

NATIONAL ENERGY TECHNOLOGY LABORATORY

Current and Future Technologies for Natural Gas Combined Cycle (NGCC) Power Plants

June 10, 2013

DOE/NETL-341/061013

OFFICE OF FOSSIL ENERGY

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Current and Future Technologies for Natural Gas Combined Cycle Power Plants

DOE/NETL-341/061013

Final Report

June 10, 2013

NETL Contact:

Walter Shelton Technical Project Monitor Office of Program Planning & Analysis, Performance Division

> National Energy Technology Laboratory www.netl.doe.gov

Prepared by: Energy Sector Planning and Analysis (ESPA)

> Norma J. Kuehn Booz Allen Hamilton

Kajal Mukherjee WorleyParsons Group, Inc.

Paul Phiambolis WorleyParsons Group, Inc.

Lora Pinkerton WorleyParsons Group, Inc.

Elsy Varghese WorleyParsons Group, Inc.

> Mark C. Woods Booz Allen Hamilton

DOE Contract DE-FE0004001 Task 04001.341.01, Activity 021

Acknowledgments

This report was prepared by Energy Sector Planning and Analysis (ESPA) for the United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). This work was completed under DOE NETL Contract Number DE-FE0004001. This work was performed under ESPA Task 04001.341.01, Activity 021.

The authors wish to acknowledge the excellent guidance, contributions, and cooperation of the NETL staff, particularly:

Walter Shelton, NETL Technical Monitor

Kristin Gerdes

This page intentionally left blank.

Table of Contents

L	st of Exhibits	iii
L	st of Acronyms and Abbreviations	ix
E	ecutive Summary	1
1	Introduction	13
2	Design Criteria	15
	2.1 Site Description	15
	2.2 Product Specifications	16
	2.3 Natural Gas Design Fuel	16
	2.4 Plant Capacity Factor and Availability	
	2.5 Environmental Requirements	17
	2.6 Modeling Methodology	17
	2.7 Balance of Plant	20
	2.8 Cost Estimation Approach	20
3	Case 1 – State-of-the-art Gas Turbine – (7FA.05)	
	3.1 Case 1a – NGCC without CO ₂ Capture Modeling Results	
	3.1.1 Performance Results	25
	3.1.2 Major Equipment List	28
	3.1.3 Cost Estimate Results	
	3.2 Case 1b – NGCC with CO ₂ Capture Modeling Results	40
	3.2.1 Performance Results	
	3.2.2 Major Equipment List	45
	3.2.3 Cost Estimate Results	49
	3.3 Case 1c – NGCC with CO ₂ Capture and EGR Modeling Results	57
	3.3.1 Performance Results	59
	3.3.2 Major Equipment List	62
	3.3.3 Cost Estimate Results	67
4	Case 2 – State-of-the-art Gas Turbine – ("H" frame)	
	4.1 Case 2a – NGCC without CO ₂ Capture Modeling Results	
	4.1.1 Performance Results	
	4.1.2 Cost Estimate Results	
	4.2 Case 2b – NGCC with CO ₂ Capture Modeling Results	
	4.2.1 Performance Results	
	4.2.2 Cost Estimate Results	
	4.3 Case 2c – NGCC with CO ₂ Capture and EGR Modeling Results	
	4.3.1 Performance Results	
	4.3.2 Cost Estimate Results	
5	Case 3 – Advanced Gas Turbine – ("J" frame)	
	5.1 Case 3a – NGCC without CO ₂ Capture Modeling Results	
	5.1.1 Performance Results	
	5.1.2 Cost Estimate Results	
	5.2 Case $3b - NGCC$ with CO_2 Capture Modeling Results	
	5.2.1 Performance Results	
	5.2.2 Cost Estimate Results	
	5.3 Case $3c - NGCC$ with CO ₂ Capture and EGR Modeling Results	
	5.3.1 Performance Results	.140

5.3.2	Cost Estimate Results	143
Case 4	4 – Future Gas Turbine – ("X" frame)	
.1 C	Case 4a – NGCC without CO ₂ Capture Modeling Results	
6.1.1	Performance Results	153
6.1.2	Major Equipment List	156
6.1.3	Cost Estimate Results	
.2 0	Case 4b – NGCC with CO ₂ Capture Modeling Results	
6.2.1	Performance Results	170
6.2.2		
6.2.3		
.3 0	Case 4c – NGCC with CO ₂ Capture and EGR Modeling Results	
6.3.1	Performance Results	
6.3.2	Major Equipment List	
6.3.3	Cost Estimate Results	
Sumn	ary Comparison	
Apper	1dix	
	Case 4 .1 C 6.1.1 6.1.2 6.1.3 .2 C 6.2.1 6.2.2 6.2.3 .3 C 6.3.1 6.3.2 6.3.3 Sumn Reference	Case 4 – Future Gas Turbine – ("X" frame) .1 Case 4a – NGCC without CO ₂ Capture Modeling Results .1.1 Performance Results .1.2 Major Equipment List .1.3 Cost Estimate Results .2 Case 4b – NGCC with CO ₂ Capture Modeling Results .2 Case 4b – NGCC with CO ₂ Capture Modeling Results .2.1 Performance Results .2.2 Major Equipment List .2.3 Cost Estimate Results .3 Case 4c – NGCC with CO ₂ Capture and EGR Modeling Results .3 Case 4c – NGCC with CO ₂ Capture and EGR Modeling Results .3.1 Performance Results .3.2 Major Equipment List .3.2 Major Equipment List

List of Exhibits

Exhibit ES-1 Case descriptions	1
Exhibit ES-2 Case results summary	3
Exhibit ES-3 Plant capital costs	6
Exhibit ES-4 COE by cost component	7
Exhibit ES-5 COE sensitivity to natural gas price	8
Exhibit ES-6 COE sensitivity to capacity factor	9
Exhibit ES-7 COE sensitivity to CO ₂ plant gate sales price	10
Exhibit ES-8 CO ₂ emission rates	11
Exhibit 1-1 Historical and projected natural gas prices delivered to U.S. electric utilities	13
Exhibit 1-2 Case descriptions	
Exhibit 2-1 Site ambient conditions	15
Exhibit 2-2 Site characteristics	15
Exhibit 2-3 Carbon dioxide pipeline specification	16
Exhibit 2-4 Natural gas composition	16
Exhibit 2-5 BACT environmental design basis for natural gas cases	17
Exhibit 2-6 Turbine model specifications	19
Exhibit 2-7 Balance of plant requirements	20
Exhibit 2-8 Capital charge and TASC factors used to calculate COE	21
Exhibit 3-1 Case 1a - SOA turbine without CO ₂ capture block flow diagram	24
Exhibit 3-2 Case 1a - SOA turbine without CO ₂ capture stream table	25
Exhibit 3-3 Case 1a - SOA turbine without CO ₂ capture plant performance summary	26
Exhibit 3-4 Case 1a - SOA turbine without CO ₂ capture overall energy balance	27
Exhibit 3-5 Case 1a - SOA turbine without CO ₂ capture water balance	27
Exhibit 3-6 Case 1a - SOA turbine without CO ₂ capture carbon balance	27
Exhibit 3-7 Case 1a - SOA turbine without CO ₂ capture air emissions	28
Exhibit 3-8 Case 1a - SOA turbine without CO ₂ capture cost estimation summary	33
Exhibit 3-9 Case 1a - SOA turbine without CO ₂ capture capital cost estimate summary	34
Exhibit 3-10 Case 1a - SOA turbine without CO ₂ capture capital cost estimate detail	35
Exhibit 3-11 Case 1a - SOA turbine without CO ₂ capture operating cost estimate	39
Exhibit 3-12 Case 1b - SOA turbine with CO ₂ capture block flow diagram	41
Exhibit 3-13 Case 1b - SOA turbine with CO ₂ capture stream table	42
Exhibit 3-14 Case 1b - SOA turbine with CO ₂ capture plant performance summary	43
Exhibit 3-15 Case 1b - SOA turbine with CO ₂ capture overall energy balance	
Exhibit 3-16 Case 1b - SOA turbine with CO ₂ capture water balance	
Exhibit 3-17 Case 1b - SOA turbine with CO ₂ capture carbon balance	
Exhibit 3-18 Case 1b - SOA turbine with CO ₂ capture air emissions	
Exhibit 3-19 Case 1b - SOA turbine with CO ₂ capture cost estimation summary	
Exhibit 3-20 Case 1b - SOA turbine with CO ₂ capture capital cost estimate summary	51
Exhibit 3-21 Case 1b - SOA turbine with CO ₂ capture capital cost estimate detail	
Exhibit 3-22 Case 1b - SOA turbine with CO ₂ capture operating cost estimate	
Exhibit 3-23 Case 1c - SOA turbine with CO ₂ capture and EGR block flow diagram	
Exhibit 3-24 Case 1c - SOA turbine with CO ₂ capture and EGR stream table	
Exhibit 3-25 Case 1c - SOA turbine with CO_2 capture and EGR plant performance summary	
Exhibit 3-26 Case 1c - SOA turbine with CO ₂ capture and EGR overall energy balance	

Exhibit 3-27 Case 1c - SOA turbine with CO ₂ capture and EGR water balance	61
Exhibit 3-28 Case 1c - SOA turbine with CO ₂ capture and EGR carbon balance	62
Exhibit 3-29 Case 1c - SOA turbine with CO ₂ capture and EGR air emissions	62
Exhibit 3-30 Case 1c - SOA turbine with CO ₂ capture and EGR cost estimation summary	68
Exhibit 3-31 Case 1c - SOA turbine with CO_2 capture and EGR capital cost estimate summa	
	-
Exhibit 3-32 Case 1c - SOA turbine with CO ₂ capture and EGR capital cost estimate detail	
Exhibit 3-33 Case 1c - SOA turbine with CO_2 capture and EGR operating cost estimate	
Exhibit 4-1 Case $2a - "H"$ frame turbine without CO ₂ capture block flow diagram	
Exhibit 4-2 Case $2a - "H"$ frame turbine without CO_2 capture stream table	
Exhibit 4-2 Case $2a - "H"$ frame turbine without CO_2 capture stream table Exhibit 4-3 Case $2a - "H"$ frame turbine without CO_2 capture plant performance summary	
Exhibit 4-9 Case $2a - "H"$ frame turbine without CO_2 capture plant performance summary Exhibit 4-4 Case $2a - "H"$ frame turbine without CO_2 capture overall energy balance	
Exhibit 4-5 Case $2a - "H"$ frame turbing without CO ₂ capture water balance	
Exhibit 4-6 Case $2a - "H"$ frame turbine without CO ₂ capture carbon balance	
Exhibit 4-7 Case $2a - "H"$ frame turbine without CO ₂ capture air emissions	
Exhibit 4-8 Case $2a - "H"$ frame turbine without CO ₂ capture cost estimation summary	
Exhibit 4-9 Case 2a - "H" frame turbine without CO ₂ capture capital cost estimate summary	
Exhibit 4-10 Case 2a - "H" frame turbine without CO ₂ capture capital cost estimate detail	
Exhibit 4-11 Case 2a - "H" frame turbine without CO ₂ capture operating cost estimate	
Exhibit 4-12 Case 2b – "H" frame turbine with CO ₂ capture block flow diagram	
Exhibit 4-13 Case 2b – "H" frame turbine with CO ₂ capture stream table	
Exhibit 4-14 Case 2b – "H" frame turbine with CO ₂ capture plant performance summary	
Exhibit 4-15 Case 2b – "H" frame turbine with CO ₂ capture overall energy balance	91
Exhibit 4-16 Case 2b – "H" frame turbine with CO ₂ capture water balance	91
Exhibit 4-17 Case 2b – "H" frame turbine with CO ₂ capture carbon balance	92
Exhibit 4-18 Case 2b – "H" frame turbine with CO ₂ capture air emissions	92
Exhibit 4-19 Case 2b - "H" frame turbine with CO ₂ capture cost estimation summary	
Exhibit 4-20 Case 2b - "H" frame turbine with CO ₂ capture capital cost estimate summary	
Exhibit 4-21 Case 2b - "H" frame turbine with CO ₂ capture capital cost estimate detail	
Exhibit 4-22 Case 2b - "H" frame turbine with CO ₂ capture operating cost estimate	
Exhibit 4-23 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR block flow diagram	
Exhibit 4-24 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR stream table	
Exhibit 4-25 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR plant performance	102
	. 103
Exhibit 4-26 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR overall energy balance	
Exhibit 4-20 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR overall energy balance	
Exhibit 4-27 Case $2c = -11$ frame turbine with CO ₂ capture and EGR water balance Exhibit 4-28 Case $2c = -11$ frame turbine with CO ₂ capture and EGR carbon balance	
Exhibit 4-29 Case $2c - "H"$ frame turbine with CO ₂ capture and EGR air emissions	
Exhibit 4-30 Case $2c - "H"$ frame turbine with CO_2 capture and EGR cost estimation summ	2
E-1.1.1.4.21 Correstor (11)? for more tranking and the CO constant of the CO constant of the CO	100
Exhibit 4-31 Case $2c - "H"$ frame turbine with CO_2 capture and EGR capital cost estimate	107
summary	10/
Exhibit 4-32 Case $2c - "H"$ frame turbine with CO_2 capture and EGR capital cost estimate d	
	108
Exhibit 4-33 Case $2c - "H"$ frame turbine with CO_2 capture and EGR operating cost estimat	
	112

