gas is 52,449 kJ/kg (22,549 Btu/lb).

Exhibit 5-25. Case 4 - Advanced Pressurized NGFC Plant with and without CCS - Gross Power Distribution

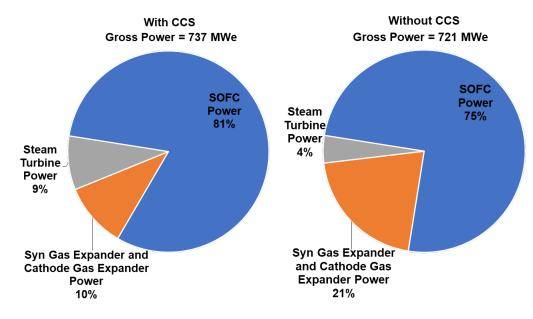
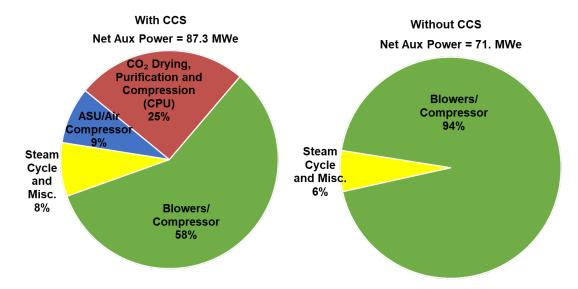



Exhibit 5-26. Case 4 - Advanced Pressurized NGFC Plant with and without CCS - Auxiliary Load Distribution

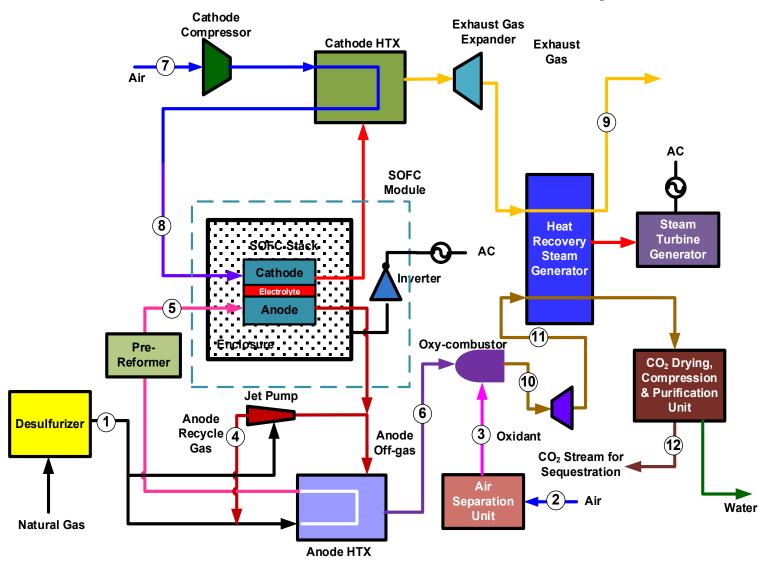


Exhibit 5-27. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - Block Flow Diagram

Exhibit 5-28. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Stream Table

	1	2	3	4	5	6	7	8	9	10	11	12
V-L Mole Fraction												
Ar	0.0000	0.0094	0.0031	0.0000	0.0000	0.0000	0.0094	0.0094	0.0109	0.0003	0.0003	0.0000
CH ₄	0.9310	0.0000	0.0000	0.0267	0.1346	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0504	0.0421	0.0519	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0003	0.0000	0.2802	0.2549	0.2881	0.0003	0.0003	0.0003	0.3363	0.3363	1.0000
H_2	0.0000	0.0000	0.0000	0.1422	0.2080	0.1464	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0104	0.0000	0.4937	0.3537	0.5081	0.0104	0.0104	0.0121	0.6475	0.6475	0.0000
N ₂	0.0160	0.7722	0.0019	0.0055	0.0066	0.0052	0.7722	0.7722	0.8951	0.0054	0.0054	0.0000
C ₂ H ₆	0.0320	0.0000	0.0000	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.2077	0.9950	0.0000	0.0000	0.0000	0.2077	0.2077	0.0816	0.0105	0.0105	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	-	•						•			•	
V-L Flowrate (kg _{mol} /h)	3,782	6,347	1,284	19,963	24,417	11,580	47,649	47,649	41,108	11,716	11,716	3,858
V-L Flowrate (kg/h)	65,525	183,130	41,107	470,137	525,831	274,832	1,374,884	1,374,884	1,165,575	315,939	315,939	169,802
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	15	94	704	553	603	15	559	132	1,591	1,345	36
Pressure (MPa, abs)	0.34	0.10	0.30	0.34	0.34	0.338	0.101	0.31	0.10	0.34	0.13	15.27
Enthalpy (kJ/kg) ^A	31.11	31.06	86.06	2,102.75	1,727.66	1,921.626	31.06	604.51	155.05	3,767.52	3,287.30	-209.06
Density (kg/m ³)	2.5	1.2	3.2	1.0	1.1	1.1	1.2	1.3	0.9	0.6	0.3	545.3
V-L Molecular Weight	17.328	28.854	32.016	23.551	21.535	23.733	28.854	28.854	28.354	26.966	26.966	44.010
	1	1	1		ı			1		ı	1	
V-L Flowrate (lb _{mol} /h)	8,337	13,992	2,831	44,010	53,831	25,530	105,049	105,049	90,628	25,830	25,830	8,506
V-L Flowrate (lb/h)		403,732		1,036,475	1,159,260			3,031,101	2,569,654	696,527	696,527	374,349
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0	0
T (05)		50	000	4.000	4.007	4.440	50	4.000	070	0.005	0.450	07
Temperature (°F)	59 50.0	59 14.7	202 44.1	1,299 49.1	1,027	1,118	59	1,039 44.3	270 14.7	2,895	2,452	97
Pressure (psia)					49.0	49.0	14.7			49.0	19.0	2,215.0
Enthalpy (Btu/lb) ^A	13.4	13.4	37.0	904.0	742.8	826.2	13.4	259.9	66.7	1,619.7	1,413.3	-89.9
Density (lb/ft ³)	0.156	0.076	0.199	0.061	0.066	0.069	0.076	0.079	0.053	0.037	0.016	34.043

^A Reference conditions are 32.02 F and 0.089 psia

Exhibit 5-29. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	47,328 (104,340)	Stack Gas	172 (379)
Air (CO2)	195 (429)	CO₂ Product	46,342 (102,166)
		Exhaust	985 (2,171)
		ASU Vent	23 (50)
		Water KO	1 (3)
		Convergence Tolerance	0 (1)
Total	47,523 (104,769)	Total	47,523 (104,769)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible +	Power	Total						
		Latent								
	Heat In GJ/hr (MMBtu/hr)									
NG	3,436.72 (3,257.38)	2.3 (2.2)		3,439.0 (3,259.6)						
Fuel cell Air		42.7 (40.5)		42.7 (40.5)						
Raw Water Makeup		0.0 (0.0)		0.0 (0.0)						
Auxiliary Power			321.0 (304.3)	321.0 (304.3)						
TOTAL	3,437 (3,257)	45.0 (42.6)	321.0 (304.3)	3,802.7 (3,604.3)						
	Heat Ou	t GJ/hr (MMBtu/h	hr)							
CO ₂ Out		-35.5 (-33.6)		-35.5 (-33.6)						
Stack Flue Gas		180.7 (171.3)		180.73 (171.30)						
Vents		7.9 (7.5)		7.94 (7.52)						
Water outlets		21.6 (20.5)		21.64 (20.51)						
Process Losses**		978.7 (927.7)		978.74 (927.67)						
Difference***		-5.5 (-5.2)		-5.51 (-5.23)						
Power			2,654.7 (2,516.2)	2,654.7 (2,516.2)						
TOTAL	0.0 (0.0)	1,148.0 (1,088.1)	2,654.7 (2,516.2)	3,802.7 (3,604.3)						
* Includes ASU compresso	or intercoolers & CO2	compressor interco	oolers							
** Includes accounting of	losses such as inverte	r, transformer, gen	erator, and motor loss	ses						
*** Calculated by difference	*** Calculated by difference to close the energy balance									

