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1 Fractional-Step Method

A comprehensive, multiphase computational fluid dynamics (CFD) simulation solves several coupled
transport equations including continuity, momentum, species, and energy. Chemical reactions further
couple these equations through heats of reaction and rates of formation of products and rates of
destruction of reactants. A fractional-step method separates changes attributed to chemical reactions
from transport phenomena like convection and diffusion. When the governing equations are split into
the transport and reacting components, efficient and independent methodologies can be exploited to
solve the different systems. Specifically, discretization of field variable transport equations results in
large, sparse matrices which are loosely coupled. These systems are solved in succession using iterative
techniques that take advantage of the matrix structure. In contrast, chemical reactions tightly couple
field variables locally within the domain (e.g., within a single computational cell) resulting in low-
dimensional but dense, nonlinear systems that are better solved using direct integration techniques.

In the following sections, an overview of the mathematical models is provided in the context of
the fractional-step method. Next, the systems of ODEs constructed and solved by the stiff chemistry
solver is outlined. Lastly, the solution algorithm and details on mapping the ODE solutions into MFiX
arrays is reviewed.

2 Mathematical Models

In the fractional-step method, the solution is advanced from tn to tn+1 by solving the transport
equations without interphase mass and enthalpy transfer source terms. Specifically, the solution of the
previous time step, ϕn

j = ϕj(t
n), is advanced to an intermediate solution, ϕ̂n+1

j . The new time solution,

ϕn+1
j , is then obtained by directly integrating the intermediate state with the chemical reaction source

terms.
ϕn
j

transport−−−−−−→ ϕ̂n+1
j

reactions−−−−−→ ϕn+1
j

The following subsections provide a brief overview of the fluid and continuous and discrete solids
mathematical models in MFiX. For each, the full model is described, then the model is separated into
the transport and chemical reaction components. For brevity, the following discussions do not include
the momentum equations. The momentum equations do not contain chemical reaction source terms
and therefore are included when solving the transport equations.

2.1 Fluid phase model

The fluid phase (gas) species mass and continuity equations are

∂

∂t
(εgρgXg,n) +

∂

∂xi
(εgρgUgiXg,n) =

∂

∂xi

(
Dg,n

∂Xg,n

∂xi

)
+Rg,n (1)
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and

∂

∂t
(εgρg) +

∂

∂xi
(εgρgUgi) =

Ng∑
n=1

Rg,n . (2)

εg, ρg, Xg,n and Ugi are the fluid phase volume fraction, material density, n-th species mass fraction,
and i-th velocity component, respectively. Dg,n is the diffusion coefficient; Ng is the total number of
fluid phase species; and Rg,n is the rate of production (or consumption) of the n-th fluid species. The
energy balance for the fluid phase is

εgρgCpg

[
∂Tg

∂t
+ Ugi

∂Tg

∂xi

]
= −∂qgi

∂xi
−∆Hg + STg . (3)

where Cpg and Tg are the fluid phase specific heat and temperature. The first two terms on the right
side represent intra-phase heat conduction and the net heat of reaction for the fluid. The last term is a
generalized source term which may include contributions from inter-phase heat transfer and radiative
heat transfer among others. An overview of how the heat of reaction is computed and partitioned
between phases is provided in [7] in addition to a detailed review of the complete fluid model.

2.1.1 Fluid transport equations

In the absence of phase change and chemical reactions, the fluid equations Eqs. (1)-(3) simplify to

∂

∂t
(εgρgXg,n) +

∂

∂xi
(εgρgUgiXg,n) =

∂

∂xi

(
Dg,n

∂Xg,n

∂xi

)
(4)

∂

∂t
(εgρg) +

∂

∂xi
(εgρgUgi) = 0 , (5)

and

εgρgCpg

[
∂Tg

∂t
+ Ugi

∂Tg

∂xi

]
= −∂qgi

∂xi
+ STg . (6)

For brevity, the fluid momentum equations are omitted; however, it should be noted that the momen-
tum equations are solved along with Eqs. (4)-(6) as part of transport update.

