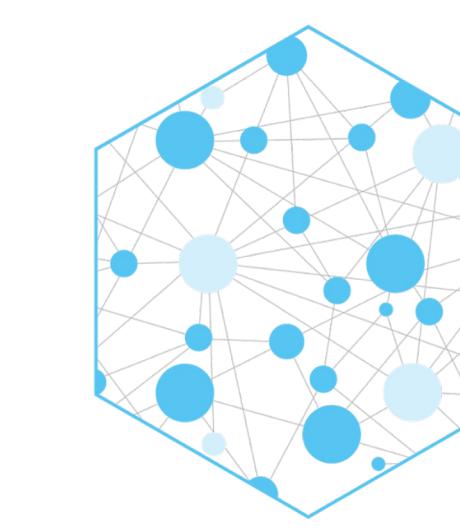
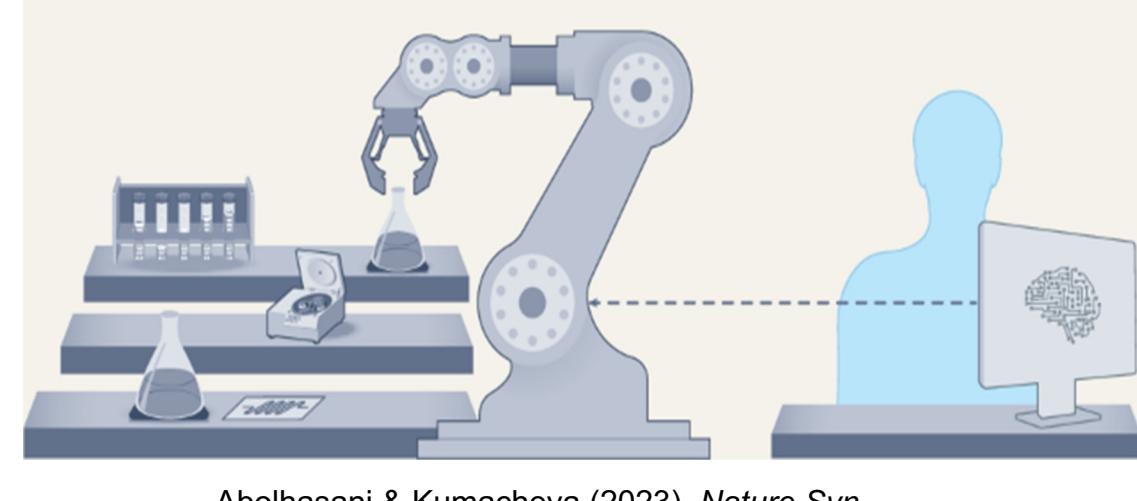


Hailey Lynch^a, Aaron Bjarnason^b, Daniel Laky^a, Cameron Brown^b, Alexander W. Dowling^a