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.0 (11)	0.0 (0)	0.0 (11)	0.0 (0)	0.0 (11)
Reformer Steam	0.0 (0)	0.0 (0)	0.0 (0)		
BFW Makeup	0.0 (11)	0.0 (0)	0.0 (11)		
Cooling Tower	7.1 (1,881)	2.28 (603)	4.8 (1,279)	1.6 (423)	3.2 (856)
CO2 Dehydration	0.0 (0)	2.28 (603)	-2.28 (-603)		
Total	7.2 (1,892)	2.28 (603)	4.9 (1,290)	1.6 (423)	3.3 (867)

Emissions

	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year)	kg/MWh (lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	1336 (3107)	28,655 (31,586)	5 (12)

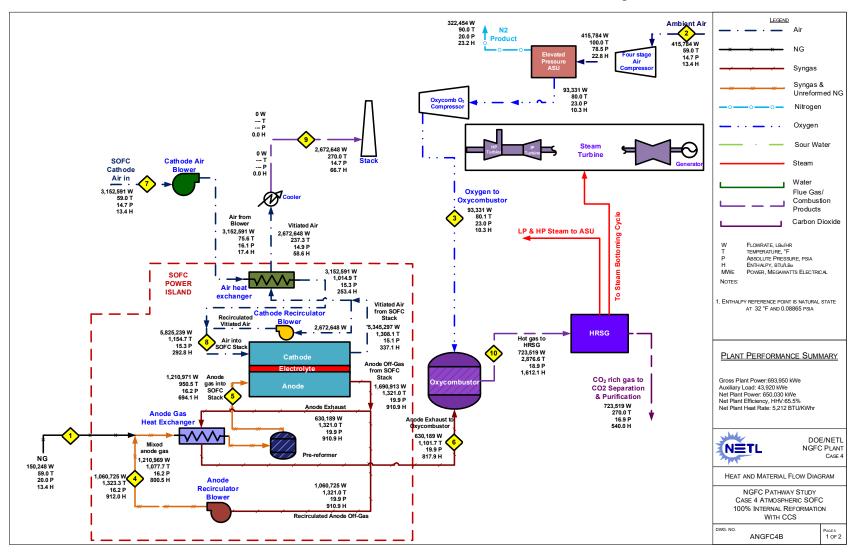


Exhibit 5-30. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Heat and Material Balance Diagram – ASU, ATR, and Power Island

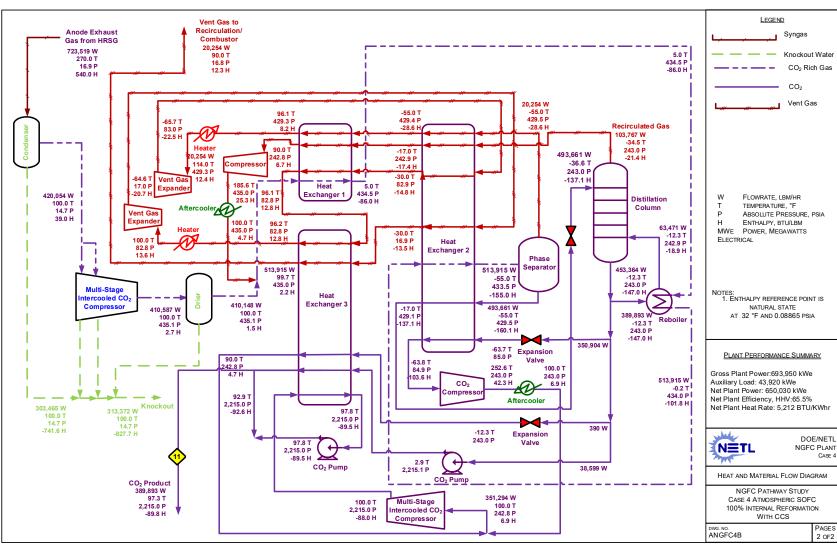


Exhibit 5-31. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Heat and Material Balance Diagram – CO₂ Dehydration, Purification, and Compression

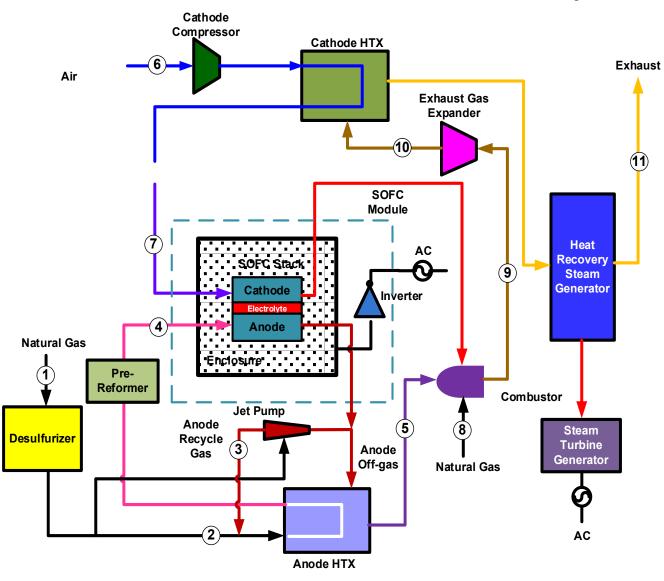


Exhibit 5-32. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Block Flow Diagram

Exhibit 5-33. Case PNGFC4A - Advanced Pressurized NGFC Plant without CCS - Stream Table

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0000	0.0000	0.0000	0.0000	0.0000	0.0094	0.0094	0.0000	0.0089	0.0089	0.0089
CH ₄	0.9310	0.9310	0.0267	0.1352	0.0003	0.0000	0.0000	0.9310	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0496	0.0413	0.0510	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0100	0.0100	0.2811	0.2555	0.2890	0.0003	0.0003	0.0100	0.0570	0.0570	0.0570
H_2	0.0000	0.0000	0.1429	0.2060	0.1471	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.0000	0.4931	0.3553	0.5074	0.0104	0.0104	0.0000	0.1190	0.1190	0.1190
N_2	0.0160	0.0160	0.0055	0.0066	0.0052	0.7722	0.7722	0.0160	0.7298	0.7298	0.7298
C ₂ H ₆	0.0320	0.0320	0.0009	0.0000	0.0000	0.0000	0.0000	0.0320	0.0000	0.0000	0.0000
C ₃ H ₈	0.0070	0.0070	0.0002	0.0000	0.0000	0.0000	0.0000	0.0070	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0040	0.0040	0.0001	0.0000	0.0000	0.0000	0.0000	0.0040	0.0000	0.0000	0.0000
O_2	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.0000	0.0853	0.0853	0.0853
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /h)	3,609	3,067	19,115	23,332	11,050	62,660	62,660	3	66,376	66,376	66,376
V-L Flowrate (kg/h)	62,528	53,149	450,224	503,372	262,259	1,808,000	1,808,000	53	1,870,577	1,870,577	1,870,577
Solids Flowrate (kg/h)	0	0	0	0	0	0	0	0	0	0	0
					ı				T		T
Temperature (°C)	15	15	698	551	599	15	571	15	936	936	132
Pressure (MPa, abs)	0.34	0.338	0.34	0.34	0.338	0.101	0.31	0.34	0.34	0.30	0.11
Enthalpy (kJ/kg) ^A	31.11	27.676	2,091.49	1,725.68	1,913.135	31.06	616.88	27.06	1,288.40	1,288.40	331.91
Density (kg/m³)	2.5	2.5	1.0	1.1	1.1	1.2	1.3	2.5	0.9	0.8	0.9
V-L Molecular Weight	17.328	17.328	23.553	21.574	23.735	28.854	28.854	17.328	28.181	28.181	28.181
									ı		1
V-L Flowrate (lb _{mol} /h)	7,956	6,762	42,141	51,439	24,360	138,141	138,141	7	146,334	146,334	146,334
V-L Flowrate (lb/h)	137,850			1,109,746	578,182	3,985,959	3,985,959	116	4,123,917	4,123,917	4,123,917
Solids Flowrate (lb/h)	0	0	0	0	0	0	0	0	0	0	0
T (0E)	50	00	4.000	4.005	4 4 4 4	50	4.050	50	4 747	4 747	070
Temperature (°F) Pressure (psia)	59 50.0	60 49.1	1,289 49.1	1,025 49.0	1,111 49.0	59 14.7	1,059 44.3	59 49.0	1,717 49.0	1,717 44.0	270 15.3
Enthalpy (Btu/lb) ^A	13.4	11.9	899.2	741.9	822.5	13.4	265.2	11.6	553.9	553.9	142.7
Density (lb/ft ³)	0.156	0.154	0.062	0.066	0.069	0.076	0.078	0.154	0.059	0.053	0.055

