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Self-driving laboratories 
select the next best 
experimental conditions 
for maximizing material 
performance.

Adaptive sequential 
experiment optimization makes 
more accurate digital twins.

• Incorporate uncertainty quantification for batch 
crystallization studies.

• Perform enumerative exploratory analysis to evaluate 
experimental design space.

• Automate DoE workflow for cooling crystallization.
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Optimization Problem

A batch cooling crystallization system is defined using population 
balance equations[5] to determine the kinetic parameters for the 
driving mechanisms of crystallization: nucleation and growth.
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Nucleation Crystal Growth

Method of Moments

Notation

Birth and Growth Rate

Saturation Concentration

Initial Conditions

Supersaturation occurs as solubility 
is reduced when the temperature 
lowers (i.e., cooling crystallization).

Goal: Utilize science-based design of experiments to understand 
which cooling rates are the most informative and compare to 
current experimental best practices.

Aligns with heuristic that lower 
cooling rates give more 
information on growth kinetics.

A-opt
log10(trace(M))

D-opt
log10(det(M))

E-opt
log10(min(eig(M)))

𝜃 = {𝑘!, 𝑘"! , 𝑘"" , 𝑔, 𝑝, 𝑠#}
𝜑 = {𝛽}

Low cooling rate (i.e., 𝛽=0.1) 
provides the most information 
rich experiment.

What are the most informative data to reduce uncertainty (𝜃) 
and derisk technology optimization and scale-up? 𝜇!: 𝑖-th moment of the crystal size distribution

𝐵": Primary nucleation rate
𝐵#: Secondary nucleation rate
𝐺: Crystal growth rate
𝑇: Operating temperature of the system
𝛽: Cooling rate (°C min-1)
𝐶$%&': Solute concentration in the liquid
𝑀(: Solids concentration in the slurry
𝑆: Relative supersaturation
𝐶')*: Saturation concentration at operating 
temperature 𝑇
𝐴, 𝐵, 𝐶: Solubility quadratic fit parameters

Multiple experiments (i.e., 𝛽=0.2+𝛽=0.3 
and 𝛽=0.1+𝛽=0.2+𝛽=0.3 ) lead to 
higher A-, D-, and E-optimality.

𝑘+: Crystal shape factor
𝜖: Power density (W/kg)
𝑘,! : Primary nucleation rate constant
𝑝: Primary nucleation exponent
𝑘,": Secondary nucleation rate 
constant
𝑠-: Secondary nucleation exponent
𝑘.: Crystal growth rate constant
𝑔: Crystal growth rate exponent

How can we systematically explore 
information of different cooling rates 
(i.e., 𝛽=0, 0.1, 0.2, and 0.3 °C min-1)?
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