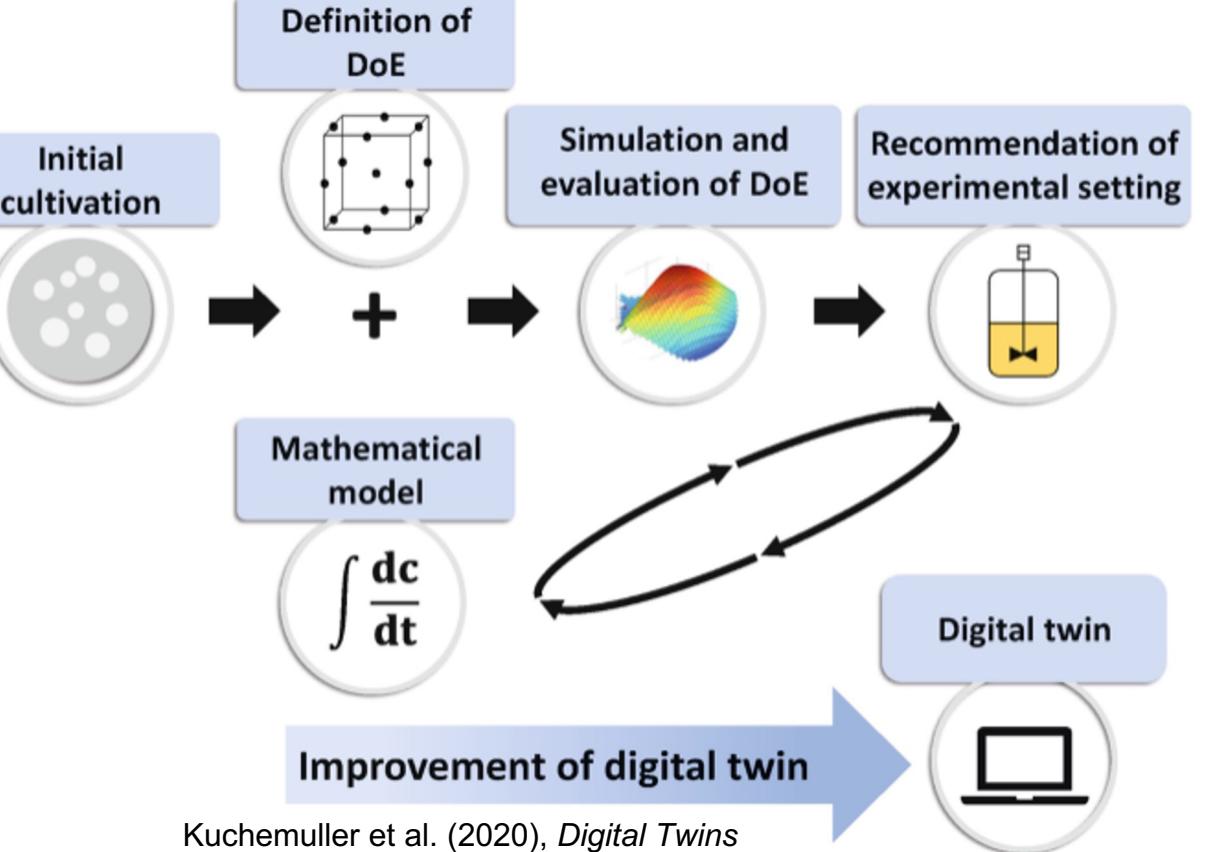
^aDepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
^bEPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow G1 1RD, UK



Advances in Design of Experiments^[1,2]