^A Reference conditions are 32.02 F and 0.089 psia

Exhibit 5-34. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Material and Energy Balances

Carbon Balance

Carbon In		Carbon Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NG	45,201 (99,651)	Stack Gas	45,425 (100,145)
Air (CO2)	226 (498)		
		Convergence Tolerance	2 (4)
Total	45,427 (100,149)	Total	45,427 (100,149)

Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr(lb/hr)		kg/hr(lb/hr)	
NGIN	0 (0)	Elemental Sulfur	0 (0)
		Polishing Sorbent	0 (0)
		Convergence Tolerance	0 (0)
Total	0 (0)	Total	0 (0)

Energy Balance

	HHV	Sensible + Latent	Power	Total					
Heat In GJ/hr (MMBtu/hr)									
NG	3,282.28 (3,111.00)	2.2 (2.1)		3,284.5 (3,113.1)					
Fuel cell Air		56.2 (53.2)		56.2 (53.2)					
Auxiliary Power			257.3 (243.9)	257.3 (243.9)					
TOTAL	3,282 (3,111)	58.3 (55.3)	257.3 (243.9)	3,597.9 (3,410.2)					
	Heat Ou	t GJ/hr (MMBtu/	hr)						
Stack Flue Gas		620.9 (588.5)		620.85 (588.46)					
Process Losses**		337.9 (320.2)		337.88 (320.24)					
Difference***		41.8 (39.6)		41.83 (39.65)					
Power			2,597.4 (2,461.8)	2,597.4 (2,461.8)					
TOTAL	0.0 (0.0)	1,000.6 (948.3)	2,597.4 (2,461.8)	3,597.9 (3,410.2)					
* Includes ASU compress									
** Includes accounting of	losses such as inverte	r, transformer, gen	erator, and motor los	ses					
*** Calculated by differen	ce to close the energy	balance							

Water Balance

				Process Water	Raw Water
Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Discharge	Consumption
	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)	m3/min (gpm)
Condenser Makeup	0.0 (5)	0.0 (0)	0.0 (5)	0.0 (0)	0.0 (05)
Reformer Steam	0.0 (0)	0.0(0)	0.0 (0)		
BFW Makeup	0.0 (5)	0.0 (0)	0.0 (5)		
·					
Cooling Tower	2.2 (591)	0.00 (0)	2.2 (591)	0.5 (133)	1.7 (458)
0	0.0 (0)	0.00 (0)	0.00(0)		
Total	2.3 (596)	0.00 (0)	2.3 (596)	0.5 (133)	1.8 (463)

Emissions

	kg/GJ (lb/10 ⁸ Btu)	Tonne/year (tons/year)	kg/MWh (lb/MWh)
SO2	0 (0)	0 (0)	0 (0)
NOx	0 (0)	0 (0)	0 (0)
Particulate	0 (0)	0 (0)	0 (0)
Hg	0 (0)	0 (0)	0 (0)
CO2	52415 (121917)	1,124,306 (1,239,335)	209 (461)

LEGEND Air Syngas Syngas & Unreformed NG Nitrogen Oxygen Sour Water 59.0 T 50.0 P Steam SOFC Water Cathode Compresso Flue Gas/ Air in 3,985,959 W Combustion 59.0 T 14.7 P 13.4 H Products 4,123,917 W Vitiated Air to Carbon Dioxide 1,281.4 T 16.0 P Expander LP & HP Steam to ASU Compressso 3,985,959 W 422.5 H FLOWRATE, LBM/HR 3.985.959 W 1.059.1 T TEMPERATURE, °F ABSOLUTE PRESSURE, PSIA 276.6 T 45.1 P 265.2 H ENTHALPY, BTU/LBM 66.0 H MWF POWER, MEGAWATTS ELECTRICAL SOFC Motive Gas NOTES: **POWER** Jet-Pump ISLAND 4,123,917 W 600.0 T 15.8 P 20,678 W 1. ENTHALPY REFERENCE POINT IS NATURAL STATE 61.5 T 50.0 P 12.9 H AT 32 °F AND 0.08865 PSIA 229.9 H 3,985,959 W 1,059.1 T from SOFC Stack 3,545,619 W HRSG 117,173 W Air into SOFC Stack 44.3 P 59.5 T 49.1 P 11.9 H 1,328.8 T 4.123.917 W 265 2 H 44.1 P 341.4 H PLANT PERFORMANCE SUMMARY 15 3 P 1,109,746 W Anode 1,024.6 T gas into 49.0 P SOFC Anode Off-Gross Plant Power:721,488 kWe Gas from SOFC Stack 1,550,085 W Anode Auxiliary Load: 71,470 kWe Net Plant Power: 650,018 kWe 49.0 P 741.9 H Stack Net Plant Efficiency, HHV:71.3% NG to 1,335.6 T 49.0 P Anode Exhaust Net Plant Heat Rate: 4,786 BTU/KWhr Combustor **Anode Gas** 578,182 W 116 W 1,335.6 T 49.0 P 59 0 T 578,182 W 1,110.9 T DOE/NETL 918.0 H 11.6 H Mixed N≣TL NGFC PLANT 49.0 P Anode Exhaust anode gas Pre-reformer 1.109.746 W 1,086.9 T 49.1 P 805.5 H 992,573 W 1,289.1 T 49.1 P HEAT AND MATERIAL FLOW DIAGRAM NGFC PATHWAY STUDY 899.2 H Recirculated Anode Off-Gas REFERENCE CASE 4 PRESSURIZED SOFC 971.903 W 100% INTERNAL REFORMATION 1,335.6 T WITHOUT CCS 49.0 P 918.0 H DWG. NO. PNGFC4A PAGES 1 OF 1

Exhibit 5-35. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Heat and Material Balance Diagram – ASU, ATR, and Power Island

Exhibit 5-36. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – Capital Costs

Cost Component	Cost (\$1000) 2018\$	Specific Cost (\$/kWe AC) 2018\$
SOFC Pow		
SOFC Module		
SOFC Stack	123,634	190
Container	16,689	26
Insulation	2,473	4
Module Assembly	6,182	10
Air distribution	6,182	10
Fuel distribution	6,182	10
Pre-reformer	6,182	10
Module Current Collectors	3,091	5
Module I&C	3,091	5
Inverter	42,035	65
Total SOFC Module with 10 % Extra Installed Area	215,740	332
NG EXPANDER	0	0
SOFC BOP		
Desulfurization System	1,742	3
Cathode Air Blower	8,016	12
Cathode Expander	6,023	9
Cathode Heat Exchanger	19,406	30
Anode Recycle Blower	717	1
Anode Heat Exchanger	5,017	8
Oxy-Combustor	16,592	26
Oxy-Combustor Expander	6,223	10
Air, Exhaust, Fuel Flow Piping system	3,498	5
Section and Overall Assembly	1,749	3
Section I&C	875	1
Total SOFC BOP	69,857	107
TOTAL SOFC POWER ISLAND	285,597	439
ASU	74,135	114
AUTOTHERMAL REFORMER and Natural Gas Preheater	0	0
STEAM CYCLE	0	0
	26.009	42
HRSG, Ducting, and Stack	26,998	42
Steam Power System	35,480	55
Feedwater and Miscellaneous BOP systems	63,757	98
TOTAL STEAM CYLCE	126,236	194
CO ₂ COMPRESSION & PURIFICATION		
CO ₂ Purification	79,641	123
TOTAL CO₂ COMPRESSION & PURIFICATION	79,641	123
COOLING WATER SYSTEM	29,743	46
ACCESSORY ELECTRIC PLANT	90,743	140
INSTRUMENTATION & CONTROL	24,535	38
IMPROVEMENTS TO SITE	29,658	46
BUILDING & STRUCTURES	11,909	18
TOTAL PLANT COST (TPC)	752,196	1157
OWNER'S COSTS		
Preproduction Costs		
6 Months All Labor	5,573	
1 Month Maintenance Materials	841	
1 Month Non-fuel Consumables	299	
25% of 1 Months Fuel Cost at 100% CF	2,628	
2% of TPC	15,044	
Total Preproduction Costs	24,385	
Inventory Capital		
60-day supply of fuel and consumables at 100% CF	507	
0.5% of TPC (spare parts)	3,761	7
Total Inventory Capital	4,268	7
Initial Cost for Catalyst and Chemicals	828	7
Land	300	1
Other Owner's Costs	112,829	1
Financing Costs	20,309	-
		-
	162 020	
TOTAL OWNER'S COSTS	162,920	1//00
	162,920 915,116 1.093	1408