Exhibit 5-1 Case $3a - "J"$ frame turbine without CO ₂ capture block flow diagram
Exhibit 5-2 Case $3a - "J"$ frame turbine without CO ₂ capture stream table
Exhibit 5-3 Case $3a - "J"$ frame turbine without CO ₂ capture plant performance summary 116
Exhibit 5-4 Case $3a - "J"$ frame turbine without CO ₂ capture overall energy balance
Exhibit 5-5 Case $3a - "J"$ frame turbine without CO ₂ capture water balance
Exhibit 5-6 Case $3a - "J"$ frame turbine without CO ₂ capture carbon balance
Exhibit 5-7 Case $3a - "J"$ frame turbine without CO ₂ capture air emissions
Exhibit 5-8 Case $3a - "J"$ frame turbine without CO ₂ capture cost estimation summary 118
Exhibit 5-9 Case $3a - "J"$ frame turbine without CO ₂ capture capital cost estimate summary. 119
Exhibit 5-10 Case $3a - "J"$ frame turbine without CO ₂ capture capital cost estimate detail 120
Exhibit 5-11 Case $3a - "J"$ frame turbine without CO ₂ capture operating cost estimate 124
Exhibit 5-12 Case 3b – "J" frame turbine with CO ₂ capture block flow diagram
Exhibit 5-13 Case 3b – "J" frame turbine with CO ₂ capture stream table
Exhibit 5-14 Case 3b – "J" frame turbine with CO ₂ capture plant performance summary 128
Exhibit 5-15 Case 3b – "J" frame turbine with CO ₂ capture overall energy balance
Exhibit 5-16 Case 3b – "J" frame turbine with CO ₂ capture water balance
Exhibit 5-17 Case 3b – "J" frame turbine with CO ₂ capture carbon balance
Exhibit 5-18 Case 3b – "J" frame turbine with CO ₂ capture air emissions
Exhibit 5-19 Case 3b – "J" frame turbine with CO ₂ capture cost estimation summary
Exhibit 5-20 Case $3b - "J"$ frame turbine with CO ₂ capture capital cost estimate summary 132
Exhibit 5-21 Case $3b - "J"$ frame turbine with CO ₂ capture capital cost estimate detail
Exhibit 5-22 Case $3b - "J"$ frame turbine with CO ₂ capture operating cost estimate
Exhibit 5-23 Case 3c – "J" frame turbine with CO ₂ capture and EGR block flow diagram 139
Exhibit 5-24 Case 3c – "J" frame turbine with CO ₂ capture and EGR stream table
Exhibit 5-25 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR plant performance
summary141
Exhibit 5-26 Case 3c – "J" frame turbine with CO ₂ capture and EGR overall energy balance 142
Exhibit 5-27 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR water balance
Exhibit 5-28 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR carbon balance
Exhibit 5-29 Case $3c - "J"$ frame turbine with CO_2 capture and EGR air emissions
Exhibit 5-30 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR cost estimation summary
Exhibit 5-31 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR capital cost estimate
summary
Exhibit 5-32 Case $3c - "J"$ frame turbine with CO ₂ capture and EGR capital cost estimate detail
Exhibit 5-33 Case 3c – "J" frame turbine with CO ₂ capture and EGR operating cost estimate 150
Exhibit 6-1 Case 4a – Advanced/Future turbine without CO ₂ capture block flow diagram 152
Exhibit 6-2 Case 4a – Advanced/Future turbine without CO ₂ capture stream table
Exhibit 6-3 Case 4a – Advanced/Future turbine without CO ₂ capture plant performance
summary
Exhibit 6-4 Case $4a - Advanced/Future turbine without CO2 capture overall energy balance. 155$
Exhibit 6-5 Case $4a - Advanced/Future turbine without CO2 capture water balance$
Exhibit 6-6 Case $4a - $ Advanced/Future turbine without CO ₂ capture carbon balance
Exhibit 6-7 Case $4a - $ Advanced/Future turbine without CO ₂ capture air emissions
- 1

Exhibit 6-8 Case 4a - Advanced/Future turbine without CO ₂ capture cost estimation summar	-
	. 161
Exhibit 6-9 Case 4a - Advanced/Future turbine without CO ₂ capture capital cost estimate	160
summary	. 102
Exhibit 6-10 Case 4a - Advanced/Future turbine without CO ₂ capture capital cost estimate d	
Exhibit 6-11 Case 4a - Advanced/Future turbine without CO ₂ capture operating cost estimate	
Exhibit 6-12 Case 4b – Advanced/Future turbine with CO ₂ capture block flow diagram	
Exhibit 6-13 Case 4b – Advanced/Future turbine with CO ₂ capture stream table	
Exhibit 6-14 Case $4b - Advanced/Future turbine with CO2 capture plant performance summ$	
- 1 1 1	
Exhibit 6-15 Case 4b – Advanced/Future turbine with CO ₂ capture overall energy balance	. 172
Exhibit 6-16 Case 4b – Advanced/Future turbine with CO ₂ capture water balance	. 172
Exhibit 6-17 Case 4b – Advanced/Future turbine with CO ₂ capture carbon balance	. 172
Exhibit 6-18 Case 4b – Advanced/Future turbine with CO ₂ capture air emissions	
Exhibit 6-19 Case 4b – Advanced/Future turbine with CO ₂ capture cost estimation summary	/ 178
Exhibit 6-20 Case 4b – Advanced/Future turbine with CO ₂ capture capital cost estimate	
summary	. 179
Exhibit 6-21 Case 4b – Advanced/Future turbine with CO ₂ capture capital cost estimate deta	
Exhibit 6-22 Case 4b – Advanced/Future turbing with CO_2 capture operating cost estimate	
Exhibit 6-23 Case 4c – Advanced/Future turbine with CO ₂ capture and EGR block flow diag	
Exhibit 6-24 Case 4c – Advanced/Future turbine with CO ₂ capture and EGR stream table	
Exhibit 6-24 Case $4c = Advanced/Future turbine with CO2 capture and EGR stream tableExhibit 6-25 Case 4c = Advanced/Future turbine with CO2 capture and EGR plant performance$	
summary	
Exhibit 6-26 Case $4c - Advanced/Future turbine with CO2 capture and EGR overall energy$. 100
balance	. 189
Exhibit 6-27 Case 4c – Advanced/Future turbine with CO ₂ capture and EGR water balance.	
Exhibit 6-28 Case 4c – Advanced/Future turbine with CO ₂ capture and EGR carbon balance	
Exhibit 6-29 Case 4c – Advanced/Future turbine with CO ₂ capture and EGR air emissions	. 190
Exhibit 6-30 Case 4c - Advanced/Future turbine with CO2 capture and EGR cost estimation	
summary	. 196
Exhibit 6-31 Case 4c - Advanced/Future turbine with CO ₂ capture and EGR capital cost	
estimate summary	. 197
Exhibit 6-32 Case 4c - Advanced/Future turbine with CO ₂ capture and EGR capital cost	
estimate detail	. 198
Exhibit 6-33 Case 4c - Advanced/Future turbine with CO ₂ capture and EGR operating cost	•••
estimate	
Exhibit 7-1 Case results summary	
Exhibit 7-2 Net Plant efficiency	. 206
Exhibit 7-3 Summary stream data for all cases	
Exhibit 7-4 Summary performance data for all cases	
Exhibit 7-5 Summary cost estimation data for all cases Exhibit 7-6 CO ₂ emission rates	
Exhibit 7-7 Raw water withdrawal and consumption	
Exhibit 7 7 Raw water withdrawar and consumption	. 414

Exhibit 7-8 Plant capital costs	213
Exhibit 7-9 COE by cost component	214
Exhibit 7-10 Cost of CO ₂ avoided/captured	215
Exhibit 7-11 COE sensitivity to natural gas price	216
Exhibit 7-12 COE sensitivity to capacity factor	217
Exhibit 7-13 Capture case results with EOR	218
Exhibit 7-14 COE sensitivity to EOR credit	219
Appendix	223
Case 1a - SOA turbine without CO_2 capture heat and mass balance diagram	
Case 1b - SOA turbine with CO ₂ capture heat and mass balance diagram	
Case 1c - SOA turbine with CO ₂ capture and EGR heat and mass balance diagram	
Case 2a - "H" frame turbine without CO_2 capture heat and mass balance diagram	
Case 2b - "H" frame turbine with CO ₂ capture heat and mass balance diagram	
Case $2c - $ "H" frame turbine with CO ₂ capture and EGR heat and mass balance diagram	
Case $3a - "J"$ frame turbine without CO ₂ capture heat and mass balance diagram	
Case $3b - "J"$ frame turbine with CO ₂ capture heat and mass balance diagram	
Case $3c - "J"$ frame turbine with CO_2 capture and EGR heat and mass balance diagram	
Case 4a - Advanced/Future turbine without CO ₂ capture heat and mass balance diagram	
Case 4b – Advanced/Future turbine with CO ₂ capture heat and mass balance diagram	
Case 4c - Advanced/Future turbine with CO2 capture and EGR heat and mass balance diag	ram

This page intentionally left blank.

List of Acronyms and Abbreviations

acfm	Actual cubic feet per minute	H_2	Hydrogen
AEO		$^{11_2}_{HHV}$	Hydrogen Higher besting value
	Annual Energy Outlook		Higher heating value
AGR	Acid gas removal	HCl	Hydrogen chloride
Ar	Argon	H.O.	Home office
ASU	Air separation unit	hp	Horsepower
atm	Atmosphere	HP	High pressure
BACT	Best available control technology	hr	Hour
BBS	Bituminous baseline study	HRSG	Heat recovery steam generator
BEC	Bare erected cost	HSS	Heat stable salts
BFD	Block flow diagram	HVAC	Heating, ventilating, and air
BFW	Boiler feed water		conditioning
BLS	U.S. Bureau of Labor Statistics	HWT	Hot water temperature
Btu	British thermal unit	Hz	Hertz
Btu/hr	British thermal unit per hour	ID	Induced draft
CCF	Capital charge factor	IEA	International Energy Agency
CCS	Carbon capture and storage	IGCC	Integrated coal gasification combined
CCUS	Carbon capture, utilization, and storage	loce	cycle
CDR		in	•
	Carbon dioxide recovery	in in U.O.	Inch, inches
CF	Capacity factor	in H ₂ O	Inches water
CGE	Cold gas efficiency	in Hga	Inches mercury (absolute pressure)
cm	Centimeter	in W.C.	Inches water column
CM	Construction management	IOU	Investor-owned utility
CO_2	Carbon dioxide	IRROE	Internal rate of return on equity
COE	Cost of electricity	ISO	Internaltional organization of standards
СОН	Cost of hydrogen		standard reference conditions and
COS	Carbonyl sulfide		ratings
CTG	Combustion turbine generator	kg/hr	Kilogram per hour
CS	Carbon Steel	kJ	Kilojoules
CWT	Cold water temperature	kJ/hr	Kilojoules per hour
DB	Dry basis	KO	Knockout
DCS	Distributed control system	kPa	Kilopascal absolute
DI	De-ionized	kV	Kilovolt
DOE	Department of Energy	kW	Kilowatt
EGR	Exhaust gas recycle	kWe	Kilowatts electric
EIA	Energy Information Administration	kWh	Kilowatt-hour
EOR	Enhanced oil recovery	kWt	Kilowatts thermal
EPA	Environmental Protection Agency	LAER	Lowest achievable emission rate
EPC	Engineering, procurement, construction	LCOE	Levelized cost of electricity
EPRI	Electric Power Research Institute	lb	Pound
ERC	Emission reduction credits	lb/hr	Pounds per hour
ETE	Effective thermal efficiency	lb/ft^2	Pounds per square foot
FD	Forced draft	LHV	Lower heating value
FG	Flue gas	LIBOR	London Interbank Offered Rate
ft	Foot, Feet	LNB	Low NOx burner
FW	Feedwater	LND	Low pressure
FOAK	First of a kind	lpm	Liters per minute
FO&M		LV	-
	Fixed operations and maintenance		Low voltage
gal	Gallon	NOx	Oxides of Nitrogen
gal/MWh	Gallon per megawatt hour	NSPS	New Source Performance Standards
gpm	Gallons per minute	m	Meters
GEE	General Electric Energy	m/min	Meters per minute
GJ	Gigajoule	m ³ /min	Cubic meter per minute
GT	Gas turbine	MAF	Moisture and Ash Free

MCR	Maximum continuous rate
md	millidarcy, is a measure of permeability defined as reaches 10^{-12} Densu
	defined as roughly 10 ⁻¹² Darcy Monoethanolamine
MEA	
MHI	Mitsubishi Heavy Industries, Ltd.
MHz	Megahertz
million \$	Millions of dollars
MJ	Megajoules
MMBtu	Million British thermal units (also shown as 10^6 Btu)
MMBtu/hr	Million British thermal units (also
wiwiDtu/m	shown as 10^6 Btu) per hour
MMSCFD	Million standard cubic feet per day
mole%	Mole percent (percent by mole)
MPa	Megapascals absolute
MVA	Megavolt (average)
MWe	Megawatts electric
MWh	Megawatt-hour
MWt	Megawatts thermal
N ₂	Nitrogen
Neg.	Negligible
NETL	National Energy Technology
NLIL	Laboratory
N/A	Not applicable
NGCC	Natural gas combined cycle
nm ³	Normal cubic meter
NOAK	N th of a kind
NOX	Oxides of nitrogen
NSPS	New Source Performance Standards
NSR	New Source Review
O_2	Oxygen
O&M	Operation and maintenance
OC	Operating cost
OEM	Original equipment manufacturer
Oper. Qty	Operating quantity
OSU	Ohio State University
PM	Particulate matter
POTW	Publicly owned treatment works
ppm	Parts per million
ppmd	Parts per million, dry basis
ppmv	Parts per million volume
ppmvd	Parts per million volume, dry
ppmw	Parts per million weight
PR	Pressure ratio
PSFM	Power Systems Financial Model
psia	Pounds per square inch absolute
psid	Pounds per square inch differential
psig	Pounds per square inch gage

QGESS	Quality Guidelines for Energy System
QUESS	Studies
Qty	Quantity
Ref.	Reference
scf	Standard cubic feet
scfd	Standard cubic feet per day
scfm	Standard cubic feet per minute
Sch.	Schedule
SCR	
	Selective catalytic reduction Standard cubic meter
scm SG	
	Specific gravity
SNG	Synthetic/substitute natural gas Sulfur dioxide
SO ₂ SOA	State-of-the-art
	Oxides of sulfur
SOx	
SS	Stainless steel
ST	Steam turbine
STG	Steam turbine generator
Stm	Steam
SWS	Sour water scrubber
T&S	Transport and storage
TASC	Total as-spent cost
TET	Turbine exhaust temperature
TEWAC	Totally Enclosed Water-to-Air-Cooled
TGTU	Tail gas treatment unit
TIT	Turbine inlet temperature
TOC TPC	Total overnight cost
	Total plant cost
tpd tph	Tons per day
tph TPI	Tons per hour
	Total plant investment
tonne	Metric ton (1000 kg)
T&S U.S.	Transport and storage United States
Vert.	Vertical
Ven. V-L	
V-L	Vapor and liquid portion of stream (excluding solids)
VO&M	Variable operations and maintenance
vol%	Volume percent (percent by volume)
WB	Wet bulb
WG	Water gauge
WGS	Water gas shift
wt%	Weight percent (percent by weight)
WTI \$M	West Texas intermediate crude oil
\$М °С	Millions of dollars
°F	Degrees Celsius
Г	Degrees Fahrenheit

Executive Summary

The purpose of this study is to present the cost and performance of natural gas combined cycle (NGCC) power plants using state-of-the-art (SOA) and advanced gas turbines, both non-capture configurations and with post combustion carbon capture based on an advanced solvent process.

The NGCC cases included in this study consist of four gas turbine designs: F-frame (GE 7FA.05), H-frame (based on Siemens H), advanced J-frame (based on MHI J), and a conceptual advanced future design (designated as X-frame). Each turbine is modeled in three process configurations: without CO_2 capture, with CO_2 capture, and with CO_2 capture and exhaust gas recycle (EGR). The case designations are listed in Exhibit ES-1.

