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What are the most informative data to reduce uncertainty (6)
and derisk technology optimization and scale-up?

Science-based Design of Experiments[>4]

How do we sequentially choose the
experimental conditions (¢) that will

maximize information gain?
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Batch Crystallization Example

A batch cooling crystallization system is defined using population
balance equationsl®! to determine the kinetic parameters for the
driving mechanisms of crystallization: nucleation and growth.
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Notation

u;: i-th moment of the crystal size distribution
B,: Primary nucleation rate

B.: Secondary nucleation rate

G: Crystal growth rate

T Operating temperature of the system
S Cooling rate (°C min-T)

Cerys: Solute concentration in the liquid
M: Solids concentration in the slurry

S: Relative supersaturation

Csat: Saturation concentration at operating
temperature T

A, B, C: Solubility quadratic fit parameters

lowers (i.e., cooling crystallization).

How can we systematically explore

information of different cooling rates
(i.e., B=0, 0.1, 0.2, and 0.3 °C min")?

k.. Crystal shape factor
e: Power density (W/kg)

kbp: Primary nucleation rate constant
p: Primary nucleation exponent
kp,: Secondary nucleation rate

constant
s1. Secondary nucleation exponent
ky: Crystal growth rate constant

g: Crystal growth rate exponent

0 = {kg' kbp' kbsl 9D, Sl}

¢ = {B}

Goal: Utilize science-based design of experiments to understand
which cooling rates are the most informative and compare to

current experimental best practices.
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* |ncorporate uncertainty quantification for batch
crystallization studies.

* Perform enumerative exploratory analysis to evaluate
experimental design space.

Automate DoE workflow for cooling crystallization.
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