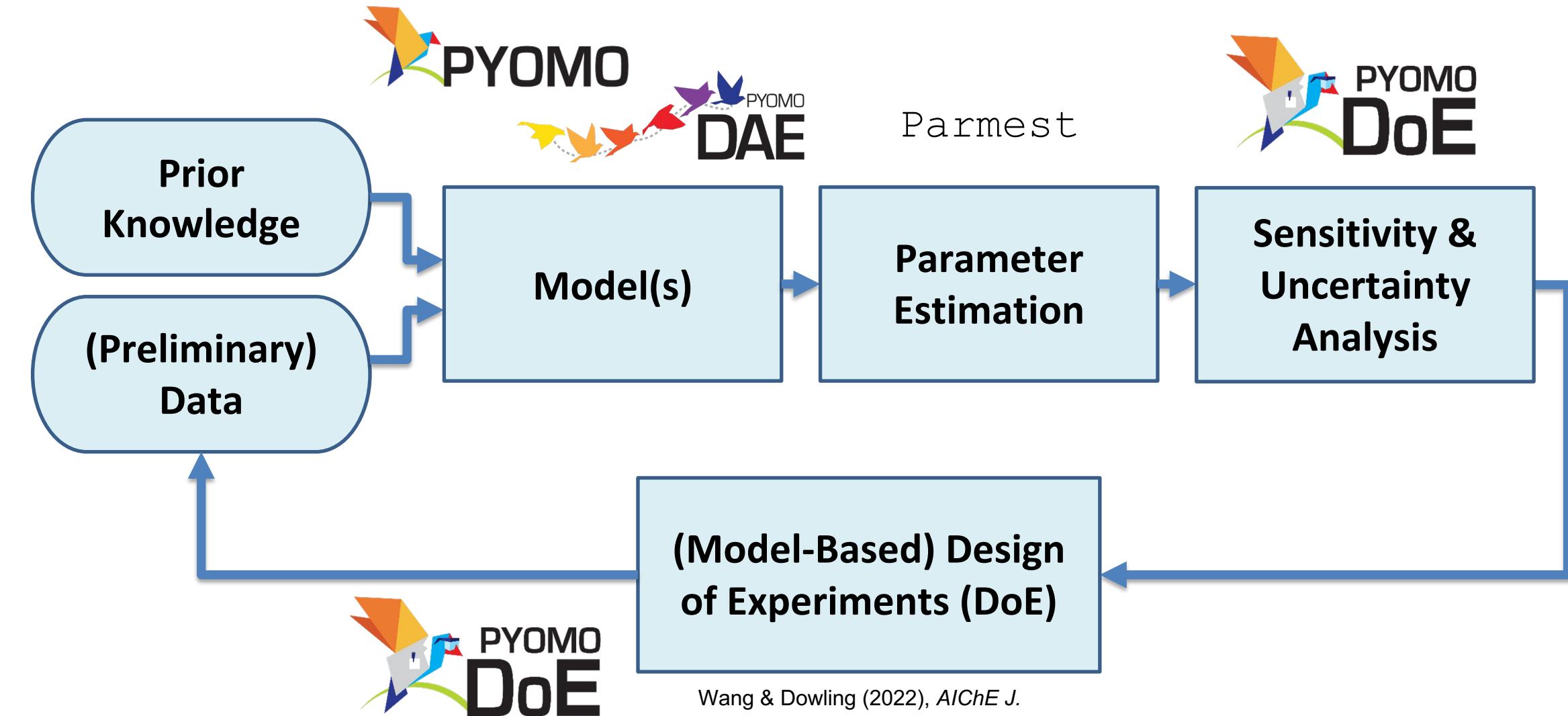


Adaptive sequential experiment optimization makes more accurate digital twins.



Self-driving laboratories select the next best experimental conditions for maximizing material performance.

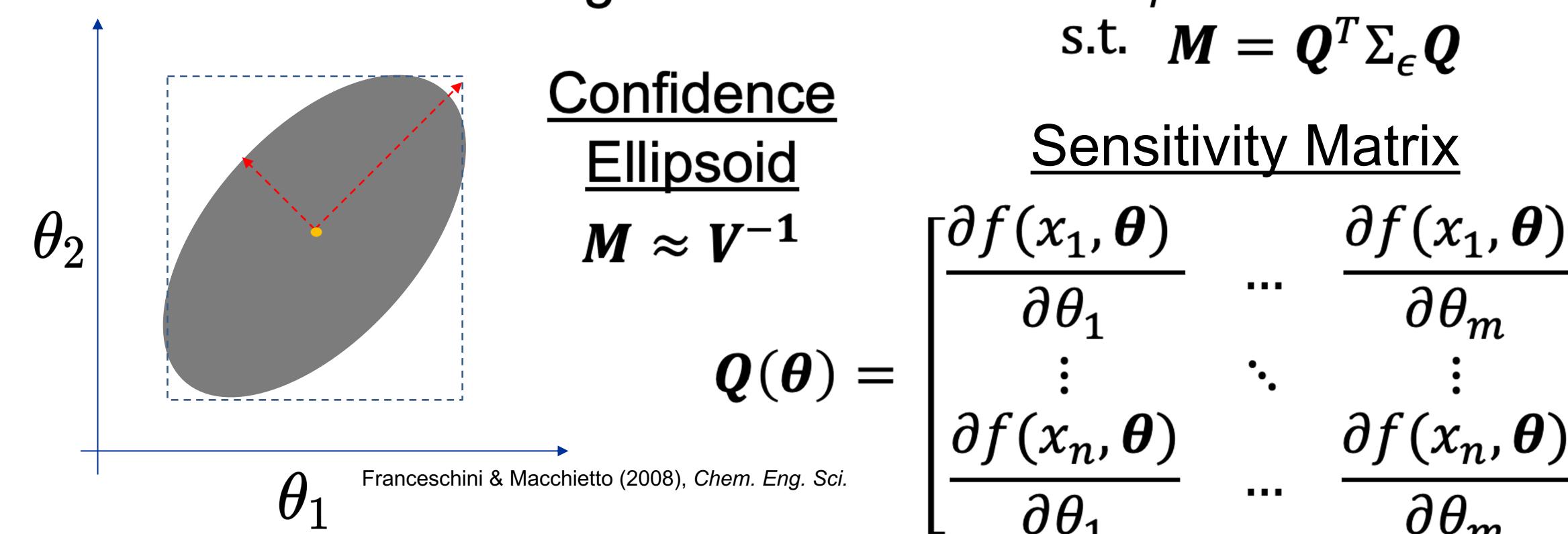
Science-based Modeling Workflow^[3,4]