Exhibit 5-37. Case PNGFC4B – Advanced Pressurized NGFC Plant with CCS – O&M Costs

Case:	PNGFC4B				Cost Base:	Apr 2018	
Plant Size (MW, net):		650			Capacity Factor:	85%	
		Ор	erating & Maint	enance Labor			
Oper	ating Labor			Operating La	bor Requirements per Sh	ift	
Operating Labor Rate (base):		38.50	\$/hour	Skilled Operator:	1.0		
Operating Labor Burden:		30.00	% of base	Operator:	4.3		
Labor O-H Charge Rate:	ate: 25.00 % of labor Foreman:				1.0		
				Lab Techs, etc.:	1.0		
				Total:	7.3		
			Fixed Operati	ng Costs			
					Annual Co	st	
					(\$)	(\$/kW-net)	
				Annual Operating Labor:	\$3,200,597	\$4.92	
	Maintenance Labor:						
	Administrative & Support Labor:						
	\$15,043,930	\$23.14					
Total:					\$26,190,543	\$40.29	
			Variable Opera	ting Costs			
					(\$)	(\$/MWh-net)	
				Maintenance Material:	\$8,575,040	\$1.77	
			Stack Replac	ement			
		Life (y)	\$/kW AC	\$/y per kW			
SOFC Stack Replacement Cost		7.3	\$202	\$22.23	\$14,451,640	\$2.99	
			Consuma	bles			
	Initial Fill	Per Day	Per Unit	Initial Fill			
Water (gal/1000):	0	789	\$1.90	\$0	\$464,909	\$0.10	
Makeup and Waste Water Treatment Chemicals (lb):	0	5,528	\$0.28	\$0	\$471,637	\$0.10	
NG Desulfur TDA Adsorbent (lb):	44,002	1067	\$6.03	\$265,318	\$1,996,288	\$0.41	
ATR Catalyst (m³):	935	0.6	\$601.76	\$562,549	\$120,030	\$0.02	
			Subtotal:	\$827,867	\$3,052,865	\$0.63	
			Waste Dis	posal			
ATR Catalyst (m³):	0	0.6	\$0.00	\$0	\$0	\$0.00	
			Subtotal:	\$0	\$0	\$0.00	
	Varia	ble Operatir	ng Costs Total:	\$827,867	\$26,079,544	\$5.39	
			Fuel Co				
Natural Gas (MMBtu):	0	78,177	\$4.42	\$0	\$107,209,530	\$22.15	

Exhibit 5-38. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - Capital Cost Components

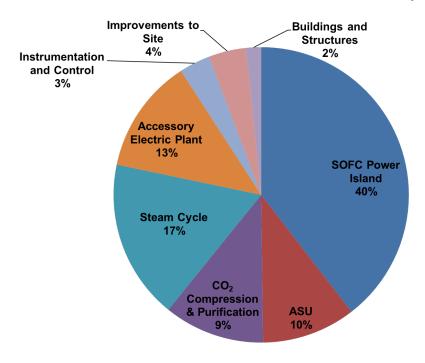


Exhibit 5-39. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - BOP Cost Distribution

Exhibit 5-40. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Capital Costs

Cost Component	Cost (\$1000) 2018\$	Specific Cost (\$/kWe AC) 2018\$
SOFC Pow		20103
SOFC Module		
SOFC Stack	116,569	179
Container	15,736	24
Insulation	2,331	4
Module Assembly	5,828	9
Air distribution	5,828	9
Fuel distribution	5,828	9
Pre-reformer	5,828	9
Module Current Collectors	2,914	4
Module I&C	2,914	4
Inverter	39,633	61
Total SOFC Module with 10 % Extra Installed Area	203,412	313
NG EXPANDER	0	0
SOFC BOP		
Desulfurization System	1,674	3
Cathode Air Blower	9,748	15
Cathode Expander	15,760	24
Cathode Heat Exchanger	17,109	26
Anode Recycle Blower	678	1
Anode Heat Exchanger	4,749	7
Oxy-Combustor	16,012	25
Air, Exhaust, Fuel Flow Piping system	3,019	5
Section and Overall Assembly	1,510	2
Section I&C	755	1
Total SOFC BOP	71,015	109
TOTAL SOFC POWER ISLAND	274,426	422
ASU	0	0
AUTOTHERMAL REFORMER and Natural Gas Preheater	0	0
STEAM CYCLE		
HRSG, Ducting, and Stack	22,006	34
Steam Power System	19,611	30
Feedwater and Miscellaneous BOP systems	50,523	78
TOTAL STEAM CYLCE	92,140	142
CO₂ COMPRESSION & PURIFICATION		
CO ₂ Purification	0	0
TOTAL CO ₂ COMPRESSION & PURIFICATION	0	0
COOLING WATER SYSTEM	14,892	23
ACCESSORY ELECTRIC PLANT	79,591	122
INSTRUMENTATION & CONTROL	22,864	35
IMPROVEMENTS TO SITE	29,362	45
BUILDING & STRUCTURES	9,971	15
TOTAL PLANT COST (TPC)	523,247	804
OWNER'S COSTS		
Preproduction Costs		
6 Months All Labor	4,130	-
1 Month Maintenance Materials	585	-
1 Month Non-fuel Consumables	240	-
25% of 1 Months Fuel Cost at 100% CF	2,507	-
2% of TPC	10,465	-
Total Preproduction Costs	17,927	
Inventory Capital		
60-day supply of fuel and consumables at 100% CF	439	-
0.5% of TPC (spare parts)	2,616	-
Total Inventory Capital	3,055	-
Initial Cost for Catalyst and Chemicals	790	-
Land	300	-
Other Owner's Costs	78,487	-
Financing Costs	14,128	-
TOTAL OWNER'S COSTS	114,687	1
TOTAL OVERNIGHT COST (TOC)	637,933	981
TASC Multiplier	1.093	
TOTAL AS-SPENT COST (TASC)	697,261	1072

Exhibit 5-41. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – O&M Costs

Case:	PNGFC4A				Cost Base:	Apr 201
Plant Size (MW, net):		650			Capacity Factor:	85%
		Оре	erating & Maint	enance Labor		
Ope	rating Labor			Operating Labo	r Requirements per Sh	ift
Operating Labor Rate (base):		38.50	\$/hour	Skilled Operator:	1.0	
Operating Labor Burden:		30.00	% of base	Operator:	3.3	
Labor O-H Charge Rate:		25.00	% of labor	Foreman:	1.0	
				Lab Techs, etc.:	1.0	
				Total:	6.3	
			Fixed Operati	ng Costs		
					Annual Co	st
					(\$)	(\$/kW-net)
				Annual Operating Labor:	\$2,630,628	\$4.0
				Maintenance Labor:	\$3,976,674	\$6.1
			Admii	nistrative & Support Labor:	\$1,651,826	\$2.5
			Pro	perty Taxes and Insurance:	\$10,464,932	\$16.0
				Total:	\$18,724,060	\$28.7
			Variable Opera	ting Costs		
					(\$)	(\$/MWh-ne
				Maintenance Material:	\$5,965,011	\$1.2
			Stack Replac	ement		
		Life (y)	\$/kW AC	\$/y per kW		
SOFC Stack Replacement Cost		7.3	\$212	\$23.38	\$15,209,844	\$3.2
			Consuma	bles		
	Initial Fill	Per Day	Per Unit	Initial Fill		
Water (gal/1000):	0	364	\$1.90	\$0	\$214,400	\$0.0
Makeup and Waste Water Treatment Chemicals (lb):	0	2,549	\$0.28	\$0	\$217,503	\$0.0
NG Desulfur TDA Adsorbent (lb):	41,989	1018	\$6.03	\$253,181	\$1,904,971	\$0.3
ATR Catalyst (m³):	892	0.6	\$601.76	\$536,816	\$114,539	\$0.0
			Subtotal:	\$789,997	\$2,451,414	\$0.5
			Waste Dis	posal		
ATR Catalyst (m³):	0	0.6	\$0.00	\$0	\$0	\$0.0
			Subtotal:	\$0	\$0	\$0.0
	Varia	ble Operatin	g Costs Total:	\$789,997	\$23,626,269	\$4.8
			Fuel Co			
Natural Gas (MMBtu):	0	74,601	\$4.42	\$0	\$102,305,402	\$21.1