2.1.2 Fluid chemical reaction equations

Neglecting transport effects, the fluid equations reduce to

d

dt
((ερ)gXg,n) = Rg,n , (7)

d

dt
(ερ)g =

Ng∑
n=1

Rg,n , (8)

and
dTg

dt
=
−∆Hg

(ερ)gCpg
. (9)

The apparent density is denoted by (ερ)g to highlight that this is the term the chemistry solver
updates.1

2.2 Continuous solids model (TFM)

The TFM m-th solids phase n-th species mass and continuity equations are

∂

∂t
(εmρmXm,n) +

∂

∂xi
(εmρmUmiXm,n) =

∂

∂xi

(
Dm,n

∂Xm,n

∂xi

)
+Rm,n, (10)

1MFiX contains field arrays for fluid volume fraction, εg , material density, ρg , and apparent density (ερ)g = εgρg .
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and

∂

∂t
(εmρm) +

∂

∂xi
(εmρmUmi) =

Nm∑
n=1

Rm,n . (11)

εm, ρm, Xm,n and Umi are the m-th solids phase volume fraction, material density, n-th species mass
fraction, and i-th velocity component, respectively. Dm,n is the diffusion coefficient2; Nm is the total
number of m-th solids phase species; and Rm,n is the rate of production (or consumption) of the m-th
solids phase n-th species. The energy balance for the m-th solids phase is

εmρmCpm

[
∂Tm

∂t
+ Umi

∂Tm

∂xi

]
= −∂qmi

∂xi
−∆Hm + STm (12)

where Cpm and Tm are the m-th solids phase specific heat and temperature. The first two terms on
the right side represent intra-phase heat conduction and the net heat of reaction. The last term is a
generalized source term that may include contributions from inter-phase heat transfer and radiative
heat transfer among others. A complete review of the continuous solids model is provided in [7].

2.2.1 TFM solids transport equations

In the absence of phase change and chemical reactions, the m-th solids phase equations Eqs. (10)-(12)
simplify to

∂

∂t
(εmρmXm,n) +

∂

∂xi
(εmρmUmiXm,n) =

∂

∂xi

(
Dm,n

∂Xm,n

∂xi

)
, (13)

∂

∂t
(εmρm) +

∂

∂xi
(εmρmUmi) = 0 (14)

and

εmρmCpm

[
∂Tm

∂t
+ Umi

∂Tm

∂xi

]
= −∂qmi

∂xi
+ STm. (15)

As previously noted, the momentum equations are omitted for brevity; however, the m-th solids phase
momentum equations are solved along with Eqs. (13)-(15) as part of the transport update.

2.2.2 TFM solids chemical reaction equations

Neglecting transport effects, the m-th solids phase equations reduce to

d

dt
((ερ)mXm,n) = Rm,n, (16)

d

dt
((ερ)m) =

Nm∑
n=1

Rm,n, (17)

and
dTm

dt
=
−∆Hm

(ερ)mCpm
. (18)

Again, the apparent density for the m-th solids is denoted (ερ)m to highlight that this is the term the
chemistry solver updates.3.

2By default, the diffusion coefficient for a TFM dispersed phase is zero, therefore Eq. (10) reduces to

∂

∂t
(εmρmXm,n) +

∂

∂xi
(εmρmUmiXm,n) = Rm,n

.
3MFiX contains field arrays for solids material density, ρm, and apparent density, (ερ)m. Solids volume fraction is

always computed from these arrays, εm = (ερ)m/ρm
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2.3 Discrete particle models

MFiX contains three Lagrangian discrete particle models (DPM): DEM (discrete element method)
where individual particles are tracked and each collision is resolved [2], Coarse-Grained Particle (CGP)
where coarse-grained parcels instead of real particles are tracked and collision forces are calculated using
the collision diameter of the computational parcel [4], and PIC (multiphase particle-in-cell) that uses a
solids stress to model interactions between statistical groups of particles that share the same physical
characteristics (e.g., temperature, density, composition, etc.) [1]. While the equations for motion
are very different for DEM, CGP, and PIC, they share nearly identical thermodynamic models. For
simplicity and without loss of generality, this discussion refers to DPM elements as particles, although
PIC ‘particles’ are more commonly referred to as parcels or clouds.