What are the most informative data to reduce uncertainty (θ) and derisk technology optimization and scale-up?

Science-based Design of Experiments^[3,4]

How do we sequentially choose the experimental conditions (φ) that will maximize information gain?



Optimization Problem

$$\underset{\varphi}{\operatorname{argmax}} \mathbf{M}(\hat{\theta}, \varphi)$$

$$\text{s.t. } \mathbf{M} = \mathbf{Q}^T \Sigma_{\epsilon} \mathbf{Q}$$

Sensitivity Matrix

$$\mathbf{Q}(\theta) = \begin{bmatrix} \frac{\partial f(x_1, \theta)}{\partial \theta_1} & \dots & \frac{\partial f(x_1, \theta)}{\partial \theta_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_n, \theta)}{\partial \theta_1} & \dots & \frac{\partial f(x_n, \theta)}{\partial \theta_m} \end{bmatrix}$$

Goal: Utilize science-based design of experiments to understand which cooling rates are the most informative and compare to current experimental best practices.

Batch Crystallization Example

A batch cooling crystallization system is defined using population balance equations^[5] to determine the kinetic parameters for the driving mechanisms of crystallization: nucleation and growth.

Method of Moments

$$\begin{aligned} \frac{d\mu_0}{dt} &= B_p + B_s \\ \frac{d\mu_1}{dt} &= G\mu_0 \\ \frac{d\mu_2}{dt} &= 2G\mu_1 \\ \frac{d\mu_3}{dt} &= 3G\mu_2 \\ \frac{dT}{dt} &= -\beta \\ \frac{dC_{\text{crys}}}{dt} &= -\rho_{\text{crys}} k_v \frac{d\mu_3}{dt} \\ \frac{dM_T}{dt} &= -\frac{dC_{\text{crys}}}{dt} \end{aligned}$$

Birth and Growth Rate

$$\begin{aligned} B_p &= k_{b_p} S^p \\ B_s &= \epsilon M_T k_{b_s} S^{s_1} \\ G &= k_g S^{g_1} \end{aligned}$$