Turbine	Turbine Basis	Non-Capture Target Efficiency (%LHV)	Case #	CO ₂ Capture Configuration	
			1a	None	
SOA F-Frame	GE 7FA.05	~58%	1b	CO ₂ capture	
			1c	capture + EGR	
			2a	None	
SOA H-Frame	Siemens H Turbine	~60%	2b	CO ₂ capture	
			2c	capture + EGR	
			3a	None	
Advanced J-Frame	Enhanced MHI J Turbine	~62%	3b	CO ₂ capture	
			3c	capture + EGR	
			4a	None	
Advanced Future X-Frame	X-Frame	~65%	4b	CO ₂ capture	
			4c	capture + EGR	

Exhibit ES-1 Case descriptions

NGCC simulations were developed for each case using GT PRO and THERMOFLEX software. [1] The 7FA.05 turbine was based on a Thermoflow turbine library model supplied in the software. The performance model for each of the more advanced turbines was developed by tuning an existing Thermoflow turbine library model with properties close to those estimated for each case. Each simulation was then tuned to match the expected overall performance of the NGCC without capture.

The methodology used in this study was similar to that used in earlier National Energy Technology Laboratory (NETL) Department of Energy (DOE) studies [2, 3], except for the modeling software, Thermoflow's GT-PRO and THERMOFLEX were used instead of Aspen Plus[®]. The resulting mass and energy balance data from the GT-PRO and THERMOFLEX models were used to size major pieces of equipment. Capital and operating costs for the Cases 1a, 1b, and 1c using the 7FA.05 turbine as well as Cases 4a, 4b, and 4c using the advanced future X-frame turbine were estimated by WorleyParsons based on simulation results and vendor quotes/discussions, costing software, or a combination of the two. All costs are in June 2011 dollars. The turbine costs for each of the other cases were also estimated by WorleyParsons based on simulation results and vendor quotes/discussions. The remaining capital and operating costs were scaled from the initial estimates based on simulation results and current NETL Quality Guidelines for Energy System Studies (QGESS). [4] Owner's costs are included in the present estimates in a manner consistent with earlier NETL/DOE studies. [2, 3, 5] The natural gas cost was assumed to be \$5.81/GJ (\$6.13/MMBtu) as specified in "QGESS: Fuel Prices for Selected Feedstocks in NETL Studies" [6] for natural gas delivered to large combined cycle plants operating at high capacity factors in the Midwest. The price is on a higher heating value (HHV) basis and in 2011 dollars. A sensitivity evaluation to the natural gas price is included that varied from \$2.94/GJ (\$3.00/MMBtu) to \$7.58/GJ (\$8.00/MMBtu).

All plant configurations are evaluated based on installation at a Greenfield site. The overall availability/capacity factor was set at 85 percent for all cases to be consistent with earlier NETL/DOE studies. [2, 3] The power system for each case includes two gas turbines (GT), two heat recovery steam generators (HRSG), and one steam turbine (ST) (2 x 2 x 1).

The performance and cost estimation results for the cases in this study are summarized in Exhibit ES-2. The net power output ranges from 634 to 1,108 MWe for the non-capture cases. Adding carbon capture reduces the power output by 12 to 15 percent due to the increasing auxiliary power requirements (i.e., due to the solvent process and CO_2 compression). The further addition of EGR results in a slightly smaller decrease of 10 to 13 percent by increasing the efficiency of the carbon capture section. The major parameters that change as the turbine performance increases are the turbine inlet/firing temperature (TIT) and the pressure ratio (PR). As the TIT increases, more fuel and compressor inlet air are required which results in the power increase noted above. The pressure ratio increases with the TIT to maintain approximately the same percentage of the total power generation in the more efficient Brayton Cycle rather than in the bottoming Rankine Cycle.

The results for each turbine with the addition of CO_2 capture alone and CO_2 capture with EGR are approximately equal for the projected cost of electricity (COE) and the overall process efficiency. CO_2 transport and storage (T&S) costs were independently estimated by NETL to be \$10/tonne for a 100 km (62 mile) pipeline to a representative Midwest saline formation [7] and added to the COE estimates for an overall value.

The addition of EGR at 35 percent of the flue gas exhaust improves the efficiencies by approximately 0.5 percentage point and decreases the COE by approximately 3 percent. The net power output and efficiency both increase with each turbine design improvement.

As a result of the improvements, the normalized total overnight cost (TOC) and cost of electricity (COE) values decrease as the turbine design improves.

Turbine Cas		se / Technology	Efficiency (% HHV/ LHV)	Net Power (MWe)	TOC (\$/kW)	COE without CO ₂ T&S (\$/MWh)	COE with CO₂ T&S (\$/MWh)	Cost of CO ₂ avoided (\$/tonne)	Cost of CO ₂ captured (\$/tonne)
SOA	1a	w/o CO ₂ capture	51.8 / 57.4	634	829	57.14	57.14	n/a	n/a
(based on	1b	w CO ₂ capture	45.2 / 50.1	553	1,674	80.62	84.27	86.59	64.24
"7FA.05")	1c	w CO ₂ +EGR	45.7 / 50.6	563	1,568	78.32	81.92	78.94	58.75
	2a	w/o CO ₂ capture	53.7 / 59.5	820	756	54.19	54.19	n/a	n/a
SOA (based on "H")	2b	w CO ₂ capture	47.2 / 52.2	721	1,499	75.03	78.53	80.45	59.53
	2c	w CO ₂ +EGR	47.7 / 52.9	738	1,396	72.71	76.16	72.48	53.70
	3a	w/o CO ₂ capture	56.5 / 62.6	982	684	50.73	50.73	n/a	n/a
Advanced (based on "J")	3b	w CO ₂ capture	50.1 / 55.5	870	1,343	69.17	72.47	75.60	56.02
	3c	w CO ₂ +EGR	50.6 / 56.1	889	1,251	67.17	70.42	68.35	50.56
	4a	w/o CO ₂ capture	58.8 / 65.2	1,108	661	49.17	49.17	n/a	n/a
Advanced Future turbine	4b	w CO ₂ capture	52.5 / 58.1	989	1,271	66.21	69.35	73.00	54.23
	4c	w CO ₂ +EGR	52.8 / 58.5	1,004	1,190	64.56	67.67	66.86	49.44

Exhibit ES-2 Case results summary (Values shown are for total 2 GT x 2 HRSG x 1 ST system)

COEs based on a natural gas price of \$6.13/MMBtu and 85% capacity factor in June 2011 dollars

CO₂ capture technology represents an advanced solvent process

COE = (Annual Capital Charges + O&M + Fuel (\$/yr)) / (Annual MWh_{net})

 CO_2 T&S = \$10/tonne for a 100 km (62 mile) pipeline to a representative Midwest saline formation

 $Cost of CO_2 avoided = (COE_{with capture} - COE_{w/o capture} (\$/MWh)) / (Emissions_{w/o capture} - Emissions_{with capture}) (tons/MWh)), includes CO_2 T\&S$

Cost of CO₂ captured = $(COE_{with capture} - COE_{w/o capture} (\text{MWh})) / (CO_{2 captured} (tons/MWh))$, excludes CO₂ T&S

Reference case for Cost of CO_2 avoided and Cost of CO_2 captured calculation = Matching turbine without capture case.

See Section 2.8 for calculation details.

The normalized capital costs (TOC) are shown by component for each case in Exhibit ES-3. All values are in June 2011 dollars. As the turbine design improves, the capital costs per MW decrease. The reduction in TOC for modifications from SOA to the advanced future turbine design is approximately 20 percent for the without capture cases and 25 percent for the cases with capture. The capital costs for the capture cases (both with and without EGR) are approximately twice the amount as the non-capture cases for each turbine design. This is due primarily to the high additional capital costs for the capture technology.

The COE values are shown by component for each case in Exhibit ES-4. All values are in June 2011 dollars. As the turbine design (performance efficiency) improves, the COE decreases. The COE for the capture cases (both with and without EGR) are 38 to 46 percent higher than the COE for the non-capture cases for each turbine design. The difference decreases slightly as the turbine design improves.

The fuel component accounts for the largest portion of the COE for NGCC plants (approximately 72 percent for without capture and 58 percent for with capture cases.) This is a major difference when compared with coal power plants. The sensitivities of the COEs to the price of natural gas are shown in Exhibit ES-5. The \$6.13/MMBtu price assumed for this study is along the vertical line shown in the chart. As the price increases, the COEs increase. The non-capture cases are slightly more sensitive than the capture cases; primarily because the capital component becomes more significant in the capture cases. A natural gas cost reduction of 51 percent (to \$3/MMBtu) results in an average of 37 percent decrease in the non-capture values but only a 29 percent decrease in the capture case values. An increase of 31 percent (to \$8/MMBtu) results in an average of 22 percent increase in the non-capture values but only an 18 percent increase in the capture case values. The impact of the price on the COE is approximately the same for all turbine designs since the annual fuel costs are a large portion of the COEs (71 to 73 percent of the non-capture cases).

The sensitivities of the first year COEs to capacity factor are shown in Exhibit ES-6. The values at the 85 percent capacity factor assumed for this study are along the vertical line shown in the chart. As the capacity factor increases, the COEs decrease. The calculations were made with the assumption that no addition or reduction in equipment or capital would be needed to operate at higher or lower capacity factors. The capacity factor has a smaller impact as the turbine design improves.

Options for carbon dioxide storage include both a saline reservoir and storage/use in enhanced oil recovery (EOR). The EOR option may be attractive even without the passage of regulations depending on the price of oil. The higher oil prices climb, the more incentive there is to recover more oil using enhanced techniques, like CO_2 injection, which could result in an increase of the sale price for CO_2 to oil recovery operations. The sensitivities of the COEs (excluding CO_2 T&S) to CO_2 plant gate sales price are shown in Exhibit ES-7. The horizontal lines represent the non-capture case values. As the CO_2 sales price increases, COEs for the capture cases decrease and approach the non-capture values. The CO_2 sales price value at the point where each capture case line crosses the corresponding non-capture line is equal to the cost of CO_2 captured for that capture case.

The normalized annual CO_2 emissions for each case are shown in Exhibit ES-8. The emissions per MWh decrease by approximately 3.5 to 5.8 percent for each turbine design improvement with the overall decrease of 12 to 14 percent going from the current SOA to the advanced future

turbine design. The emissions from the current SOA turbine without capture case are estimated at 760 lb/MWh_{gross}. The Environmental Protection Agency (EPA) recently proposed a CO_2 emissions limit of 1,000 lb/MWh_{gross} for new power plants. This rule would result in carbon capture not being required for NGCC.

This study provides the following analysis tools and findings:

- Process simulation models of NGCC plants representing both SOA and advanced gas turbines, with and without an advanced post combustion capture system, are available to compare with coal power plants. Additionally, as new and evolving capture technologies develop, the models can be easily modified to evaluate the benefits.
- The performance penalty for carbon capture is approximately 6-7 absolute percentage points for the advanced solvent process represented.
- EGR greater than 35 percent may be required to further improve results.
- Natural gas fuel costs account for approximately 72 percent of the COE for the noncapture cases and approximately 57 percent for the CO₂ capture cases when based on a price of \$5.81/GJ (\$6.13/MMBtu). This implies that comparisons with coal power plants, which are less sensitive to fuel costs, will be greatly influenced by natural gas prices.
- The EPA recently proposed CO₂ emissions limit of 1,000 lb/MWh_{gross} for new power plants, which would result in carbon capture not being required for NGCC.
- Carbon capture plants require a sales price for CO₂ of approximately \$50 to \$65/tonne for capture cases to have a COE equivalent to non-capture cases.

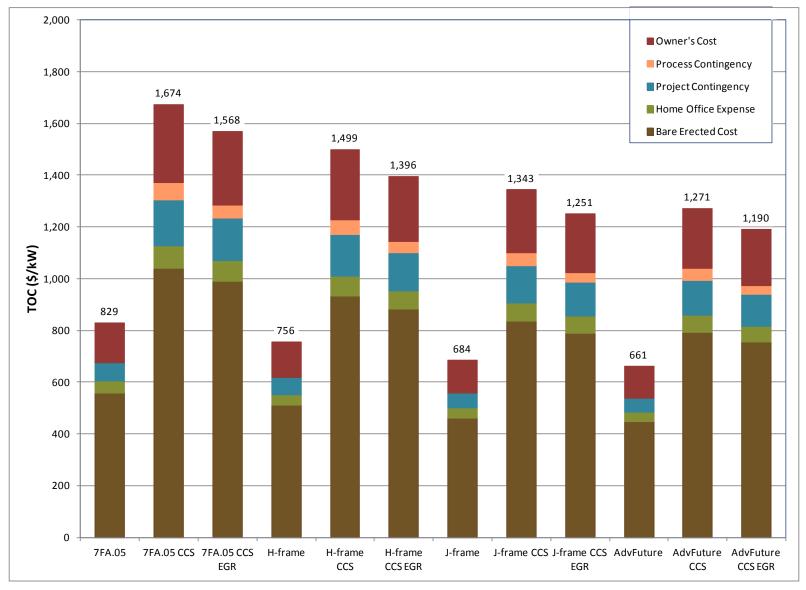


Exhibit ES-3 Plant capital costs

Source: NETL (All Costs are in June 2011 dollars)

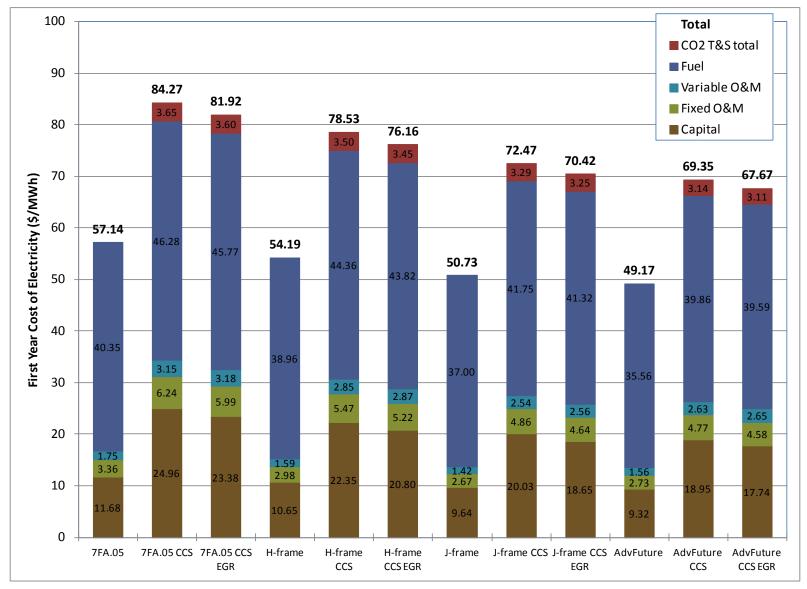


Exhibit ES-4 COE by cost component

Source: NETL (All Costs are in June 2011 dollars, 85% capacity factor)