The p-th particle n-th species mass and total mass balance are given by

d(mpXp,n)

dt
= Rp,n (19)

and

dmp

dt
=

Np∑
n=1

Rp,n. (20)

mp and Xp,n are the particle mass and n-th species mass fraction; Rp,n is the rate of production (or
consumption) of the n-th particle species; and Np is the number of species that comprise the particle.
The p-th particle energy balance is

mpCp,p
dTp

dt
= −∆Hp + STp (21)

where Tp and Cp,p are the particle temperature and specific heat. ∆Hp is the net heat of reaction for
the particle, and STp is a generalized source term that may include inter-phase heat transfer, particle-
particle heat transfer, particle-wall heat transfer, and radiation effects4. Additional information on
the particle thermodynamic models is provided in [5, 6].

2.3.1 DPM solids transport equations

DPM solids mass and species mass are constant in the absence of phase change and chemical reactions;
however, the energy balance Eq. (21) reduce to

mpCp,p
dTp

dt
= STp . (22)

As with the fluid and TFM solids models, particle position and velocity updates are omitted for brevity;
however they are included along with Eq. (22) in the transport update for particles.

2.3.2 DPM solids chemical reaction equations

Considering only chemical reaction sources, the DPM equations for the p-th particle are

d(mpXp,n)

dt
= Rp,n, (23)

dmp

dt
=

Np∑
n=1

Rp,n, (24)

and
dTp

dt
=
−∆Hp

mpCp,p
. (25)

4The MFiX-PIC model does not include particle-particle or particle-wall heat transfer.
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3 Implementation

The fractional-step (stiff chemistry) solver implemented in MFIX assumes that the continuous (fluid)
phase is always present while continuous and discrete solids are included ‘as-needed’ based on local
conditions. Specifically, the stiff solver always integrates fluid quantities5 but only integrates solids
quantities if solids are present in the computational cell.

This section begins by describing the fractional-step implementation for the continuous solids model
(TFM) followed by the implementation for the dispersed particle models. Although the implementa-
tions are similar there are minor differences in the order in which terms are updated. Then details of
the algorithmic implementation are provided, followed by key aspects of mapping the ODE solution
into MFiX field variables.

3.1 Continuous solids

The MFiX fractional-step implementation for TFM is illustrated in Figure 1. In general, the workflow
is as follows:

1. The fluid momentum and transport equations (4)-(6) and the TFM solids momentum and trans-
port equations (13)-(15) are solved. This advances the fluid and TFM solids field variables from

ϕn
j = ϕj(t

n) to the intermediate state, ϕ̂n+1
j .

ϕn transport−−−−−−→
fluid&
solids

ϕ̂n+1

An overview of the iterative solution algorithm is provided in [9].

2. Using the intermediate state solutions as the initial conditions, the fluid and TFM solids chemical
reaction equations are integrated to complete the time advance from tn to tn+1.

ϕ̂n+1 reaction−−−−−→
fluid&
solids

ϕn+1

Because the solids material and species densities are typically much larger than those in the fluid
phase, Eqs. (16)-(17) are normalized by dividing by the bulk density of solid from the transport

equation’s solution, (ε̂ρ)m. Using a ‘dot’ to indicate the normalized values, e.g., ˙(ερ)m = (ερ)m/(ε̂ρ)m,
the normalized solids n-th species mass and mass balance equations for chemical reactions are

d

dt
( ˙(ερ)mXm,n) = Ṙm,n (26)

d

dt
( ˙(ερ))m =

Nm∑
n=1

Ṙm,n (27)

The coupled ODE system is created by combining the fluid reaction equations (7)-(9) and TFM
solids chemical reaction equations (18),(26),(27). An example of the ODE system is provided in (28)
for a cell containing M solids phases. The first 2 + Ng equations group the fluid apparent density,
temperature and Ng species chemical reaction equations. The subsequent M blocks contain 2 + Nm

equations for each m-th solid phase. If a computational cell does not contain solids, only the fluid
equations are included.

5The solver skips cells when the absolute values of all reaction source terms fall below a minimum threshold value.

5



Figure 1: Illustration of solution algorithm in MFiX-TFM with fractional-step method. The grey
dashed line (center) encapsulates the algorithm for solving the transport equation. The dashed-dot
line (right) outlines the direct linear solver for the reaction equations.

d

dt



(ερ)g

Tg

(ερ)gXg,1

...

(ερ)gXg,Ng

T1

˙(ερ)1

˙(ερ)1X1,1

...

˙(ερ)1X1,N1

...