Saturation Concentration

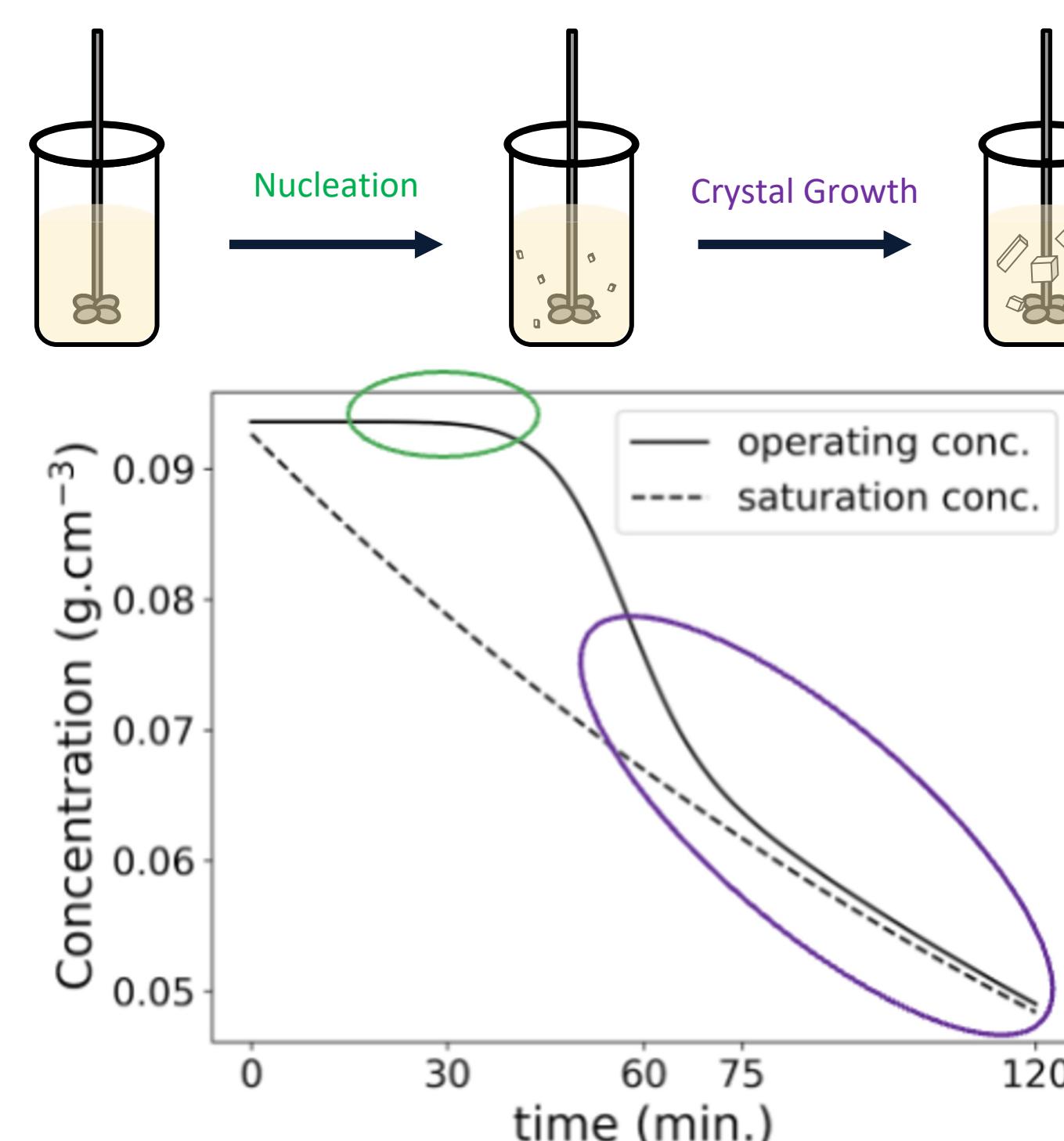
$$\begin{aligned} S &= \frac{C - C_{\text{sat}}}{C_{\text{sat}}} \\ C_{\text{sat}} &= A + BT + CT^2 \end{aligned}$$

Initial Conditions

$$\begin{aligned} \mu_i(0) &= \mu_{i, \text{seed}} \\ T(0) &= T_0 \\ C_{\text{crys}}(0) &= C_0 \end{aligned}$$