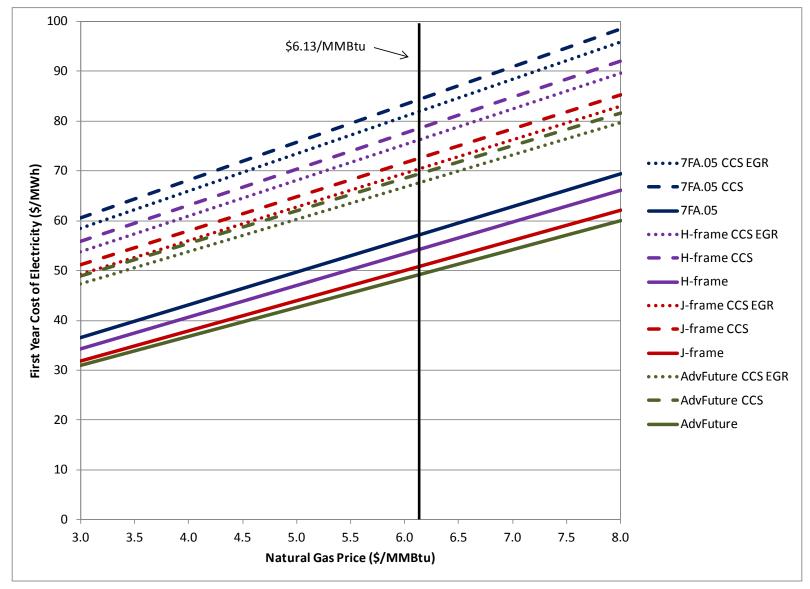


Exhibit ES-5 COE sensitivity to natural gas price

Source: NETL (All Costs are in June 2011 dollars, 85% capacity factor)

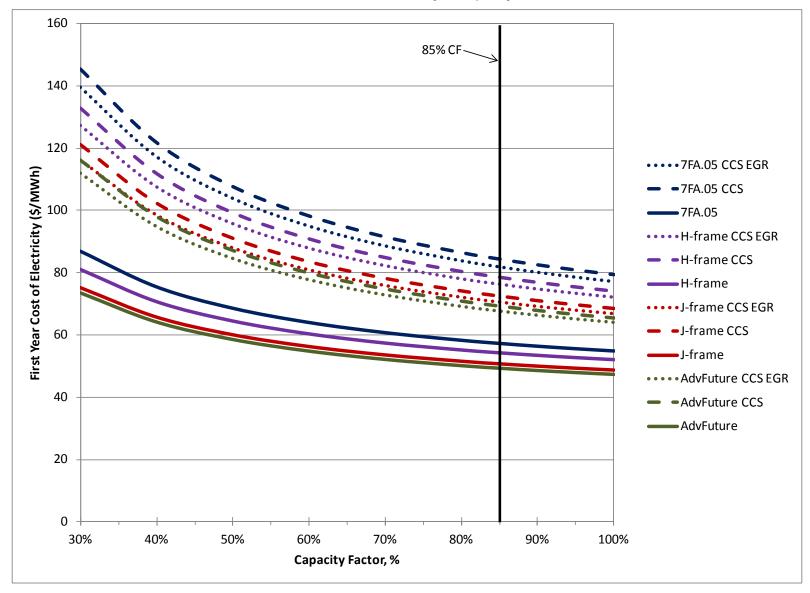


Exhibit ES-6 COE sensitivity to capacity factor

Source: NETL (All Costs are in June 2011 dollars)

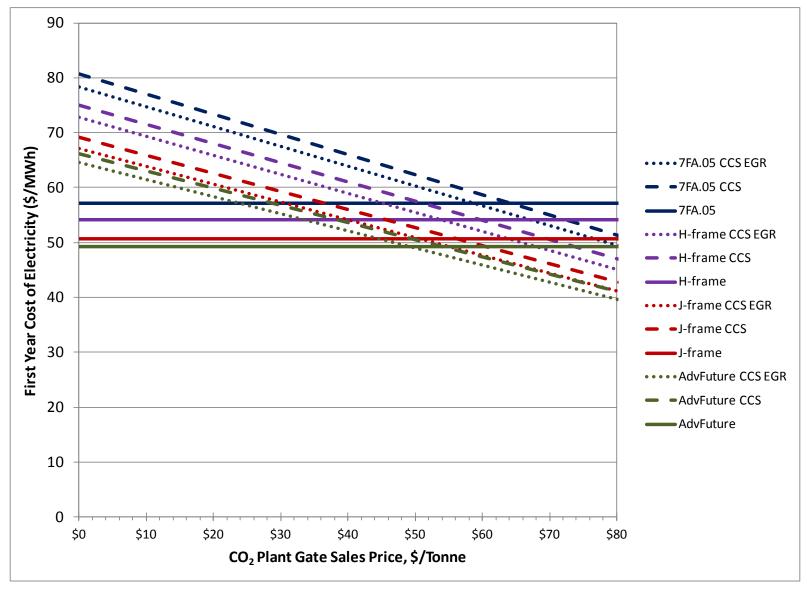
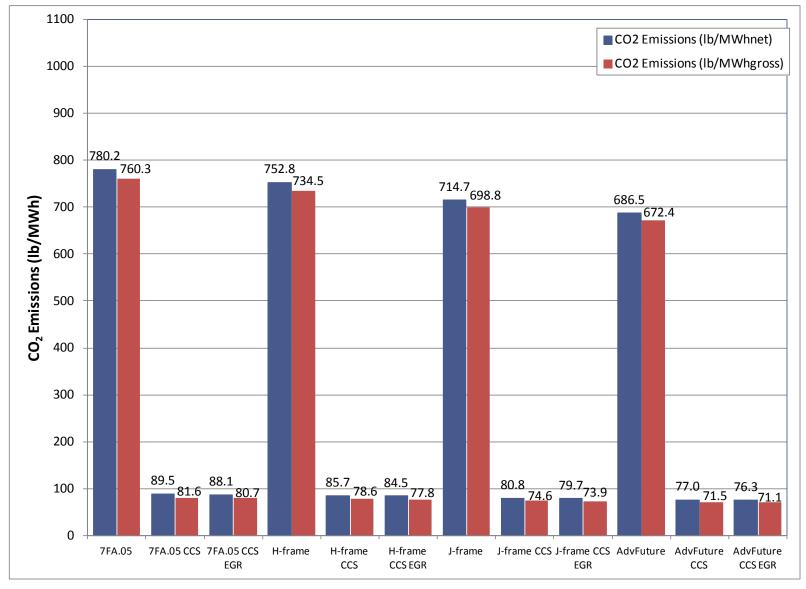



Exhibit ES-7 COE sensitivity to CO₂ plant gate sales price

Source: NETL (All Costs are in June 2011 dollars, 85% capacity factor)

Exhibit ES-8 CO₂ emission rates

Source: NETL

This page intentionally left blank.

1 Introduction

Natural gas prices have seen significant variability in the last five years (see Exhibit 1-1). As carbon regulations become more likely, natural gas is the favored fossil fuel because of its lower carbon intensity relative to coal. The use of carbon capture can further reduce the carbon emissions from a natural gas-fueled power plant. Options for carbon dioxide sequestration include both storage in a saline reservoir and usage in enhanced oil recovery (EOR). The EOR option may be attractive even without the passage of regulations.

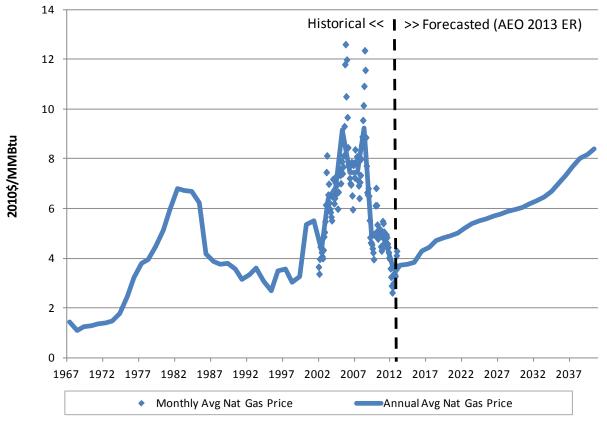


Exhibit 1-1 Historical and projected natural gas prices delivered to U.S. electric utilities

There are potential sources of renewable natural gas, including landfills and biomass-derived synthetic/substitute natural gas (SNG). Landfill gas is currently being tapped at many locations, and gasification-based processes can be used to convert biomass into syngas, which can then be used to produce SNG. The quantity of available landfill gas is relatively small compared to the requirements of large scale electricity generation. Biomass-derived SNG is not currently cost competitive and is still many years from commercialization. Until clean coal plants and other alternative energy sources become more feasible, conventional natural gas will continue to be used as a means of reducing emissions and generating electricity.

The objective of this report is to present a case study of the performance of state-of-the-art (SOA) and advanced natural gas combined cycle (NGCC) plants with carbon capture in a

Source: EIA – AEO 2013ER [8,9]

consistent technical manner that accurately reflects current market conditions for future turbine developmental technologies.

The NGCC cases included in this study are based on four gas turbine designs: F-frame (GE 7FA.05), H-frame (based on Siemens H), advanced J-frame (based on MHI J), and a conceptual advanced future design (designated as X-frame). Each turbine is modeled in three process configurations: without CO_2 capture, with CO_2 capture, and with CO_2 capture and exhaust gas recycle (EGR). The case designations are listed in Exhibit 1-2. The power system for each case includes two gas turbines (GT), two heat recovery steam generators (HRSG), and one steam turbine (ST) (2 x 2 x 1).

Turbine	Turbine Basis	Non-Capture Target Efficiency (%LHV)	Case #	CO ₂ Capture Configuration	
			1a	None	
SOA F-Frame	GE 7FA.05	~58%	1b	CO ₂ capture	
			1c	capture + EGR	
			2a	None	
SOA H-Frame	Siemens H Turbine	~60%	2b	CO ₂ capture	
			2c	capture + EGR	
			3a	None	
Advanced J-Frame	Enhanced MHI J Turbine	~62%	3b	CO ₂ capture	
			3c	capture + EGR	
			4a	None	
Advanced Future X-Frame	X-Frame	~65%	4b	CO ₂ capture	
			4c	capture + EGR	

Exhibit 1-2 Case descriptions

2 Design Criteria

This section presents the design criteria used to estimate the cost and performance of the various configurations of NGCC power plant included in this study.

2.1 Site Description

All plants in this study are assumed to be located at a generic plant site in the midwestern United States (U.S.), with ambient conditions and site characteristics as presented in Exhibit 2-1 and Exhibit 2-2.

Elevation, m, (ft)	0, (0)
Barometric Pressure, MPa (psia)	0.10 (14.696)
Design Ambient Temperature, Dry Bulb, °C (°F)	15 (59)
Design Ambient Temperature, Wet Bulb, °C, (°F)	11 (51.5)
Design Ambient Relative Humidity, %	60

Exhibit 2-1 Site ambient conditions

Exhibit 2-2 Site characteristics

Location	Greenfield, Midwestern USA
Topography	Level
Size, acres	300
Transportation	Rail
Ash Disposal	Off Site
Water	Municipal
Access	Land locked, having access by rail and highway
CO ₂ Storage	Compressed to 15.3 MPa (2,215 psia), transported 100 kilometers (62 miles) and stored in a representative saline formation in the Midwest

The following design parameters are considered site-specific and are not quantified for this study. Allowances for normal conditions and construction will be included in the cost estimates.

- Flood plain considerations
- Existing soil/site conditions
- Water discharges and reuse
- Rainfall/snowfall criteria
- Seismic design
- Buildings/enclosures
- Fire protection
- Local code height requirements
- Noise regulations Impact on site and surrounding area

2.2 Product Specifications

Carbon Dioxide Specification for Capture Cases

The study assumed that CO_2 is transported to the plant boundary as a supercritical fluid. The CO_2 and pipeline requirements are presented in Exhibit 2-3.

Inlet Pressure	~15.3 MPa (~2,200 psig)
Water Content	-40°C (-40°F) dew point
N ₂	< 300 ppmv
O ₂	< 40 ppmv
Ar	< 10 ppmv

Exhibit 2-3 Carbon dioxide pipeline specification

2.3 Natural Gas Design Fuel

Natural gas composition is presented in Exhibit 2-4.

Componer	nt	Volume Percentage				
Methane	CH_4	93.1				
Ethane	C_2H_6	3.2				
Propane	C ₃ H ₈	0.7				
<i>n</i> -Butane	C_4H_{10}	0.4				
Carbon Dioxide	CO ₂		1.0			
Nitrogen	N ₂	1.6				
	Total	100.0				
	Lł	IV	HHV			
kJ/kg	47,2	220	52,314			
MJ/scm	34	.54	38.26			
Btu/lb	20,3	301	22,491			
Btu/scf	92	27	1,027			

Exhibit 2-4 Natural gas composition

Note: Fuel composition is normalized and heating values are calculated

2.4 Plant Capacity Factor and Availability

The overall availability of the natural gas combined cycle plant was assumed to be 85 percent, which is consistent with baseline studies. The power system for each case includes two gas turbines (GT), two heat recovery steam generators (HRSG), and one steam turbine (ST) $(2 \times 2 \times 1)$.

2.5 Environmental Requirements

Best available control technology (BACT) was applied to the NGCC cases and the resulting emissions compared to New Source Performance Standards (NSPS) limits. The NGCC environmental targets were chosen based on reasonably obtainable limits given the control technologies employed and are summarized in Exhibit 2-5.

	Environmental Design Basis					
Pollutant	Control Technology Environmental Target					
Sulfur Oxides (SO ₂)	Low sulfur content fuel	Negligible				
Nitrogen Oxides (NOx)	Low NOx Burners and SCR	2.5 ppmv (dry) @ 15% O ₂				
Particulate Matter (PM)	N/A	Negligible				
Mercury (Hg)	N/A	Negligible				

Exhibit 2-5 BACT environmental design basis for natural gas cases

The following regulatory assumptions were used for assessing environmental control technologies:

- NOx emission reduction credits (ERC) and allowances were not available for the project emission requirements when located in the ozone attainment area.
- Raw water was available to meet technology needs.
- Wastewater discharge met effluent guidelines rather than water quality standards.
- Capture of carbon in design fuel for capture cases was set at 90 percent.

2.6 Modeling Methodology

Models for each case were developed by the National Energy Technology Laboratory (NETL) using GT PRO and THERMOFLEX software by Thermoflow, Inc. [1] for thermodynamic process simulation models.