TM

˙(ερ)M

˙(ερ)MXM,1

...

˙(ερ)MXM,NM



=



∑Ng

n=1 Rg,n

−∆Hg/(ερ)gCp,g

Rg,1

...

Rg,Ng

−∆H1/(ερ)1Cp,1∑N1

n=1 Ṙ1,n

Ṙ1,1

...

Ṙ1,N1

...

−∆HM/(ερ)MCp,M∑NM

n=1 ṘM,n

ṘM,1

...

ṘM,NM



(28)
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3.2 Discrete particle model

The MFiX fractional-step implementation for DEM is illustrated in Figure 2. The workflow is as
follows:

1. The fluid momentum and transport equations (4)-(6) are solve, advancing the fluid field variables

from ϕn
j to the intermediate state, ϕ̂n+1

j .

ϕn
g

transport−−−−−−→
fluid

ϕ̂n+1
g

2. Next, the fluid and particle chemical reaction equations are integrated. This step completes the
fluid advance from time tn to tn+1 and advances particles to an intermediate state.

ϕ̂n+1
g

reaction−−−−−→
fluid

ϕn+1
g and ϕn

p
reaction−−−−−−→
particles

ϕ̂n+1
p

3. Lastly, particle position, velocity and transport equation (22) are solved to complete the update
to time tn+1.

ϕ̂n+1
p

transport−−−−−−→
particles

ϕn+1
p

This workflow differs from the TFM workflow in that particle positions, velocity and temperature are
updated after the chemistry solve. This is due, in part, to how the DPM models are coupled to the
fluid model.

Again, because particle material and species densities are typically much larger than those in the
fluid phase, Eqs. (23)-(24) are normalized by dividing by particle mass at the start of the time step.
Using a ‘dot’ to indicate the normalized values, e.g., ṁp = mp/mp(t

n), the normalized p-th particle
n-th species pass and mass balance equations are

d ˙(mXn)p
dt

= Ṙp,n (29)

and

dṁp

dt
=

Np∑
n=1

Ṙp,n. (30)

The coupled ODE system is created by combining the fluid reaction equations (7)-(9), and particle
chemical reaction equations (25),(29),(30). For a cell containing P particles, an example of the ODE
system is given by (31) where the first 2+Ng equations are the fluid apparent density, temperature
and Ng fluid species, and the subsequent P blocks contain 2+Np equations for each particle whose
center resides within the cell. If a cell does not contain any particles, then only the fluid equations are
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Figure 2: Illustration of solution algorithm in MFiX-DEM with fractional-step method. The grey
dashed line (center) encapsulates the algorithm for solving the transport equation. The dashed-dot
line (right) outlines the direct linear solver for the reaction equations.
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included.

d

dt



(ερ)g

Tg

(ερ)gXg,1

...

(ερ)gXg,Ng

T1

ṁ1

ṁ1X1,1

...

ṁ1X1,N1

...

TP

ṁP

ṁPXP,1

...

ṁPXP,NP



=



∑Ng

n=1 Rg,n

−∆Hg/(ερ)gCpg

Rg,1

...

Rg,Ng

−∆H1/m1Cp,1∑N1

n=1 Ṙ1,n

Ṙ1,1

...

Ṙ1,N1

...

−∆HP /mPCp,P∑NP

n=1 ṘP,n

ṘP,1

...

ṘP,NP



(31)

3.3 Algorithm details

A high level overview of the solution methodology is provided in Algo. (1) while Fig. 3 illustrates the
workflow along with with an explanation of each subroutine. In general, MFiX populates a 1D array
to create the right-hand side (RHS) of the ODE system. During the integration, the 1D array entries
are copied back into MFIX field/particle arrays to evaluate user-defined reaction rates which go into
forming the left-hand side (LHS) of the ODE system. The ODE integrator, DLSODA [3, 8], adjusts the
time step size ∆τ , sub-cycling if necessary, to achieve the desired solution accuracy.