Notation

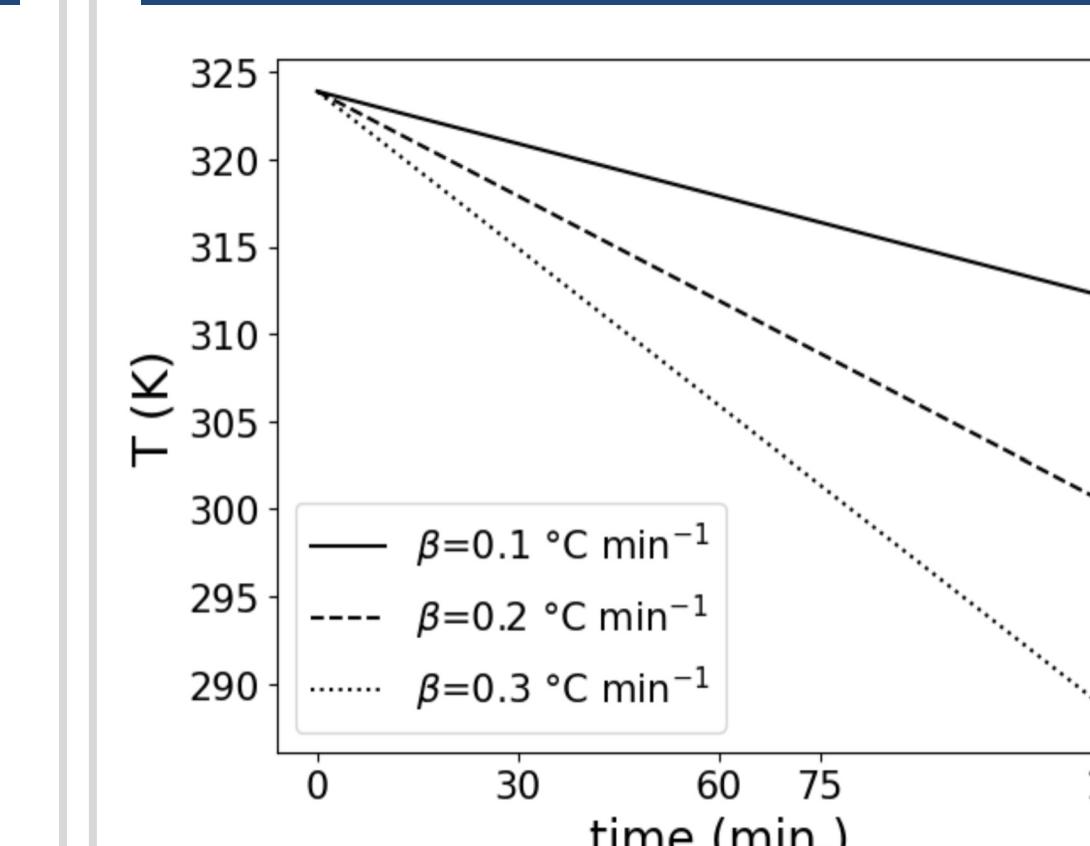
$$\begin{aligned} \mu_i &: i\text{-th moment of the crystal size distribution} \\ B_p &: \text{Primary nucleation rate} \\ B_s &: \text{Secondary nucleation rate} \\ G &: \text{Crystal growth rate} \\ T &: \text{Operating temperature of the system} \\ \beta &: \text{Cooling rate } (\text{°C min}^{-1}) \\ C_{\text{crys}} &: \text{Solute concentration in the liquid} \\ M_T &: \text{Solids concentration in the slurry} \\ S &: \text{Relative supersaturation} \\ C_{\text{sat}} &: \text{Saturation concentration at operating temperature } T \\ A, B, C &: \text{Solubility quadratic fit parameters} \\ k_v &: \text{Crystal shape factor} \\ \epsilon &: \text{Power density (W/kg)} \\ k_{b_p} &: \text{Primary nucleation rate constant} \\ p &: \text{Primary nucleation exponent} \\ k_{b_s} &: \text{Secondary nucleation rate constant} \\ s_1 &: \text{Secondary nucleation exponent} \\ k_g &: \text{Crystal growth rate constant} \\ g &: \text{Crystal growth rate exponent} \end{aligned}$$