Exhibit 5-42. Case PNGFC4A – Advanced Pressurized NGFC Plant without CCS – Capital Cost Components

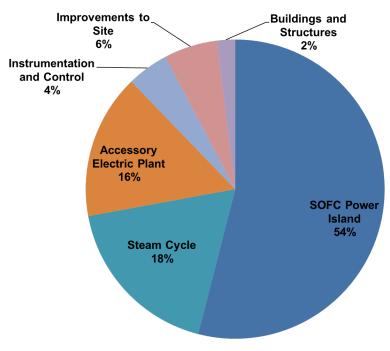


Exhibit 5-43. Case PNGFC4B - Advanced Pressurized NGFC Plant with CCS - BOP Cost Distribution

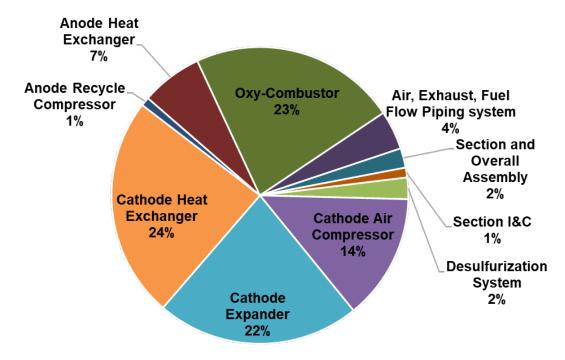


Exhibit 5-44. Case 4 – Advanced Pressurized NGFC Plant with and without CCS – Levelized Cost of Electricity

Levelized Cost of Electricity (2018\$/MWh)						
Carbon Capture	With CCS	No CCS				
Component	\$/1	//Wh				
Variable Costs	27.5	26.0				
Fuel Costs	22.1	21.1				
Variable O&M Costs	5.4	4.9				
Fixed O&M Costs	5.4	3.9				
Capital Costs	14.6	10.2				
Total LCOE (excluding T&S)	47.6	40.0				
T&S	2.6	0.0				
Total LCOE (including T&S)	50.2	40.0				

5.3 PATHWAY 2 RESULTS

Over the course of Pathway 2 for the cases with CCS, LCOE decreased by \$10.3/MWh and HHV efficiency increased by 7 percentage points as seen in Exhibit 5-45. The results for the Pathway 2 cases without capture are summarized in Exhibit 5-46.

Exhibit 5-45. Pathway 2 – Pressurized NGFC Plants with CCS Results Summary

Case		Case 0	Case 1	Case 2	Case 3	Case 4
Internal Reformation	on (%)	60 1			00	
SOFC Degradation	SOFC Degradation Rate (%/1000 h)			0.2		
Fuel Utilization (%)		80		8		
Capacity Factor (%)		8	30		85	
Inverter Efficiency	(%)		9	7		98
SOFC Stack Cost (\$,	/kW)		22	25		200
	1	Performance				
	Current Density (mA/cm²)	400	400	400	400	400
SOFC (Parameters)	Cell Potential (V)	0.904	0.898	0.898	0.868	0.868
(Farameters)	Power Density (mW/cm²)	362	359	359	347	347
Gross Power (kWe)		805,089	830,082	830,082	740,186	737,413
Auxiliary Loads (kW	(e)	154,900	180,096	180,096	90,225	87,342
Air Separation Ur	nit (kWe)	23,336	20,242	20,242	10,012	7,282
CO₂ Drying, Purifi	ication and Compression (CPU) (kWe)	24,458	24,277	24,277	22,183	21,918
Blowers (kWe)		98,711	127,861	127,861	51,081	50,471
Steam Cycle and	Miscellaneous (kWe)	8,395	7,715	7,715	6,949	6,887
Net Power (kWe)		650,189	649,987	649,987	649,962	650,071
NG Flowrate (lb/h)	NG Flowrate (lb/h)		159,945	159,945	146,200	144,458
Net Electric Efficiency, HHV (%)		61.1	61.5	61.5	67.3	68.1
Net Plant Heat Rate	Net Plant Heat Rate, HHV (Btu/kWh)		5,549	5,549	5,072	5,011
CO ₂ Capture rate (%	6)	97.7	97.7	97.7	97.9	97.9
CO ₂ Captured (tonn	es per year)	1,324,217	1,314,654	1,396,819	1,279,612	1,264,343
CO ₂ Emissions (lb/N	//Whgross)	14.2	14.5	14.5	11.6	11.5
CO ₂ Emissions (lb/N	//Whnet)	17.6	18.5	18.5	13.2	13.1
Raw Water Consum	nption (gpm/MWnet)	1.88	1.55	1.55	1.35	1.34
		Cost				
Total Plant Cost (TP	PC) (1000\$)	922,304	927,010	927,010	757,361	739,234
Total Overnight Cos	st (TOC) (1000\$)	1,125,577	1,131,492	1,131,428	924,124	902,154
Total As-Spent Cost	(TASC) (1000\$)	1,250,355	1,258,432	1,258,363	1,024,360	1,000,222
Levelized Cost of El	ectricity (\$/MWh)					
Variable Costs		31.2	31.0	30.7	28.2	27.5
Fuel Costs		24.7	24.5	24.5	22.4	22.1
Variable O&M	Variable O&M Costs		6.5	6.2	5.8	5.4
Fixed O&M Costs		7.0	7.0	6.6	5.5	5.4
Capital Costs		19.4	19.5	18.4	15.0	14.6
Total LCOE (exclu	ding T&S)	57.6	57.6	55.7	48.7	47.6
T&S		2.9	2.9	2.9	2.6	2.6
Total LCOE (inclu	ding T&S)	60.5	60.5	58.6	51.3	50.2

Exhibit 5-46. Pathway 2 – Pressurized NGFC Plants without CCS Results Summary

	Case	Case 0	Case 1	Case 2	Case 3	Case 4	
Internal Reformati	ion (%)		60 1			100	
SOFC Degradation	SOFC Degradation Rate (%/1000 h)			0.2	ı		
Fuel Utilization (%	Fuel Utilization (%)			8	35		
Capacity Factor (%	s)	8	80		85		
Inverter Efficiency	(%)		9	7		98	
SOFC Stack Cost (\$	/kW)		22	25		200	
	Peri	ormance					
	Current Density (mA/cm²)	400	400	400	400	400	
SOFC (Parameters)	Cell Potential (V)	0.852	0.845	0.845	0.825	0.825	
(i didilicters)	Power Density (mW/cm²)	341	338	338	330	330	
Gross Power (kWe))	783,508	794,567	794,567	722,228	721,488	
Auxiliary Loads (kW	Ve)	133,384	144,518	144,518	71,573	70,979	
Air Separation U	nit (kWe)	16,980	15,330	15,330	0	0	
CO₂ Drying, Purif	fication and Compression (CPU) (kWe)	0	0	0	0	0	
Blowers (kWe)		110,856	123,320	123,320	67,325	66,744	
Steam Cycle and	Miscellaneous (kWe)	5,548	5,868	5,868	4,248	4,235	
Net Power (kWe)		650,124	650,049	650,049	650,655	650,509	
NG Flowrate (lb/h)	NG Flowrate (lb/h)		120,055	120,055	139,050	137,850	
Net Electric Efficier	ncy, HHV (%)	61.4	59.9	59.9	70.7	71.3	
Net Plant Heat Rat	e, HHV (Btu/kWh)	5,558	5,695	5,695	4,823	4,782	
CO ₂ Capture rate (9	%)	0.0	0.0	0.0	0.0	0.0	
CO ₂ Captured (toni	nes per year)	0	0	0	0	0	
CO ₂ Emissions (lb/I	MWhgross)	494.6	500.1	500.1	464.9	461.4	
CO ₂ Emissions (lb/I	MWhnet)	596.2	611.3	611.3	516.5	512.1	
Raw Water Consun	mption (gpm/MWnet)	1.29	1.39	1.39	0.72	0.71	
		Cost					
Total Plant Cost (Ti	PC) (1000\$)	618,812	629,499	629,499	520,503	506,808	
Total Overnight Co	st (TOC) (1000\$)	759,605	772,409	772,365	638,092	621,494	
Total As-Spent Cos	t (TASC) (1000\$)	856,504	872,450	872,402	715,509	697,261	
Levelized Cost of E	lectricity (\$/MWh)						
Variable Costs		26.2	24.3	23.9	26.6	26.0	
Fuel Costs		20.4	18.4	18.4	21.3	21.1	
Variable O&M Costs		5.8	5.8	5.5	5.3	4.9	
Fixed O&M Costs	S	4.9	5.0	4.7	3.9	3.9	
Capital Costs		13.3	13.5	12.7	10.4	10.2	
Total LCOE		44.4	42.8	41.4	41.0	40.0	