The 'With CO₂ capture' and 'Without CO₂ capture' cases were modeled using GT PRO by selecting the appropriate gas turbine model from the GT PRO data library of machine performance specifications. The models for Cases 1a and 1b used the state-of-the-art (SOA) commercial GE 7FA.05 (Physical Model #426 in GT PRO) gas turbine data. The other cases used Mitsubishi 501 GAC (Physical Model #422) as the basis with user modifications to reflect the expected performance improvements anticipated for the future designs in this study. The performance for the SOA gas turbines is available from published information from the original equipment manufacturers (OEM). [10, 11] The advanced J turbine design was based on the projected improvement for the performance of the initial MHI J turbines. [12, 13] The future turbine's performance for the non-capture cases is shown in Exhibit 2-6 which was based on available OEM information and assumed for advanced cases.

The 'With CO_2 capture and exhaust gas recycle' case models were created by importing the 'With CO_2 capture' models from GT PRO into THERMOFLEX, adding the recycle streams and modifying other specifications as needed. The power system for each case includes two gas turbines, two HRSGs, and one steam turbine (2 x 2 x 1). The steam cycle type specified in each

model is a GT PRO Cycle 9 - Triple pressure level single reheat cycle with a condensing turbine. The temperatures to the steam turbines were increased for the advanced turbine cases to reflect boiler optimization. These increases resulted in approximately one percent improvement in the steam turbine outputs. The CO₂ capture technology is assumed to be an advanced solvent (e.g., amine) process using the generic representation included in the Thermoflow software, set to achieve 90 percent capture. [16] The primary change involved using a lower steam requirement for the solvent reboiler (with capture: approximately 17 percent lower and with capture plus EGR: approximately 22 percent lower) when compared with the reference value (3,556 kJ/kg [1,530 Btu/lb]) used in earlier NETL Department of Energy (DOE) studies. [2, 3] This assumption was made due to emerging improvements by OEMs in reducing the steam requirements. [2, 3, 16, 17] The resulting performance estimates in the NGCC models for each case are shown in Exhibit 2-6. Starting in Section 3, the cases are outlined and results are presented.

The cases in this study are based on the original NGCC designs presented in earlier NETL/DOE studies. [2, 3] The NGCC cases in the previous reports were modeled using Aspen Plus[®] [18] and standardized Excel spreadsheet applications for generating comparable/scalable performance and cost estimation results. For this study, the data for each GT PRO and THERMOFLEX model were extracted into similar templates. These templates were used to generate performance tables and equipment lists for cost estimation.

The methodology used in this study combined the data extraction, equipment list development, and cost estimation approaches used in earlier studies with modeling using the GT PRO and THERMOFLEX software. Small discrepancies between flow rates and balances in some of the tables in this report are due to round off error in the data extracted from the models. Additional minor discrepancies are due to variations in the calculation methods and assumptions inherent in the modeling software versus those in the Excel spreadsheets used for data extraction, equipment list development, and cost estimation.

Exhibit 2-6	Turbine model s	pecifications
-------------	-----------------	---------------

Case Turbine		Technology	Efficiency (% HHV / LHV)	2x GT (MWe)	TIT (F)	TET (F)	PR	ST (MWe)	Stm Cycle, psig/ °F/°F	Gross (MWe)	Aux (MWe)	Net (MWe)
1	а	w/o CO ₂ capture	51.8 / 57.4	420.8	2,479	1,120	17	229.6	2400/ 1050/1050	650.4	16.5	633.9
SOA Based on	b	w/CO ₂ capture	45.2 / 50.1	420.8	2,479	1,120	17	185.5	2400/ 1050/1050	606.3	53.5	552.8
7FA.05	с	w/CO ₂ capture +EGR	45.7/50.6	418.6	2,486	1,139	17	196.6	2400/ 1050/1050	615.2	52.0	563.2
2	а	w/o CO ₂ capture	53.7 / 59.5	551.2	2,709	1,146	20	289.7	2400/ 1075/1075	841.0	20.5	820.5
SOA Based on	b	w/CO ₂ capture	47.2 / 52.2	551.2	2,709	1,146	20	235.1	2400/ 1075/1075	786.3	65.7	720.6
H-frame c	с	w/CO ₂ capture +EGR	47.7 / 52.9	553.9	2,709	1,146	20	247.6	2400/ 1075/1075	801.5	63.9	737.6
3	а	w/o CO ₂ capture	56.5 / 62.6	689.8	2,949	1,177	23	314.5	2400/ 1100/1100	1004.3	22.4	982.0
Advanced Based on	b	w/CO ₂ capture	50.1 / 55.5	689.8	2,949	1,177	23	252.1	2400/ 1100/1100	941.9	71.7	870.3
J-frame	с	w/CO ₂ capture +EGR	50.6 / 56.1	694.4	2,944	1,191	23	264.0	2400/ 1100/1100	958.4	69.8	888.5
4 a	а	w/o CO ₂ capture	58.8 / 65.2	810.9	3,107	1,182	30	320.5	2400/ 1100/1100	1131.4	23.3	1,108.1
Advanced conceptual	b	w/CO ₂ capture	52.5 / 58.1	810.9	3,107	1,182	30	252.8	2400/ 1100/1100	1063.6	75.1	989.5
X-frame	с	w/CO ₂ capture +EGR	52.8 / 58.5	811.2	3,104	1,197	30	266.1	2400/ 1100/1100	1077.3	73.5	1,003.9

TIT = Turbine inlet temperature TET = Turbine exhaust temperature PR = Pressure Ratio

2.7 Balance of Plant

Assumed balance of plant requirements are shown in Exhibit 2-7.

Parameter	Assumption					
Ambient Conditions	0.101 MPa (14.7 psia), 15.5°C (60°F)					
Cooling System	Recirculating, Evaporative Cooling Tower					
Natural Gas	On-site pipeline					
P	lant Distribution Voltage					
Motors below 1 hp	110/220 volt					
Motors 250 hp and below	480 volt					
Motors above 250 hp	4,160 volt					
Motors above 5,000 hp	13,800 volt					
Steam and Gas Turbine generators	24,000 volt					
Grid Interconnection voltage	345 kV					
Water and Waste						
Makeup Water	The water supply is assumed to be 50% from a local Publicly Owned Treatment Works (POTW) and 50% from groundwater and is assumed to be in sufficient quantities to meet plant makeup requirements. Makeup for potable, process, and de-ionized (DI) water is drawn from municipal sources.					
Feed water	The quality of feedwater (i.e., water treatment systems) required is assumed to be similar regardless of the technology.					
Process Wastewater	Water associated with process activity and storm water that contacts equipment surfaces is collected and treated for discharge through a permitted discharge permit.					
Sanitary Waste Disposal	Design includes a packaged domestic sewage treatment plant with effluent discharged to the industrial wastewater treatment system. Sludge is hauled off site.					
Water Discharge	Most of the wastewater is recycled for plant needs. Blowdown is treated for chloride and metals, and discharged.					

Exhibit 2-7	Balance of plan	nt requirements
-------------	-----------------	-----------------

2.8 Cost Estimation Approach

The performance results for each case and the equipment lists for Cases 1a, 1b, and 1c (7FA.05 without CO₂ capture, with CO₂ capture, and without CO₂ capture plus EGR) are presented in this report. Detailed cost estimates were generated for Cases 1a, 1b, and 1c. The turbine costs for each of the other cases were also estimated based on simulation results and vendor quotes/discussions. All other capital and operating costs for the remaining cases were scaled from these estimates using the same approach presented in the initial ESPA/NETL study of NGCC systems. [2] All costs are estimated in or adjusted to 2011 dollars.

The capital cost estimates include the bare erected costs (BEC) for the equipment; engineering, construction management, home office & fees (Eng'g CM, H.O. & Fee); and contingency values applied based on recommendations in Quality Guidelines for Energy System Studies (QGESS): Cost Estimation Methodology for NETL Assessments of Power Plant Performance. [5] All the capital costs are then summed to calculate the total plant cost (TPC). Owner's costs were subsequently calculated as recommended in the QGESS [5] and added to the TPC, the result of which is total overnight cost (TOC). Additionally, financing costs were estimated by applying a factor (shown in Exhibit 2-8) to the TOC value to calculate total as-spent costs (TASC).

Fixed and variable operation and maintenance (O&M) costs were estimated for each case. The natural gas cost was assumed to be \$5.81/GJ (\$6.13/MMBtu) as specified in "QGESS: Fuel Prices for Selected Feedstocks in NETL Studies." [6] The price is on a higher heating value (HHV) basis and in 2011 U.S. dollars. The sensitivity of the results of this study to the price of natural gas is included in the summary section of this report.

The cost metric used in this study is the cost of electricity (COE), which is the revenue received by the generator per net megawatt-hour during the power plant's first year of operation. The COE was estimated for each case using the method specified in the QGESS [5] and described in the reference reports. [2, 3] The owner/developer was assumed to be an investor-owned utility (IOU) and the base NGCC plants were assumed to have financial structures consistent with low risk projects and three-year capital expenditure periods. The cases with CO₂ capture were assumed to be high risk projects. The first year capital charge factors (CCF) shown in Exhibit 2-8, derived using the power systems financial model (PSFM), were used to calculate COE using the simplified equation shown below and detailed in the QGESS. [5] The levelized cost of electricity (LCOE) was estimated by applying a levelization factor (1.268) to each COE value as described in the QGESS. [5] All first-year costs (COE and O&M) are equivalent to base-year costs when expressed in base-year (2011) dollars.

	CCF	TASC/TOC
Low Risk Projects (all NGCC cases without CO ₂ recovery systems)	0.105	1.075
High Risk Projects (all NGCC cases with CO ₂ recovery systems)	0.111	1.078

$$COE = \frac{\begin{array}{c} first \ year \\ capital \ charge \\ \hline \\ Annual \ net \ megawatt \ hours \\ of \ power \ generated \\ \hline \end{array}} \begin{array}{c} first \ year \\ costs \\ costs \\ costs \\ \hline \\ costs \\ costs \\ \hline \\ costs \\ costs \\ \hline \\ costs \\ costs \\ costs \\ \hline \\ costs \\ costs \\ costs \\ \hline \\ costs \\ costs$$

$$COE = \frac{(CCF)(TOC) + OC_{FIX} + (CF)(OC_{VAR})}{(CF)(MWh)}$$

where:

COE =	revenue received by the generator (\$/MWh, equivalent to mills/kWh) during the power plant's first year of operation (<i>but expressed in base-year</i> <i>dollars</i>), assuming that the COE escalates thereafter at a nominal annual rate equal to the general inflation rate (i.e., that it remains constant in real terms over the operational period of the power plant)
CCF =	capital charge factor taken from Exhibit 2-8 that matches the applicable finance structure and capital expenditure period
TOC =	total overnight capital, expressed in base-year dollars
$OC_{FIX} =$	the sum of all fixed annual operating costs, expressed in base-year dollars
$OC_{VAR} =$	the sum of all variable annual operating costs, including fuel at 100 percent capacity factor, <i>expressed in base-year dollars</i>
CF =	plant capacity factor, assumed to be constant over the operational period
MWh =	annual net megawatt-hours of power generated at 100 percent capacity factor

The capital and operating costs for CO_2 transport and storage (T&S) were independently estimated by NETL to be \$10/tonne for a 100 km (62 mile) pipeline to a representative Midwest saline formation. Those costs were combined with the plant capital and operating costs to produce an overall COE. The T&S cost estimation methodology is explained in more detail in QGESS: Estimating Carbon Dioxide Transport and Storage Costs. [7]

The cost of CO_2 capture was calculated in two ways, the cost of CO_2 captured and the cost of CO_2 avoided, as illustrated in the following equations.

$$Captured \ Cost = \frac{\{COE_{with \ capture} - COE_{w/o \ capture}\} \$ / MWh}{\{CO_2 \ captured\} \ tonnes / MWh}$$

Avoided
$$Cost = \frac{\{COE_{with \ capture} - COE_{w/o \ capture}\} \$ / MWh}{\{Emissions_{w/o \ capture} - Emissions_{with \ capture}\} \ tonnes / MWh}$$

Sensitivity analyses were performed on the COE to determine the impact of capacity factor and natural gas price as well as the impact of selling the captured CO_2 for enhanced oil recovery (EOR) instead of sequestering it. These are discussed in the report summary.

3 Case 1 – State-of-the-art Gas Turbine – (7FA.05)

The 7FA.05 is GE's latest introduction in their "F" frame design that has an ISO output of 211 MW and LHV heat rate of 9,360 kJ/kWh (8,872 Btu/kWh) on natural gas fuel. Compared to the 7FA.03 model, the output is increased by approximately 18.5 percent and heat rate reduced by approximately 2.7 percent. The 7FA.05 model includes new compressor designs with approximately 14 percent more air flow, and approximately 9 percent higher pressure ratio than the 7FA.03 design. The design also includes improved hot gas path cooling system, better turndown capability, larger generator, and fast start capability.

For case 1a, 1b, and 1c using the 7FA.05 turbine, performance summaries, block flow diagrams, stream tables, carbon balances, water balances, and overall energy balances are presented in this section. The equipment lists generated for these three cases are also included in this section. Detailed process flow diagrams from the Thermoflow software are provided in the appendix.

Capital and operating costs for these cases were estimated by WorleyParsons based on simulation results and vendor quotes/discussions, costing software, or a combination of the two. All costs are in June 2011 dollars. The capital and operating cost estimation results based on the simulation results and equipment lists are included at the end of each case section.

3.1 Case 1a – NGCC without CO₂ Capture Modeling Results

The block flow diagram (BFD) of the combined cycle is shown in Exhibit 3-1. This includes two GE 7FA.05 gas turbines, two triple pressure level single reheat type HRSGs, and one condensing steam turbine with evaporative cooling tower. Exhibit 3-2 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry Low NOx burner (LNB), which is operated to control the rotor inlet temperature at 1,359°C (2,479°F). The flue gas exits the turbine at 604°C (1,120°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine. Flue gas exits the HRSG (stream 4) at 88°C (190°F) and passes to the plant stack. Cooling is supplied to the condenser via water from the cooling tower.