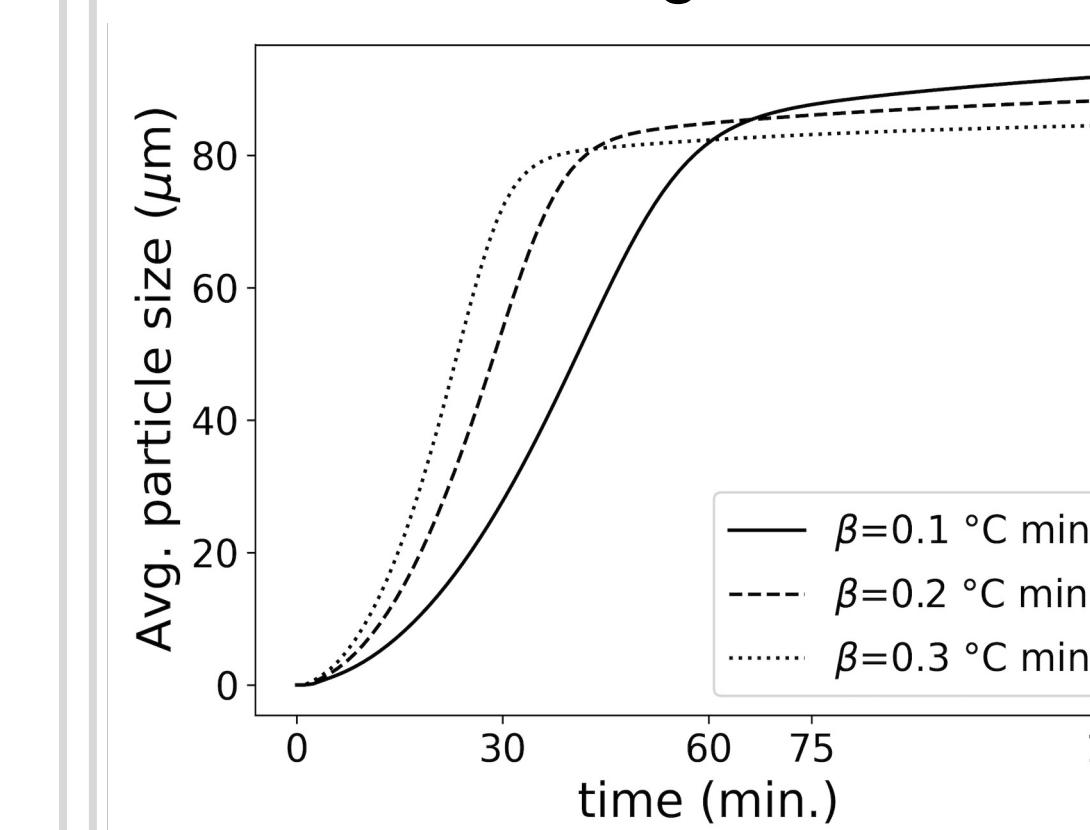
Supersaturation occurs as solubility is reduced when the temperature lowers (i.e., cooling crystallization).

How can we systematically explore information of different cooling rates (i.e., $\beta=0, 0.1, 0.2, \text{ and } 0.3 \text{ °C min}^{-1}$)?