6 DISCUSSION OF PATHWAY RESULTS

The impact of the technological developments and the cost reduction assumptions considered in the present pathway studies on the performance and cost of an NGFC plant are discussed in this section. The results from the various cases are consolidated to provide guidance to the fuel cell R&D program at NETL. Further, the NGFC system performance and costs are compared with conventional heat-engine technologies, specifically, the supercritical (SC) pulverized coal (PC) and F-class NGCC plants from the Baseline study [1], J-class NGCC plants [25], NG-based supercritical CO₂ (sCO₂) systems [26], [27] wherever applicable.

System Performance and Efficiency

The efficiencies of the various NGFC plants considered in the two pathways are shown in Exhibit 6-1. For an atmospheric NGFC plant without CCS, the HHV efficiency varies from a value of 61.6 percent for the reference plant to a value of 68.8 percent for the Case 4 advanced plant with complete internal reformation. Inclusion of CCS imposes an efficiency penalty of ≈3–3.5 percentage points. Pressurization generally results in an increase in efficiency over the atmospheric NGFC cases except for the Reference Case and Case 1 without CCS due to the additional injection of natural gas required to get the desired turbine inlet temperature in these pressurized cases. The atmospheric NGFC plant with VGR (and with CCS) results in an efficiency value of 69.3 percent, which is higher than most of the plants, including the plants without CCS, and is second only to the Case 4 pressurized system without CCS. The VGR concept enables operating at a fuel utilization of 97.5 percent while the in-stack utilization is maintained below 60 percent. The VGR configuration enables an NGFC plant with CCS that is ≈4 percentage points higher than a comparable atmospheric NGFC plant without VGR.

As expected with the underlying SOFC technology advantages, the NGFC efficiencies are significantly higher than the values for comparable conventional technologies including the SC PC and F-class NGCC plants with CCS [1] shown in the Exhibit 6-1. The reference atmospheric NGFC plant without CCS eclipses the system performance of both an advanced H-class NGCC plant and an NG-based Allam-cycle Supercritical CO₂ plant (SCO₂), whose HHV efficiencies are between 53 and 54 percent, [25], [26] by over 7 percentage points. The efficiency advantage relative to the conventional plants increases to over 20 percentage points with the advances in NGFC technology (Case 4).

The technology advancement from 60 percent internal reformation to 100 percent internal reformation has the highest influence on the system efficiency in the case of plants without CCS as indicated by the waterfall plot in Exhibit 6-2. The absence of cathode gas recirculation in the pressurized cases amplifies the beneficial impact of the increase in internal reformation percentage on the system efficiency due a substantial reduction in the process airflow. For atmospheric NGFC plants with CCS, the benefits of VGR significantly outweigh benefits from other technological advancements as shown in Exhibit 6-3. The BOP enhancements resulted only in modest gains since the ASU parasitic is lower for the 100 percent internal reformation cases (Case 4 for all the configurations), which have significantly lower O₂ requirement relative to Case 1 and Case 2 plants due to the elimination of the ATR.

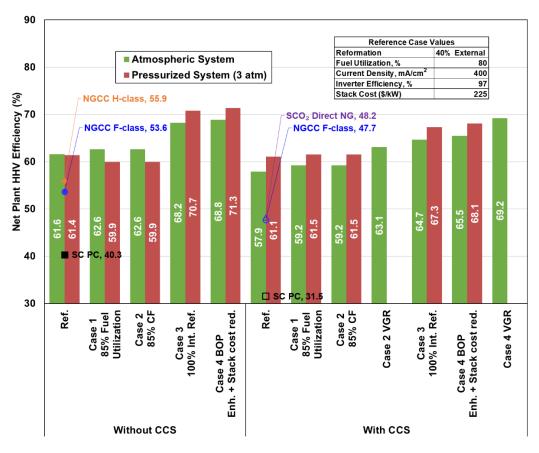
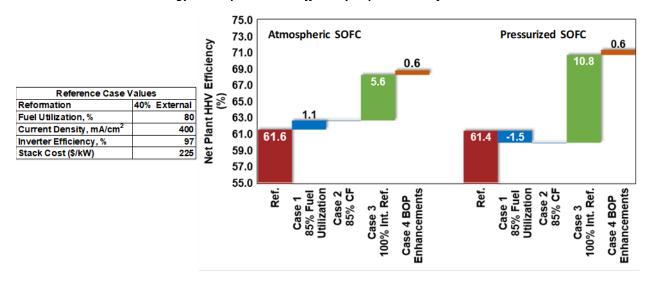



Exhibit 6-1. HHV Efficiency of the NGFC Plant Configurations

Exhibit 6-2. Technology Developments and Efficiency Improvements for NGFC Plants without CCS

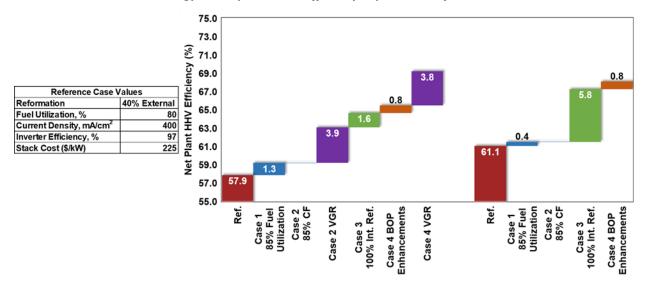


Exhibit 6-3. Technology Developments and Efficiency Improvements for NGFC Plants with CCS

6.1 NGFC PLANT COSTS

The 100 percent internal reformation case results in the lowest TPC for the NGFC plants without CCS, as shown in Exhibit 6-4, attributable to the high plant efficiency and to the elimination of the external reformer. The pressurized configurations generally result in a higher TPC relative to the atmospheric systems primarily due to the increased enclosure (pressure vessel) costs, which negate any efficiency advantages of pressurization on the capital costs. The TPC of NGFC plants with CCS are considerably lower than the TPC of other technologies with CCS while the NGFC plant costs without CCS are competitive even with F-Class NGCC units.

The LCOE (without T&S) of the reference NGFC plant with CCS is lower by ≈\$14/MWh than the LCOE of an F-class NGCC system with CCS as shown in Exhibit 6-5. The advanced NGFC plants with CCS are projected to result in LCOEs that are ≈\$23–60/MWh lower than the LCOE of all the other technologies. In the case of systems without CCS, the NGFC systems are economically competitive with the F-class NGCCs. The VGR configuration substantially mitigates the LCOE penalty of CCS (by nearly half). The components of the LCOE of NGFC systems with and without T&S costs are shown in Exhibit 6-6 and Exhibit 6-7 respectively, which show the reduction in capital and variable O&M (fuel) components along the pathways.

The difference in LCOEs between an NGFC plant with and without CCS is significantly smaller than the corresponding penalties for conventional technologies. The SOFC is essentially an oxyfuel reactor, and along with the sealed design generally used to separate the air and fuel, it forms a highly effective inherent carbon separator (that produces power); it produces a concentrated CO₂ effluent that is ready for CCS with minimal incremental costs. This underscores the leading role played by SOFC-based systems in meeting NETL's environmental vision.

158

¹ The LCOE for H-class have been estimated to be ~\$36/MWh in the study by Uysal [25]. However, these were not included on the charts since the costs are based on a 1 GW plant capacity and the financial parameters used are different than the baseline studies.