Algorithm 1 MFiX chemistry integration algorithm

1: Copy MFiX field variables into Y, the LHS of Eq. (28)/(31). ▷ mapMFIXtoODE

2: τ ← 0
3: while τ < ∆t = (tn+1 − tn) do ▷ Call ODE integrator, DLSODA
4: Copy entries of Y into MFiX field variables. ▷ mapODEtoMFIX

5: Evaluate user-defined reaction rates ▷ USR RATES/USR RATES DES

6: Compute Ẏ, the RHS of Eq. (28)/(31) ▷ STIFF CHEM RRATES

7: Solve dY
dt = Ẏ to advance to τ ← τ +∆τ

8: end while
9: Copy entries of Y into MFiX field variables. ▷ mapODEtoMFIX

9



Figure 3: Workflow of subroutines used in the fractional-step method in MFiX. The first column
on the left explains the functions of each subroutine/function. The central column outlines the main
workflow, with different subroutines for TFM (named with ’ tfm’) and DEM (named with ’ dpm’)
models shown on the right.
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3.4 Mapping between ODEs and field variables

3.4.1 Continuous solids model

The solutions to Eqs. (18),(26),(27) provide updated values for solids temperature, normalized apparent
species densities, and normalized apparent density. The temperature is directly copied to the field
variable, Tm = TODE

m whereas the normalized apparent density is multiplied by the intermediate
apparent density value.

(ερ)m = (ε̂ρ)m ˙(ερ)
ODE

m

The ratio of the normalized apparent species density to normalized apparent density gives the solids
species mass fraction.

Xm,n =
˙(ερXn)

ODE

m

˙(ερ)
ODE

m

The change in solids mass can be accounted for in one of two ways:

• If the material density is constant, ρm = ρ0m, then the solids volume fraction either increases
when there is a net production of solids or decreases when there is a net consumption of solids.

εm = (ερ)m/ρm

• If the solids volume fraction is constant, then the material density changes with respect to particle
composition,

ρm = ρBm
XB

m,I

Xm,I
,

where ρBm is the baseline solids density, XB
mI is the baseline mass fraction of the inert solids

species, and XmI is the inert species current mass fraction. Details of the mixture solids density
model including expanded definitions of the baseline and inert species variables are provided in
[7].

The updated fluid volume fraction is computed from the solids volume fractions.

εg = 1−
∑
m

εm

3.4.2 Discrete particle model

The solutions to Eqs. (25),(29),(30) provide updated values for particle temperature, normalized species
mass and total mass, respectively. The temperature is directly copied to the particle array, Tp = TODE

p ,
while the normalized total mass is multiplied by the starting mass to obtain the updated particle mass.

mp = ṁODE
p mp(t

n)

The ratio of the normalized species mass and normalized total mass gives the species mass fraction.

Xp,n =
˙(mXn)

ODE

p

ṁODE
p

The change in solids mass can be accounted for in one of two ways:

• If the material density is constant, ρp = ρ0p, then the particle volume, Vp, either increases when
there is a net production of solids or decreases when there is a net consumption of solids.

Vp = mp/ρp

The diameter of the particle is updated from the new volume depending on the assumption of
particle shape (e.g. spherical or super-quadric).
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• If the solids volume is constant, then the material density changes with respect to particle
composition.

ρp = mp/Vp

Minor inconsistencies arise in the constant density (changing particle size) case. Specifically, the
deposition operation used to compute the Eulerian volume fraction field from Lagrangian particles
can spreads (and likely does spread) particle volume across multiple cells. Because the stiff chemistry
solver operates on a per-cell basis there is no way to efficiently update the volume fraction field. As a
result, the fluid and solids volume fraction fields lag behind the chemistry solve.

3.4.3 Fluid variables

The solutions to Eqs. (7)-(9) provide updated values for the fluid apparent species densities, apparent
density and temperature, respectively. The apparent density and temperature are directly stored,
(ερ)g = (ερ)ODE

g and Tg = TODE
g ) whereas the ratio of the apparent species densities to apparent

density is used to compute the species mass fractions.

Xg,n =
((ερ)gXg,n)

ODE

(ερ)ODE
g

The updated species mass fractions are used to update the mixture molecular weight,

MWg =

 Ng∑
n=1

Xg,n

MWn

−1

,

where MWn is the molecular weight of the n-th species. The fluid material density is computed from
the apparent density and volume fraction.

ρg = (ερ)g/εg.

Lastly, the updated density, temperature, and mixture molecular weight are used to update the fluid
pressure using the ideal gas law,

Pg =
ρgTgR

MWg
,

where R is the universal gas constant.
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