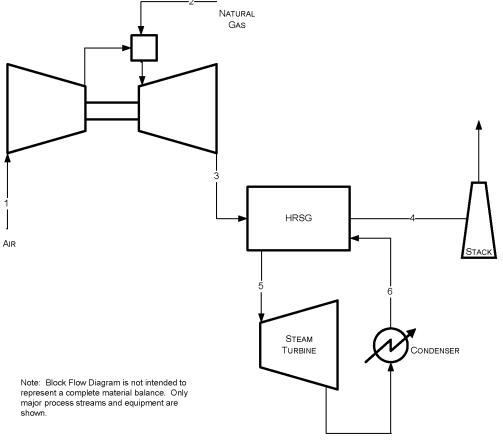


Exhibit 3-1 Case 1a - SOA turbine without CO₂ capture block flow diagram

Source: NETL

		•	•		-	
	1	2	3	4	5	6
V-L Mole Fraction						
Ar	0.0092	0.0000	0.0089	0.0090	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0391	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0844	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7439	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1237	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	125,544	4,857	130,607	130,525	22,207	31,933
V-L Flowrate (kg/hr)	3,622,824	84,161	3,706,757	3,706,920	400,068	575,282
Solids Flowrate (kg/hr)	0	0,101	0	0		0
	Ū	0	0	Ū	0	Ū
Temperature (°C)	15	38	604	88	566	32
Pressure (MPa, abs)	0.10	2.76	0.10	0.10	16.65	0.00
Enthalpy (kJ/kg) ^A	30.98	52,530.38	802.94	226.32	3,476.21	2,376.01
Density (kg/m ³)	1.2	22.2	0.4	0.9	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.400	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	276,778	10,708	287,938	287,759	48,958	70,400
V-L Flowrate (lb/hr)	7,986,960	185,544	8,172,000	8,172,360	882,000	1,268,280
Solids Flowrate (lb/hr)	0	0	0	0	0	0
	50	400	4 400	100	4 050	
Temperature (°F)	59	100	1,120	190	1,050	90
Pressure (psia)	14.6	399.7	15.2	14.7	2,415.0	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	345.2	97.3	1,494.5	1,021.5
Density (lb/ft ³)	0.076	1.384	0.025	0.057	2.977	61.982

Exhibit 3-2 Case 1a - SOA turbine without CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water

Note: Total flow rates shown equal the sum for all process trains

3.1.1 Performance Results

The performance results are summarized in Exhibit 3-3 and are in general agreement with GE published values. [10] The overall efficiency of 57.4 percent can be improved slightly if the natural gas fuel is preheated using intermediate pressure boiler feed water from the steam cycle. This option is a customer option that GE can provide. Further improvement is also possible if the steam cycle is optimized for performance by reducing boiler pinch points. Additional tables below provide overall energy balance (Exhibit 3-4), water balance (Exhibit 3-5), carbon balance (Exhibit 3-6), and an emissions summary (Exhibit 3-7).

Plant Output						
Gas Turbine Power	420,816	kW _e				
Steam Turbine Power	229,607	kW _e				
Total	650,423	kW _e				
Auxiliar	y Load					
Condensate Pumps	416	kW _e				
Boiler Feedwater Pumps	4,577	kW _e				
Amine CO ₂ Capture System Auxiliaries	0	kW _e				
CO ₂ Compression	0	kW _e				
Circulating Water Pump	2,337	kW _e				
Ground Water Pumps	240	kW _e				
Cooling Tower Fans	1,747	kW _e				
SCR	10	kW _e				
Gas Turbine Auxiliaries	860	kW _e				
Steam Turbine Auxiliaries	488	kW _e				
Miscellaneous Balance of Plant ²	2,603	kW _e				
Transformer Losses	3,252	kW _e				
Total	16,530	kW _e				
Plant Perf	ormance					
Net Plant Power	633,892	kW _e				
Plant Capacity Factor	85.0					
Net Plant Efficiency (HHV) ¹	51.8%					
Net Plant Efficiency (LHV) ¹	57.4%					
Net Plant Heat Rate (HHV) ¹	6,946 (6,583)	kJ/kWh (Btu/kWh)				
Net Plant Heat Rate (LHV) ¹	6,269 (5,942)	kJ/kWh (Btu/kWh)				
Natural Gas Feed Flow	84,161 (185,544)	kg/hr (lb/hr)				
Thermal Input (HHV) ¹	1,223,006	kWt				
Thermal Input (LHV) ¹	1,103,919	kWt				
Condenser Duty	1,287 (1,220)	GJ/hr (MMBtu/hr)				
Raw Water Withdrawal	10.1 (2,665)	m ³ /min (gpm)				
Raw Water Consumption	8.4 (2,210)	m ³ /min (gpm)				
1						

Exhibit 3-3 Case 1a - SOA turbine without CO₂ capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb) LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total		
	Energy In, GJ/hr (MMBtu/hr)					
Natural Gas	4,403 (4,173)	2.9 (2.8)	0 (0)	4,406 (4,176)		
GT Air	0 (0)	112.2 (106.4)	0 (0)	112 (106)		
Raw Water Withdrawal	0 (0)	37.9 (36.0)	0 (0)	38 (36)		
Auxiliary Power	0 (0)	0.0 (0.0)	60 (56)	60 (56)		
TOTAL	4,403 (4,173)	153.1 (145.1)	60 (56)	4,616 (4,375)		
	Energy C	out, GJ/hr (MMBtu/hr)			
Cooling Tower Blowdown	0 (0)	16.9 (16.0)	0 (0)	17 (16)		
Stack Gas	0 (0)	839 (795)	0 (0)	839 (795)		
Condenser	0 (0)	1,291 (1,224)	0 (0)	1,291 (1,224)		
Process Losses*	0 (0)	127 (121)	0 (0)	127 (121)		
Power	0 (0)	0.0 (0.0)	2,342 (2,219)	2,342 (2,219)		
TOTAL	0 (0)	2,274 (2,155)	2,342 (2,219)	4,616 (4,375)		

Exhibit 3-4 Case 1a - SOA turbine without CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Condenser Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.1 (16)
BFW Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.0 (0)
Cooling Tower	10.09 (2,665)	0.06 (16)	10.03 (2,649)	1.7 (455)	8.3 (2,194)
BFW Blowdown	0.00 (0)	0.06 (16)	-0.06 (16)	0.00 (0)	0.00 (0)
Flue Gas Condensate	0.00 (0)	0.0 (0)	0.00 (0)	0.00 (0)	0.00 (0)
Total	10.1 (2,681)	0.06 (16)	10.1 (2,665)	1.7 (455)	8.4 (2,210)

Exhibit 3-6 Case 1a - SOA turbine without CO₂ capture carbon balance

Carbon In, kg/hr (lb/hr)		Carbon Out, kg	ı/hr (lb/hr)
Natural Gas	60,789 (134,016)	Stack Gas	61,220 (134,968)
Air (CO ₂)	493 (1,086)		
		Convergence Tolerance*	61 (135)
Total	61,281 (135,102)	Total	61,281 (135,102)
*hv differ	ance	•	•

*by difference

Exhibit 3-7 Case 1a - SOA turbine without CO_2 capture air emissions				
	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)	
SO ₂	negligible	negligible	negligible	
NO _X	0.004 (0.009)	128 (141)	0.026 (0.058)	
Particulates	negligible	negligible	negligible	
Hg	negligible	negligible	negligible	
CO ₂	50.9 (118.5)	1,670,276 (1,841,165)	345 (760)	
			354 (780)	

Emissions are estimated based on user input specifications to models.

 1 CO₂ emissions based on net power instead of gross power

3.1.2 Major Equipment List

This section contains the equipment list corresponding to the 7FA.05 GT without CO_2 capture plant configuration for case 1a. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Account 3 - Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	477,193 liters (126,060 gal)	2 (0)
2	Condensate Pumps	Vertical canned	5,300 lpm @ 49 m H ₂ O (1,400 gpm @ 160 ft H ₂ O)	2 (1)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with interstage bleed for IP and LP feedwater	HP water: 3,710 lpm @ 1,878 m H ₂ O (980 gpm @ 6,160 ft H ₂ O) IP water: 4,656 lpm @ 500 m H ₂ O (1,230 gpm @ 1,640 ft H ₂ O)	2 (1)
			LP water: 681 lpm @ 0.0 m H ₂ O (180 gpm @ 00 ft H ₂ O)	

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	5,678 lpm @ 18 m H ₂ O (1,500 gpm @ 60 ft H ₂ O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	163 lpm @ 49 m H ₂ O (43 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	158,989 liter (42,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro- deionization unit	379 lpm (100 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	70 m ³ /min @ 2.8 MPa (2,457 acfm @ 399.7 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		70 m ³ /min (2,457 acfm)	1 (0)

Account 4 – Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)	
1	Gas Turbine	7FA.05 Advanced F frame w/ dry low-NOx burner	205 MW	2 (0)	
2	Gas Turbine Generator	TEWAC	230 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)	

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 8.0 m (26 ft) diameter	2 (0)
2	Heat Recovery Steam Generator	Drum, multi- pressure with economizer section and integral deaerator	Main steam - 220,038 kg/hr, 16.5 MPa/566°C (485,100 lb/hr, 2,400 psig/1,050°F) Reheat steam - 268,356 kg/hr, 2.4 MPa/566°C (591,624 lb/hr, 345 psig/1,050°F)	2 (0)
3	SCR Reactor	Space for spare layer	2,036,632 kg/hr (4,490,000 lb/hr)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5	Dilution Air Blowers	Centrifugal	12 m ³ /min @ 107 cm WG (440 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H ₂ O (1 gpm @ 300 ft H ₂ O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	75,709 liter (20,000 gal)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	242 MW 16.5 MPa/566°C/566°C (2,400 psig/ 1,050°F/1,050°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	270 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)	
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)	
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1,423 GJ/hr, (1,350 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)	

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)	
1	Circulating Water Pumps	Vertical, wet pit	261,195 lpm @ 30.5 m (69,000 gpm @ 100 ft)	2 (1)	
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 1,448 GJ/hr (1,374 MMBtu/hr) heat load	1 (0)	

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	CTG Transformer	Oil-filled	24 kV/345 kV, 230 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 250 MVA, 3-ph, 60 Hz	1 (0)
3	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 15 MVA, 3-ph, 60 Hz	1 (1)
4	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 2 MVA, 3-ph, 60 Hz	1 (1)
5	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)
6	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
7	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
8	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
9	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Account 12 – Instrumentation and Control

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

3.1.3 Cost Estimate Results

Capital and operating costs for Case 1a using the 7FA.05 turbine were estimated by WorleyParsons based on simulation results and vendor quotes/discussions, costing software, or a combination of the two. All costs are in June 2011 dollars.

The cost estimation results for this case are summarized in Exhibit 3-8. The summary and detailed capital cost estimates are shown in Exhibit 3-9 and Exhibit 3-10, respectively. The annual operating cost estimates are shown in Exhibit 3-11.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	1a
Total Plant Cost (2011\$/kW)	676
Total Overnight Cost (2011\$/kW)	829
Total As-spent Capital (2011\$/kW)	891
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	11.68
Fixed O&M	3.36
Variable O&M	1.75
Fuel	40.35
CO ₂ T&S	0.00
COE ¹ Total	57.14
LCOE ¹ , total (including T&S)	72.44

Exhibit 3-8 Case 1a - SOA turbine without CO₂ capture cost estimation summary

¹ Capacity factor assumed to be 85 percent

	Client:	USDOE/NET	_							Report Date:	2011-Dec-15	
	Project:	Costing Supp			5							
					T COST	SUMM	ARY					
	Case:	Case 1a - 7F		F atin		Concentual			- <i>.</i>	2011	(\$.4000)	
Acat	Plant Size:		MW,net Material	Lab		Conceptual Sales	Bare Erected		Base (Jun)	2011	(\$x1000)	TCOST
Acct No.	Item/Description	Equipment Cost	Cost	Lab Direct	or Indirect	Sales Tax	Cost	Eng'g CM H.O.& Fee		ngencies Project	IUTAL PLAN	\$/kW
	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0			\$0	\$0	Ŧ	\$0
	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0			\$0	\$0		\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$27,642	\$5,576	\$8,270	\$0	\$0	\$41,488	\$3,405	\$0	\$7,186	\$52,079	\$82
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5.		\$0	\$0 \$0	• •	\$0 \$0	\$0 \$0		\$0 \$0	• •	\$0 \$0		φ0 \$0
	GAS CLEANUP & PIPING			\$0				• -	\$0			1 -
	CO2 REMOVAL & COMPRESSION	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$104,200 \$0 \$104,200	\$0 \$881 \$881	\$6,364 \$952 \$7,316	\$0 \$0 \$0	\$0 \$0 \$0	\$1,833	\$9,132 \$153 \$9,285	\$0 \$0 \$0	\$11,970 \$397 \$12,367	\$2,384	\$208 \$4 \$211
_		\$104,200	900 I	\$7, 310	\$ U	\$ U	\$112,397	⊅ 9,200	φU	\$12,30 <i>1</i>	\$134,049	⊅ ∠11
7.1	HRSG, DUCTING & STACK Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$36,230 \$1,973 \$38,203	\$0 \$1,370 \$1,370	\$6,374 \$1,663 \$8,037	\$0 \$0 \$0	\$0 \$0 \$0	\$5,006	\$3,538 \$419 \$3,957	\$0 \$0 \$0	\$4,614 \$871 \$5,485	\$6,295	\$80 \$10 \$90
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$36,130 \$13,209 \$49,339	\$0 \$1,002 \$1,002	\$5,104 \$7,649 \$12,752	\$0 \$0 \$0	\$0 \$0 \$0		\$3,249 \$1,615 \$4,863	\$0 \$0 \$0	\$4,448 \$3,387 \$7,836	\$26,862	\$77 \$42 \$120
9	COOLING WATER SYSTEM	\$5,070	\$5,719	\$5,229	\$0	\$0	\$16,018	\$1,288	\$0	\$2,541	\$19,846	\$31
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$22,033	\$5,668	\$12,307	\$0	\$0	\$40,008	\$3,001	\$0	\$4,622	\$47,630	\$75
12	INSTRUMENTATION & CONTROL	\$7,148	\$809	\$6,060	\$0	\$0	\$14,017	\$1,150	\$0	\$1,741	\$16,909	\$27
13	IMPROVEMENTS TO SITE	\$2,072	\$1,126	\$5,866	\$0	\$0	\$9,064	\$803	\$0	\$1,973	\$11,841	\$19
14	BUILDINGS & STRUCTURES	\$0	\$5,311	\$5,655	\$0	\$0	\$10,966	\$873	\$0	\$1,776	\$13,614	\$21
	TOTAL COST	\$255,707	\$27,461	\$71,493	\$0	\$0	\$354,661	\$28,625	\$0	\$45,526	\$428,812	\$676