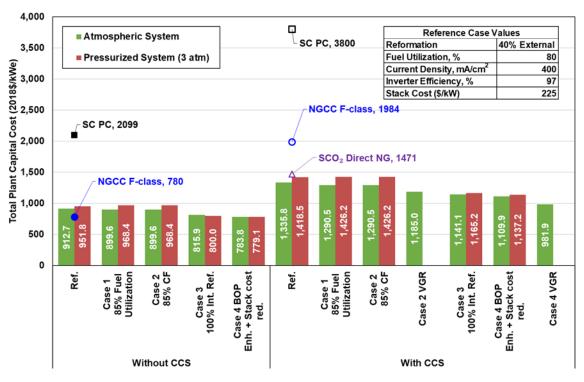
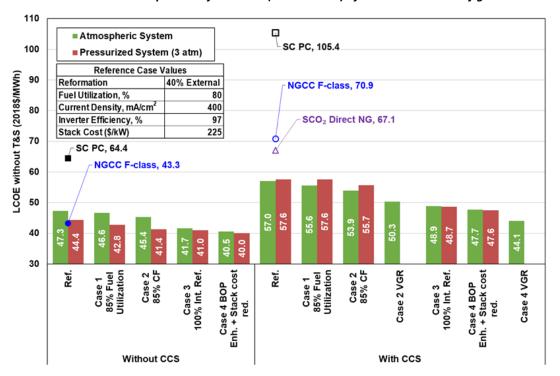



Exhibit 6-4. Comparison of the Total Plant Cost of the NGFC Plant Configurations

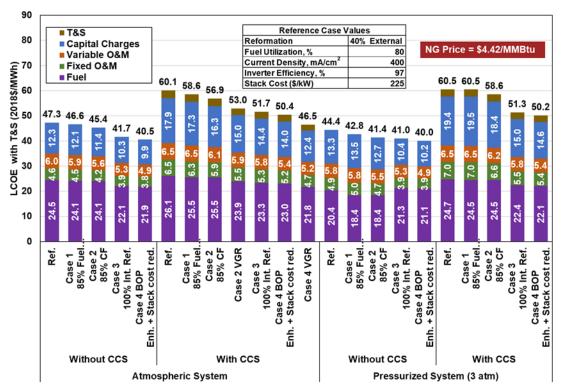
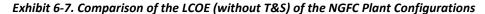
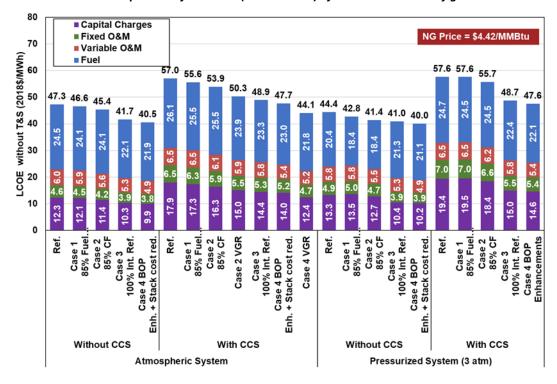




Exhibit 6-6. LCOE Breakdown (with T&S) of the NGFC Plant Configurations

The progression of LCOE with pathway technology developments, cost reductions, and increased availability are shown in Exhibit 6-8 and Exhibit 6-9 for the NGFC plants without and

with CCS respectively. In the case of NGFC plants without CCS, the largest reduction in LCOE, \approx \$3.7/MWh, is associated with the technology advancement to enable 100 percent internal reformation. The VGR configurations yields the largest LCOE reduction (\approx \$3.6/MWh) for the NGFC plants with CCS. The pathways, which represent practical and realizable steps consistent with the fuel cell program, lead to a NGFC system with capture that has a significantly low LCOE (at a natural gas price of \$4.42/MMBtu) relative to conventional heat-engine based technologies with CCS. The pathways also lead to NGFC plants without CCS that are economically competitive with F-class and J-class NGCC plants.

Although pressurization does not appear to have a significant advantage in the cases analyzed here, pressurized configurations could be found to be attractive as a hybrid system where operational flexibility aspects may be attractive.

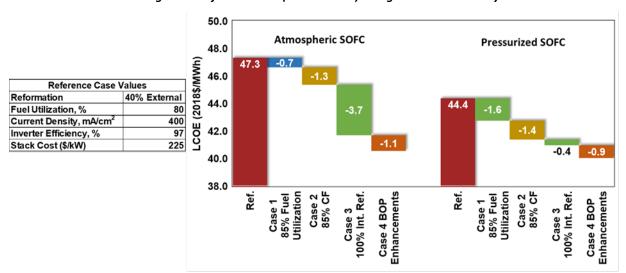
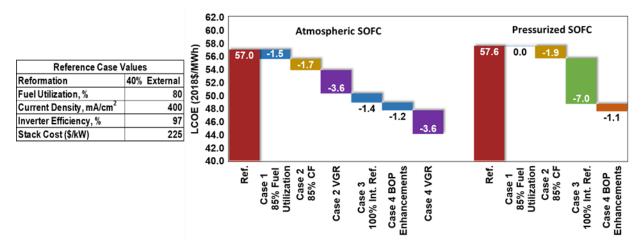



Exhibit 6-8. Progression of Plant LCOE (without T&S) along the NGFC Pathway without CCS

Exhibit 6-9. Progression of Plant LCOE (without T&S) along the NGFC Pathway with CCS

6.2 COST OF CO₂ CAPTURED

The breakeven CO_2 sales price (the price of CO_2 that is required to pay for the difference in LCOE between a plant with and without CCS) for the pathway NGFC cases are shown in Exhibit 6-10. All the atmospheric NGFC plants and advanced pressurized plants considered herein have a breakeven CO_2 sales price that is well below the \$40/tonne of CO_2 generally considered to be an achievable selling price for pure CO_2 for EOR purposes. The NGFC system with the VGR configuration results in a break-even price that is below \$15/tonne, which could make this system highly competitive with other CO_2 sources.

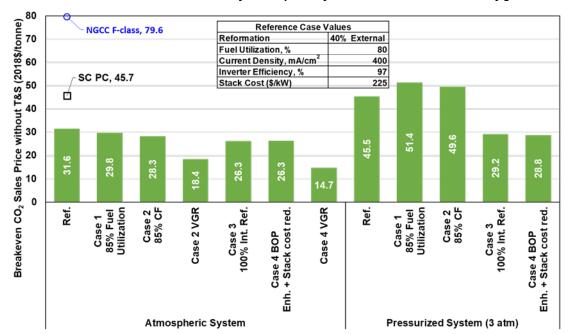


Exhibit 6-10. Break-even Sales Price of CO2 Captured for the Various NGFC Plant Configurations

6.3 WATER CONSUMPTION

The NGFC plants result in significantly lower water consumption compared to SC PC and NGCC plants as shown in Exhibit 6-11. The NGFC plant water consumption is dominated by steam-cycle the cooling water make-up requirements. Without the steam bottoming cycle, the advanced NGFC plant Case 3 and Case 4 with 100 percent internal reformation do not require any external steam and can result in a net production of water (not shown in the figure).

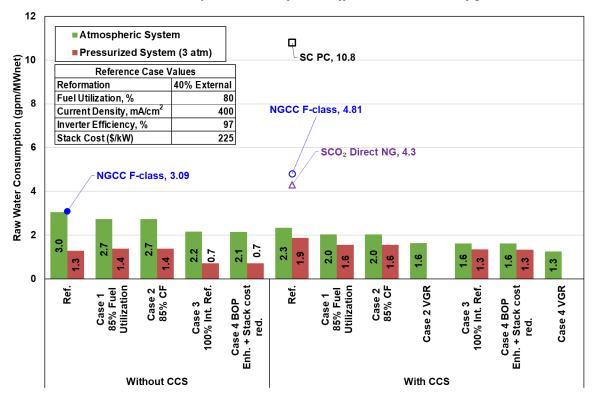


Exhibit 6-11. Water Consumption Variation for the Different NGFC Plant Configurations

6.4 Effect of Natural Gas Price

The LCOE of the reference NGFC plant (Case 0) and the best advanced NGFC plant (Case 4 with VGR) with CCS is shown in Exhibit 6-12 as function of natural gas price. The variation of the LCOE of a conventional F-class NGCC plant with CCS is also shown along with the LCOE of an SC PC plant, which does not depend directly on the price of natural gas. While both the NGFC and the NGCC plant LCOEs increase with increase in the price of natural gas, the slope of the dependency is less steep for the for the former (NGFC) relative to the latter (NGCC) due to the higher plant efficiencies. The NGFC plants with CCS show a significant economic advantage relative to other systems at natural gas prices between \$2–15/MMBtu. Even at high natural gas prices, the advanced NGFC plant maintain a significant advantage relative to an SC PC plant although IGFC plants may become competitive.