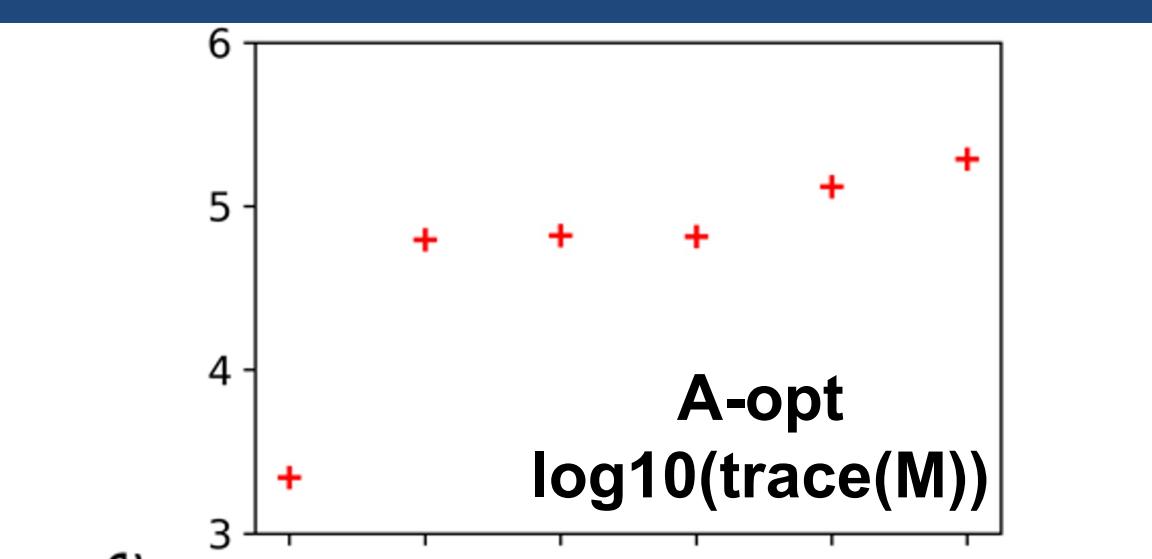
Conclusions



Low cooling rate (i.e., $\beta=0.1$) provides the most information rich experiment.



Aligns with heuristic that lower cooling rates give more information on growth kinetics.



Experiment set of β values (°C min^{-1})
Multiple experiments (i.e., $\beta=0.2+\beta=0.3$ and $\beta=0.1+\beta=0.2+\beta=0.3$) lead to higher A-, D-, and E-optimality.

Future Work

- Incorporate uncertainty quantification for batch crystallization studies.
- Perform enumerative exploratory analysis to evaluate experimental design space.
- Automate DoE workflow for cooling crystallization.

Acknowledgements

Acknowledgment: This effort was funded by the U.S. Department of Energy's Process Optimization and Modeling for Minerals Sustainability (PrOMMIS) Initiative, supported by the Office of Fossil Energy and Carbon Management's Office of Resource Sustainability. University of Notre Dame College of Engineering Lyman Taylor & W Stuart Fund; Remick Graduate Fellowship in Engineering. For more information, please contact Thomas Tarka, PrOMMIS Technical Director (Thomas.Tarka@netl.doe.gov). Contact: Alexander W. Dowling, adwolng@nd.edu

Disclaimer: This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or any of their contractors.

References

- [1] Abolhasani, M., and Eugenia K., (2023) The rise of self-driving labs in chemical and materials sciences, *Nature Synthesis*, 2, 483-492.
- [2] Kuchemuller, K.B., Pörtner, R., and Möller, J. (2021) Digital twins and their role in model-assisted design of experiments, *Digital Twins: Applications to the Design and Optimization of Bioprocesses*, 29-61.
- [3] Wang, J., and Dowling, A.W. (2022) Pyomo.DoE: An open-source package for model-based design of experiments in Python, *AIChE Journal*, 68(12): e17813.
- [4] Franceschini, Gaia, and Sandro Macchietto. (2008) Model-based design of experiments for parameter precision: State of the art, *Chemical Engineering Science*, 63(19), 4846-4872.
- [5] Hulbert, H.M and Katz, S. Some problems in particle technology: A statistical mechanical formulation, *Chemical Engineering Science* 19 (8)