Exhibit 3-9 Case 1a - SOA turbine without CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	Ľ							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1a - 7F		,		••••						
	Plant Size:		MW.net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies		TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	S	\$/kW
	COAL & SORBENT HANDLING	0031	0031	Direct	maneot	Tax	0031	11.0.0 1 66	1100633	Tioject	Ψ	Ψ'KVV
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	Ψ°	ψŪ	ΨŪ	ψŪ	ψŪ	\$	ψŪ	ψŪ	ψŪ	ΨŬ	ψŪ
_	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	÷-		+ -	••		, , , , , , , , , , , , , , , , , , ,	•••		* •	÷-	••
	Feedwater System	\$2,938	\$3,042	\$2,484	\$0	\$0	\$8,464	\$682	\$0	\$1,372	\$10,517	\$17
	Water Makeup & Pretreating	\$1,945	\$201	\$999	\$0	\$0			\$0	\$681	\$4,086	\$6
	Other Feedwater Subsystems	\$1,376	\$455	\$380	\$0	\$0		\$171	\$0	\$357	\$2,739	\$4
3.4	Service Water Systems	\$235	\$469	\$1,509	\$0	\$0	\$2,213	\$188	\$0	\$480	\$2,881	\$5
3.5	Other Boiler Plant Systems	\$1,583	\$591	\$1,360	\$0	\$0	\$3,535	\$288	\$0	\$573	\$4,396	\$7
3.6	Natural Gas, incl. pipeline	\$17,710	\$661	\$573	\$0	\$0	\$18,944	\$1,562	\$0	\$3,076	\$23,582	\$37
3.7	Waste Treatment Equipment	\$679	\$0	\$393	\$0	\$0	\$1,073	\$93	\$0	\$233	\$1,398	\$2
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,176	\$157	\$571	\$0	\$0	\$1,904	\$163	\$0	\$413	\$2,480	\$4
	SUBTOTAL 3.	\$27,642	\$5,576	\$8,270	\$0	\$0	\$41,488	\$3,405	\$0	\$7,186	\$52,079	\$82
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION											
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B.2	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
-	COMBUSTION TURBINE/ACCESSORIES											
-	Combustion Turbine Generator	\$104,200	\$0	\$6,364	\$0	\$0	· · /- ·	\$9,132	\$0	\$11,970	, . ,	\$208
	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0		\$0
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	· ·	+ -	\$0	\$0	+ -	\$0
6.9	Combustion Turbine Foundations	\$0	\$881	\$952	\$0	\$0			\$0	\$397	. ,	\$4
	SUBTOTAL 6.	\$104,200	\$881	\$7,316	\$0	\$0	\$112,397	\$9,285	\$0	\$12,367	\$134,049	\$211

Exhibit 3-10 Case 1a - SOA turbine without CO₂ capture capital cost estimate detail

	Client:	USDOE/NET	l							Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGCC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1a - 7F	-			•••						
	Plant Size:		MW.net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
-	HRSG, DUCTING & STACK	0031	0031	Direct	maneet	Tax	0031	11.0.0 1 66	1100633	TTOJECT	Ψ	Ψ/ΚΨ
	Heat Recovery Steam Generator	\$36,230	\$0	\$6,374	\$0	\$0	\$42,604	\$3.538	\$0	\$4,614	\$50,755	\$80
	HRSG Accessories	\$1,973	\$828	\$1,155	\$0	• -	\$3,956	\$331	\$0	\$643	. ,	\$8
	Ductwork	\$0	\$00	\$0	\$0		\$0,000 \$0	\$0	\$0	\$0		\$0
-	Stack	\$0	\$0	\$0	\$0	1 -	\$0	\$0 \$0	\$0 \$0	\$0 \$0		\$0
	HRSG.Duct & Stack Foundations	\$0	\$541	\$508	\$0	• -	\$1,049	\$88	\$0	\$227		\$2
	SUBTOTAL 7.	\$38,203	\$1,370	\$8,037	\$0	• -	\$47,609	\$3,957	\$0	\$5,485		\$90
8	STEAM TURBINE GENERATOR	,, 	÷ -, · •	÷-,-••			÷ · · ,•••	, .		<i>+ - , • • •</i>		,,,,
8.1	Steam TG & Accessories	\$36,130	\$0	\$5.104	\$0	\$0	\$41,234	\$3.249	\$0	\$4,448	\$48.931	\$77
8.2	Turbine Plant Auxiliaries	\$213	\$0	\$484	\$0		\$697	\$60	\$0	\$76	. ,	\$ 1
8.3	Condenser & Auxiliaries	\$2,980	\$0	\$1,450	\$0	\$0	\$4,430	\$372	\$0	\$480	\$5,282	\$8
8.4	Steam Piping	\$10,016	\$0	\$4,060	\$0		\$14,076	\$959	\$0	\$2,255		\$27
	TG Foundations	\$0	\$1,002	\$1,655	\$0		\$2,657	\$224	\$0	\$576		\$5
	SUBTOTAL 8.	\$49,339	\$1,002	\$12,752	\$0	\$0	\$63,094	\$4,863	\$0	\$7,836		\$120
9	COOLING WATER SYSTEM											
9.1	Cooling Towers	\$2,960	\$0	\$900	\$0	\$0	\$3,860	\$322	\$0	\$418	\$4,600	\$7
9.2	Circulating Water Pumps	\$1,443	\$0	\$85	\$0	\$0	\$1,528	\$116	\$0	\$164	\$1,808	\$3
9.3	Circ.Water System Auxiliaries	\$121	\$0	\$16	\$0	\$0	\$137	\$11	\$0	\$15	\$163	\$0
9.4	Circ.Water Piping	\$0	\$3,743	\$847	\$0	\$0	\$4,590	\$344	\$0	\$740	\$5,674	\$9
9.5	Make-up Water System	\$306	\$0	\$393	\$0	\$0	\$699	\$58	\$0	\$114	\$870	\$1
9.6	Component Cooling Water Sys	\$241	\$288	\$185	\$0	\$0	\$713	\$57	\$0	\$116	\$886	\$1
9.9	Circ.Water System Foundations	\$0	\$1,688	\$2,803	\$0	\$0	\$4,492	\$379	\$0	\$974	\$5,845	\$9
	SUBTOTAL 9.	\$5,070	\$5,719	\$5,229	\$0	\$0	\$16,018	\$1,288	\$0	\$2,541	\$19,846	\$31
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$5,374	\$0	\$3,179	\$0	\$0	\$8,553	\$702	\$0	\$694	\$9,950	\$16
11.2	Station Service Equipment	\$1,761	\$0	\$151	\$0	\$0	\$1,913	\$158	\$0	\$155	\$2,225	\$4
11.3	Switchgear & Motor Control	\$2,167	\$0	\$376	\$0	\$0	\$2,544	\$211	\$0	\$275	\$3,030	\$5
11.4	Conduit & Cable Tray	\$0	\$1,133	\$3,263	\$0	+ -	\$4,395	\$366	\$0	\$714	\$5,476	\$9
11.5	Wire & Cable	\$0	\$3,639	\$2,069	\$0		\$5,709	\$343	\$0	\$908		\$11
11.6	Protective Equipment	\$0	\$730	\$2,533	\$0		\$3,263	\$281	\$0	\$354	. ,	\$6
11.7	Standby Equipment	\$129	\$0	\$120	\$0	\$0	\$250	\$21	\$0	\$27	\$298	\$0
	Main Power Transformers	\$12,601	\$0	\$192	\$0	1 -	\$12,794	\$869	\$0	\$1,366		\$24
11.9	Electrical Foundations	\$0	\$166	\$422	\$0	\$0	\$588	\$50	\$0	\$127		\$1
	SUBTOTAL 11.	\$22,033	\$5,668	\$12,307	\$0	\$0	\$40,008	\$3,001	\$0	\$4,622	\$47,630	\$75

Exhibit 3-10 Case 1a - SOA turbine without CO₂ capture capital cost estimate detail (continued)

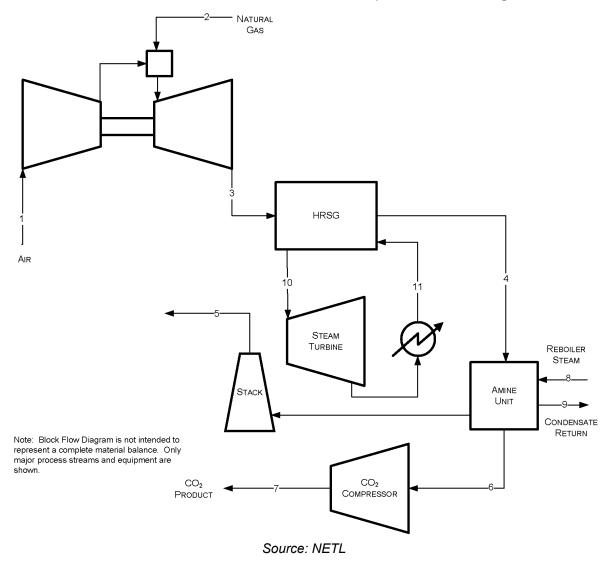
	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1a - 7F	A.05									
	Plant Size:	633.9	MW,net	Estim	ate Type:	Conceptual			Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM		igencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$909	\$0	\$579	\$0	\$0	\$1,488	\$125	\$0	\$242	\$1,855	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$272	\$0	\$166	\$0	\$0	\$438	\$37	\$0	\$71	\$545	\$1
12.7	Computer & Accessories	\$4,347	\$0	\$133	\$0	\$0	\$4,480	\$368	\$0	\$485	\$5,332	\$8
12.8	Instrument Wiring & Tubing	\$0	\$809	\$1,431	\$0	\$0	\$2,240	\$161	\$0	\$360	\$2,761	\$4
12.9	Other I & C Equipment	\$1,621	\$0	\$3,752	\$0	\$0	\$5,373	\$460	\$0	\$583	\$6,416	\$10
	SUBTOTAL 12.	\$7,148	\$809	\$6,060	\$0	\$0	\$14,017	\$1,150	\$0	\$1,741	\$16,909	\$27
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$111	\$2,352	\$0	\$0	\$2,462	\$215	\$0	\$536	\$3,213	\$5
13.2	Site Improvements	\$0	\$1,015	\$1,341	\$0	\$0	\$2,356	\$209	\$0	\$513	\$3,078	\$5
13.3	Site Facilities	\$2,072	\$0	\$2,174	\$0	\$0	\$4,246	\$379	\$0	\$925	\$5,549	\$9
	SUBTOTAL 13.	\$2,072	\$1,126	\$5,866	\$0	\$0	\$9,064	\$803	\$0	\$1,973	\$11,841	\$19
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$304	\$161	\$0	\$0	\$464	\$36	\$0	\$75	\$575	\$1
14.2	Steam Turbine Building	\$0	\$2,548	\$3,390	\$0	\$0	\$5,938	\$478	\$0	\$962	\$7,378	\$12
14.3	Administration Building	\$0	\$571	\$387	\$0	\$0	\$957	\$74	\$0	\$155	\$1,186	\$2
14.4	Circulation Water Pumphouse	\$0	\$191	\$94	\$0	\$0	\$285	\$22	\$0	\$46	\$353	\$1
14.5	Water Treatment Buildings	\$0	\$413	\$376	\$0	\$0	\$789	\$62	\$0	\$128	\$979	\$2
14.6	Machine Shop	\$0	\$495	\$316	\$0	\$0	\$811	\$63	\$0	\$131	\$1,006	\$2
14.7	Warehouse	\$0	\$320	\$193	\$0	\$0	\$512	\$40	\$0	\$83	\$635	\$1
14.8	Other Buildings & Structures	\$0	\$96	\$70	\$0	\$0	\$165	\$13	\$0	\$27	\$205	\$0
14.9	Waste Treating Building & Str.	\$0	\$375	\$669	\$0	\$0	\$1,043	\$85	\$0	\$169	\$1,297	\$2
	SUBTOTAL 14.	\$0	\$5,311	\$5,655	\$0	\$0	\$10,966	\$873	\$0	\$1,776	\$13,614	\$21
	TOTAL COST	\$255,707	\$27,461	\$71,493	\$0	\$0	\$354,661	\$28,625	\$0	\$45,526	\$428,812	\$676

Exhibit 3-10 Case 1a - SOA turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	Ľ						Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 1a - 7F	A.05								
	Plant Size:	633.9	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	т созт
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$255,707	\$27,461	\$71,493	\$0	\$354,661	\$28,625	\$0	\$45,526	\$428,812	\$676
	Owner's Costs										
	Preproduction Costs 6 Months All Labor									¢0.640	¢c
	1 Month Maintenance Materials									\$3,643 \$525	\$6 \$1
	1 Month Non-fuel Consumables									\$283	φ \$(
	1 Month Waste Disposal									\$0	φC \$(
	25% of 1 Months Fuel Cost at 100% CF									\$4,668	\$7
	2% of TPC									\$8,576	\$14
	Total									\$17,695	\$28
	Inventory Capital									, ,	•
	60 day supply of consumables at 100% CF									\$371	\$1
	0.5% of TPC (spare parts)									\$2,144	\$3
	Total									\$2,515	\$4
	Initial Cost for Catalyst and Chemicals									\$0	\$C
	Land									\$300	\$0
	Other Owner's Costs									\$64,322	\$101
	Financing Costs									\$11,578	\$18
	Total Overnight Costs (TOC)									\$525,222	\$829
	TASC Multiplier							(IUU, IOW-I	isk, 33 year)	1.075	¢004
	Total As-Spent Cost (TASC)									\$564,613	\$89 [,]

Exhibit 3-10 Case 1a - SOA turbine without CO₂ capture capital cost estimate detail (continued)

INITIAL & A	ANNUAL O&	MEXPENS	ES	(Cost Base (Jun)	2011
Case 1a - 7FA.05				Heat Rate	e-net (Btu/kWh):	6,583
					MWe-net:	634
				Сара	acity Factor (%):	85
<u>OPERATING & M</u>	IAINTENANCE	LABOR				
Operating Labor	00.70	N //				
Operating Labor Rate(base):	39.70					
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	2.0		2.0			
Foreman	1.0		1.0			
Lab Tech's, etc.						
TOTAL-O.J.'s	<u>1.0</u> 5.0		<u>1.0</u> 5.0			
TOTAL-0.J.S	5.0		5.0		A nonvel C a at	A normal Linit Coo
					Annual Cost	Annual Unit Cos
					<u>\$</u>	\$/kW-net
Annual Operating Labor Cost					\$2,260,518	\$3.566
Maintenance Labor Cost					\$3,568,153	\$5.629
Administrative & Support Labor					\$1,457,168	\$2.299
Property Taxes and Insurance					\$8,576,235	\$13.529
TOTAL FIXED OPERATING COS	TS				\$15,862,074	\$25.023
VARIABLE OPERATING COSTS						• • • • • • •
Maintenance Material Cost					\$5,352,229	<u>\$/kWh-net</u> \$0.00113
Consumables	Consun	notion	<u>Unit</u>	Initial Fill		
<u></u>	Initial Fill	<u>/Day</u>	<u>Cost</u>	Cost		
Water (/1000 gallons)	0.00	1,918.80	1.67	\$0	\$996,542	\$0.00021
Chemicals						
MU & WT Chem.(lbs)	0.00	11,431.65	0.27	\$0	\$949,937	\$0.00020
MEA Solvent (ton)	0.00	0.00	3,481.91	\$0	\$0	\$0.00000
Activated Carbon (lb)	0.00	0.00	1.63	\$0	\$0	\$0.00000
Corrosion Inhibitor	0.00	0.00	0.00	\$0	\$0	\$0.00000
SCR Catalyst (m3)	w/equip.	0.08	8,938.80	\$0	\$229,367	\$0.00005
Ammonia (19% NH3) (ton)	0.00	6.96	330.00	\$0 \$0	\$712,171	\$0.00015
Subtotal Chemicals	0.00	0.90	330.00	\$0 \$0	\$1,891,475	\$0.00015 \$0.00040
				φU	\$1,091,475	\$0.00040
Other				^		******
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING	COSTS			\$0	\$8,240,246	\$0.00174
Eval (MMBtu)	^	100 150	6.40		¢400.400.000	
Fuel (MMBtu)	0	100,150	6.13	\$0	\$190,468,388	\$0.04033


Exhibit 3-11 Case 1a - SOA turbine without CO₂ capture operating cost estimate

3.2 Case 1b – NGCC with CO₂ Capture Modeling Results

The block flow diagram of the combined cycle with CO_2 capture is shown in Exhibit 3-12. This case also uses the same 7FA.05 gas turbine model as that of Case 1a with the addition of CO_2 capture at the back end. Exhibit 3-13 provides process data for the numbered streams in the BFD. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,359°C (2,479°F). The flue gas exits the turbine at 604°C (1,120°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 110°C (231°F) and passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance is not impacted due to the CO_2 capture addition. However, the Rankine cycle performance and the overall plant output and efficiency are reduced due to heat integration requirements and increased auxiliary loads for the CO_2 capture process.