In plants without CCS, there is a natural gas price (\approx \$8/MMBtu) beyond which the conventional NGFC units overcome the slight LCOE advantage of the NGCC plant at low gas prices as shown in Exhibit 6-13. While the advanced NGFC configuration without CCS is economically advantageous relative to NGCC systems, the SC PC system becomes competitive at natural gas prices > \approx \$9/MMBtu.

Exhibit 6-12. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plants with CCS

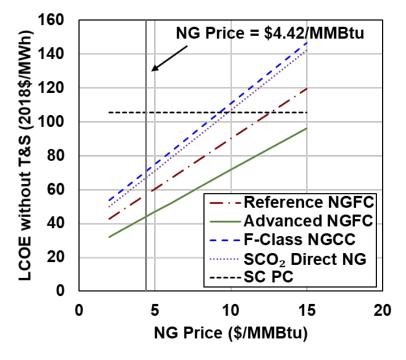
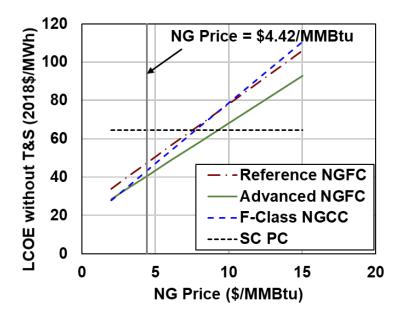



Exhibit 6-13. Influence of Natural Gas Price on the LCOE (excl. T&S) of NGFC Plants without CCS

7 CONCLUSIONS

The performance and costs of potential development pathways for NGFC plant configurations with and without CCS have been investigated. Two pathway scenarios were considered based on the operating pressure of the SOFC. The performance and cost benefits were estimated for a series of projected gains made through the development of advances in the component technologies or improvements in plant costs and availability.

The results for the NGFC pathways were compared with conventional heat-engine based technologies and showcased the potential future benefits of NGFC technology development.

In summary,

- Technology development and cost reduction steps that can cumulatively result in an increase of over 12 percentage points in NGFC plant efficiency accompanied by over 23 percent reduction in the associated LCOE were identified and quantified.
- Development of technologies that enable internal reformation of the natural gas, along
 with the implementation of the VGR concept for plants with CCS, had the highest impact
 on the LCOE of the NGFC plant. The advanced NGFC plant based on complete internal
 reformation of the natural gas and VGR, which has the highest efficiency and lowest
 LCOE among all the plants considered in this report, fits well within the DOE
 transformational technology timeframe.
- The advanced NGFC plant with complete internal reformation and VGR has the lowest CO₂ emission footprint and the lowest water consumption relative to any other conventional power generation technology without CCS.
- The LCOE for the NGFC power plant with CCS is attractive compared to the conventional NGCC with CCS. The LCOE of NGFC plants without CCS were also found to be competitive with NGCC technologies. The competitiveness of NGFC without CCS increases as the price of natural gas increases due to the much higher efficiency of the NGFC plants, although higher natural gas prices may tend to favor coal-based plants.
- The results presented in this study are for SOFC systems operating at a nominal current density of 400 mA/cm² consistent with today's technology. Operating at higher current densities could potentially reduce the capital costs (since a lower number of SOFCs may be needed to achieve the desired power rating) while increasing production costs due to the concomitant loss of efficiency. The usage of PNNL ROM model enables the evaluation of the trade-off between these costs, which intended to be explored elsewhere as part of sensitivity studies.

8 REFERENCES

- [1] National Energy Technology Laboratory, "Cost and Performance for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity," Revision 4, June 2019.
- [2] National Energy Technology Laboratory, Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases, 2012.
- [3] National Energy Technology Laboratory, "Techno-Economic Analysis of Natural Gas Fuel Cell Plant Configurations," April 8, 2015.
- [4] National Energy Technology Laboratory, "Techno-Economic Analysis of Integrated Gasification Fuel Cell Systems," November 24, 2014.
- [5] A. Khuri and S. Mukhopadhyay, "Response Surface Methodology," WIREs Comp Sta, vol. 2, no. 2, p. 128, 2010.
- [6] B. Koeppel, C. Lai, A. Iyengar, Z. Xu and G. Hackett, "Use of a Reduced Order Model (ROM) to Simulate SOFC Performance in System Models," in Electrochemical Society (ECS) Transactions, 2017.
- [7] K. Lai, B. Koeppel, K. Choi, K. Recknagle, X. Sun, L. Chick, V. Korolev and M. Khaleel, "A Quasi-two-dimensional Electrochemistry Modeling Tool for Planar Solid Oxide Fuel Cell Stacks," *J. Power Sources*, vol. 196, no. 6, p. 3204, 2011.
- [8] EG&G Technical Services, Fuel Cell Handbook, 7th Edition, 2004.
- [9] K. Huang and J. Goodenough, Solid Oxied Fuel Cell Technology: Principles, Performance and Operations, Woodhead Publishing, 2009.
- [10] National Energy Technology Laboratory, "Cost and Performance for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity," 2010.
- [11] H. Udesen, "Advantages of Large Capacity Plants Producing a Variety of Products," in 19th AFA Int'l Fertilizer Technical Conference & Exhibition, Daha-Qatar, 2006.
- [12] T. Sundset, J. Sogge and T. Strom, "Evaluation of Natural Gas Based Synthesis Gas Production Technologies," *Catalysts Today*, vol. 21, pp. 269-278, 1994.
- [13] G. O. Alptekin, "Sorbents for Desulfurization of Natural Gas, LPG and Transportations Fuels," in *Sixth Annual SECA Workshop*, Pacific Grove, CA, April, 2004.
- [14] National Energy Technology Laboratory, "QGESS: CO2 Impurity Design Parameter," March 2012.
- [15] "Top 20 Shipping Container Home Designs and their Costs 2018," [Online]. Available: https://www.24hplans.com/top-20-shipping-container-home-designs-and-their-costs. [Accessed August 2018].

- [16] National Energy Technology Laboratory, "The Impact of Scale-up and Production Volume on SOFC Manufacturing Cost," April 2, 2007.
- [17] National Renewable Energy Laboratory, "U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017," NREL, September, 2017.
- [18] S. Vora, SECA Program at Siemens Westinghouse, Siemens Westinghouse, 2005.
- [19] National Energy Technology Laboratory, QGESS Carbon Dioxide Transport and Storage Costs in NETL Studies, NETL, September 30, 2013.
- [20] National Energy Technology Laboratory, "Advanced Oxy-combustion Technology for Pulverized Bituminous Coal Power Plants," NETL, April 20, 2015.
- [21] A. Darde, R. Prabahakar, J.-P. Tranier and P. Nicolas, "Air Separation and Flue Gas Compression and Purification Units for Coal Combustion Systems," *Energy Procedia*, vol. 1, pp. 527-534, 2009.
- [22] G. Agrawal, "Advances in Fuel Cell Blowers," Pittsburgh, PA, 2009.
- [23] V. White and R. Allam (Air Products and Chemicals), "Purification of Carbon dioxide". USA and Europe Patent US 656914 and EP 1 953 486, 2013.
- [24] B. Ha (Air Liquide), "CO2 Separation Apparatus Process for Oxy Combustion Coal Power Plants". USA Patent US 8,268,050, 2012.
- [25] S. Uysal, "Sensitivity and Techno-economic Analysis for Turbine Cooling Technologies for Higher Combined Cycle Efficiency," National Energy Technology Laboratory, Pittsburgh, December 19, 2018.
- [26] R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, W. Brown, T. Sasaki, M. Itoh and J. Manning, "Demonstration of the Allam Cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture," vol. 114, p. 5948 5966, 2017.
- [27] N. Weiland and C. White, "Performance and Cost Assessment of a Natural Gas-Fueled Direct SCO2 Power Plant," National Energy Technology Laboratory, March 15, 2019.