Exhibit 3-12 Case 1b - SOA turbine with CO_2 capture block flow diagram

							-				
	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0092	0.0000	0.0089	0.0090	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0391	0.0042	0.9674	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0844	0.0555	0.0326	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7439	0.7980	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1237	0.1327	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	125,544	4,857	130,607	130,525	121,702	4,744	4,590	13,406	17,887	22,216	18,890
V-L Flowrate (kg/hr)	3,622,824	84,161	3,706,757	3,706,920	3,428,342	204,770	201,994	241,511	241,511	400,232	340,303
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
- (20)	·-							(= 2			
Temperature (°C)	15	38	604	110	35	35	38	152	151	566	32
Pressure (MPa, abs)	0.10	2.76	0.10	0.10	0.10	0.17	15.27	0.51	0.49	16.65	0.00
Enthalpy (kJ/kg) ^A	30.98	52,530.38	802.94	250.28	103.15	91.58	-164.90	2,746.79	635.72	3,476.21	2,377.17
Density (kg/m ³)	1.2	22.2	0.4	0.8	0.9	2.9	653.5	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.400	28.170	43.160	44.010	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	276,778	10,708	287,938	287,759	268,307	10,460	10,119	29,555	39,435	48,978	41,645
V-L Flowrate (lb/hr)	7,986,960	185,544		8,172,360	7,558,200	451,440	445,320	532,440	532,440	882,360	750,240
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
						-	-				
Temperature (°F)	59	100	1,120	231	95	95	101	306	304	1,050	90
Pressure (psia)	14.6	399.7	15.2	14.7	14.7	25.0	2,214.7	73.5	71.0	2,415.0	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	345.2	107.6	44.3	39.4	-70.9	1,180.9	273.3	1,494.5	1,022.0
Density (lb/ft ³)	0.076	1.384	0.025	0.052	0.056	0.183	40.800	0.169	57.172	2.977	61.982
		nce conditio	no aro 22 (DOE & Liou	id Watar						

Exhibit 3-13 Case 1b - SOA turbine with CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water

Note: Total flow rates shown equal the sum for all process trains

3.2.1 Performance Results

The performance results are summarized in Exhibit 3-14 and when compared with Case 1a show that adding carbon capture reduces the efficiency by approximately seven percentage points. This is based on using an assumed advanced solvent process that has a lower steam requirement for the reboiler of 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) or 17 percent lower when compared with earlier NETL/DOE system studies (i.e. 3,560 kJ/kg CO_2 (1,530 Btu/lb CO_2)).

Additional tables below provide overall energy balance (Exhibit 3-15), water balance (Exhibit 3-16), carbon balance (Exhibit 3-17), and an emissions summary (Exhibit 3-18).

Plant C	Output	
Gas Turbine Power	420,816	kW _e
Steam Turbine Power	185,503	kW _e
Total	606,319	kW _e
Auxiliar	y Load	
Condensate Pumps	248	kW _e
Boiler Feedwater Pumps	4,580	kW _e
Amine CO ₂ Capture System Auxiliaries	15,971	kW _e
CO ₂ Compression	18,977	kW _e
Circulating Water Pump	4,030	kW _e
Ground Water Pumps	350	kW _e
Cooling Tower Fans	2,704	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	860	kW _e
Steam Turbine Auxiliaries	395	kW _e
Miscellaneous Balance of Plant ²	2,346	kW _e
Transformer Losses	3,032	kW _e
Total	53,503	kW _e
Plant Perf	ormance	
Net Plant Power	552,816	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	45.2%	
Net Plant Efficiency (LHV) ¹	50.1%	
Net Plant Heat Rate (HHV) ¹	7,964 (7,549)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	7,189 (6,814)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	84,161 (185,544)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,223,006	kWt
Thermal Input (LHV) ¹	1,103,919	kWt
Condenser Duty	770 (730)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	14.4 (3,823)	m ³ /min (gpm)
Raw Water Usage	11.8 (3,126)	m³/min (gpm)
1		

Exhibit 3-14 Case 1b - SOA turbine with CO₂ capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total					
	Energy	In, GJ/hr (MMBtu/hr)							
Natural Gas	4,403 (4,173)	2.9 (2.8)	0 (0)	4,406 (4,176)					
GT Air	0 (0)	112.2 (106.4)	0 (0)	112 (106)					
Raw Water Withdrawal	0 (0)	54.4 (51.6)	0 (0)	54 (52)					
Auxiliary Power	0 (0)	0.0 (0.0)	193 (183)	193 (183)					
TOTAL	4,403 (4,173)	169.6 (160.8)	193 (183)	4,765 (4,516)					
Energy Out, GJ/hr (MMBtu/hr)									
Cooling Tower Blowdown	0 (0)	26.2 (24.9)	0 (0)	26 (25)					
Stack Gas	0 (0)	354 (335)	0 (0)	354 (335)					
Condenser	0 (0)	765 (726)	0 (0)	765 (726)					
CO ₂ Product	0 (0)	-33.3 (-31.6)	0 (0)	-33 (-32)					
CO ₂ Intercoolers	0 (0)	93.8 (88.9)	0 (0)	94 (89)					
Amine System Losses	0 (0)	738.0 (699.5)	0 (0)	738 (700)					
Process Losses*	0 (0)	-638 (-605)	0 (0)	-638 (-605)					
Power	0 (0)	0.0 (0.0)	2,183 (2,069)	2,183 (2,069)					
TOTAL	0 (0)	2,582 (2,448)	2,183 (2,069)	4,765 (4,516)					

Exhibit 3-15 Case 1b - SOA turbine with CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine CO ₂ capture system	0.05 (13)	0.0 (0)	0.05 (13)	0.0 (0)	0.05 (13)
Condenser Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.1 (16)
BFW Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.0 (0)
Cooling Tower	15.7 (4,148)	1.34 (354)	14.36 (3,795)	2.6 (697)	11.7 (3,098)
BFW Blowdown	0.00 (0)	0.0 (16)	-0.06 (-16)	0.00 (0)	0.00 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	1.28 (338)	-1.28 (-338)	0.00 (0)	0.00 (0)
Total	15.8 (4,177)	1.34 (354)	14.5 (3,823)	2.6 (697)	11.8 (3,126)

Exhibit 3-16 Case 1b - SOA turbine with CO_2 capture water balance

Exhibit 3-17 Case 1b - SOA turbine with CO₂ capture carbon balance

Carbon In, kg/h	r (lb/hr)	Carbon Out, kg/hr (lb/hr)			
Natural Gas	60,789 (134,016)	Stack Gas	6,123 (13,500)		
Air (CO ₂)	493 (1,086)	CO ₂ Product	55,127 (121,535)		
		Convergence Tolerance*	31 (68)		
Total 61,281 (135,102)		Total	61,281 (135,102)		

*by difference

Emissions are estimated based on user input specifications to models.

	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.003 (0.008)	114 (126)	0.025 (0.056)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.9)	167,063 (184,155)	37 (82)
			41 (89)

Exhibit 3-18	Case 1b - SOA	turbine with CO	capture air emissions

¹ CO₂ emissions based on net power instead of gross power

3.2.2 Major Equipment List

This section contains the equipment list corresponding to the 7FA.05 GT with CO_2 capture plant configuration for case 1b. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Account 3 - Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	469,395 liters (124,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	3,142 lpm @ 49 m H ₂ O (830 gpm @ 160 ft H ₂ O)	2 (1)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with interstage bleed for IP and LP feedwater	HP water: 3,710 lpm @ 1,878 m H ₂ O (980 gpm @ 6,160 ft H ₂ O) IP water: 4,656 lpm @ 500 m H ₂ O (1,230 gpm @ 1,640 ft H ₂ O)	2 (1)
			LP water: 757 lpm @ 0.0 m H ₂ O (200 gpm @ 00 ft H ₂ O)	

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	7,949 lpm @ 18 m H ₂ O (2,100 gpm @ 60 ft H ₂ O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	167 lpm @ 49 m H ₂ O (44 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	158,989 liter (42,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro-deionization unit	379 lpm (100 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	70 m ³ /min @ 2.8 MPa (2,457 acfm @ 399.7 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		70 m ³ /min (2,457 acfm)	1 (0)

Account 4 – Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Amine CO ₂ Capture System	Amine-based CO ₂ capture technology	2,038,900 kg/hr (4,495,000 lb/hr) 6.1 wt % CO ₂ concentration	2 (0)
2	CO ₂ Compressor	Integrally geared, multi- stage centrifugal	111,130 kg/hr @ 15.3 MPa (245,000 lb/hr @ 2,215 psia)	2 (0)

Account 5B – CO₂ Capture and Compression

Account 6 – Combustion Turbine Generators and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Gas Turbine	7FA.05 Advanced F frame w/ dry low-NOx burner	205 MW	2 (0)
2	Gas Turbine Generator	TEWAC	230 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 8.0 m (26 ft) diameter	2 (0)
2	Heat Recovery Steam Generator	Drum, multi- pressure with economizer section and integral deaerator	Main steam - 220,128 kg/hr, 16.5 MPa/566°C (485,298 lb/hr, 2,400 psig/1,050°F) Reheat steam - 267,818 kg/hr, 2.4 MPa/566°C (590,436 lb/hr, 345 psig/1,050°F)	2 (0)
3	SCR Reactor	Space for spare layer	1,886,947 kg/hr (4,160,000 lb/hr)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5	Dilution Air Blowers	Centrifugal	12 m ³ /min @ 107 cm WG (440 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H ₂ O (1 gpm @ 300 ft H ₂ O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	75,709 liter (20,000 gal)	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	195 MW 16.5 MPa/566°C/566°C (2,400 psig/ 1,050°F/1,050°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	220 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	843 GJ/hr, (800 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	405,042 lpm @ 30.5 m (107,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 2,254 GJ/hr (2,138 MMBtu/hr) heat load	1 (0)

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	CTG Transformer	Oil-filled	24 kV/345 kV, 230 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 180 MVA, 3-ph, 60 Hz	1 (0)
3	High Voltage Auxiliary Transformer	Oil-filled	345 kV/13.8 kV, 11 MVA, 3-ph, 60 Hz	2 (0)
4	Medium Voltage Transformer	Oil-filled	24 kV/4.16 kV, 15 MVA, 3-ph, 60 Hz	1 (1)
5	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 2 MVA, 3-ph, 60 Hz	1 (1)

Equipment No.	Description	Description Type Design Condition				
6	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)		
7	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)		
8	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)		
9	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)		
10	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)		

Account 12 – Instrumentation and Control

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

3.2.3 Cost Estimate Results

Capital and operating costs for Cases 1b using the 7FA.05 turbine were estimated by WorleyParsons based on simulation results and vendor quotes/discussions, costing software, or a combination of the two. All costs are in June 2011 dollars.

The cost estimation results for this case are summarized in Exhibit 3-19. The summary and detail capital cost estimates for this case are shown in Exhibit 3-20 and Exhibit 3-21, respectively. The annual operating cost estimates are shown in Exhibit 3-22.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	1b
Total Plant Cost (2011\$/kW)	1,372
Total Overnight Cost (2011\$/kW)	1,674
Total As-spent Capital (2011\$/kW)	1,805
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	24.96
Fixed O&M	6.24
Variable O&M	3.15
Fuel	46.28
CO ₂ T&S total	3.65
COE ¹ Total	84.27
LCOE ¹ , total (including T&S)	106.82
$Cost^{1,2}$ of CO_2 avoided, \$/tonne of CO_2 (\$/ton of CO_2)	86.59 (78.55)
$Cost^{1,2}$ of CO_2 captured, \$/tonne of CO_2 (\$/ton of CO_2)	64.24 (58.28)

Exhibit 3-19 Case 1b - SOA turbine with CO_2 capture cost estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 1a – 7FA.05 without capture

	Client:	USDOE/NET	_							Report Date:	2011-Dec-15	
	Project:	Costing Supp			5							
	-		-	L PLAN	I COSI	SOMM	ARY					
	Case: Plant Size:	Case 1b - 7F	A.05 CCS MW,net	Fetim	ato Tyno:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$28,966	\$5,926	\$9,512	\$0	\$0	\$44,403	\$3,648	\$0	\$7,765	\$55,815	\$101
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION	\$157,956	\$0	\$49,757	\$0	\$0	\$207,713	\$17,339	\$35,870	\$52,184	\$313,106	\$566
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$104,200 \$0 \$104,200	\$0 \$881 \$881	\$6,364 \$952 \$7,316	\$0 \$0 \$0	\$0 \$0 \$0	\$110,564 \$1,833 \$112,397	\$9,132 \$153 \$9,285	\$0 \$0 \$0	\$11,970 \$397 \$12,367	\$131,665 \$2,384 \$134.049	\$4
7.1	HRSG, DUCTING & STACK Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$35,170 \$1,973 \$37,143	\$0 \$1,345 \$1,345	\$6,187 \$1,640 \$7,827	\$0 \$0 \$0	\$0 \$0 \$0	\$41,357 \$4,958 \$46,315	\$3,434 \$415	\$0 \$0 \$0	\$4,479 \$860 \$5,339	\$49,270 \$6,233	\$89 \$11
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$30,390 \$12,289 \$42,679	\$0 \$858 \$858	\$4,949 \$7,163 \$12,112	\$0 \$0 \$0	\$0 \$0 \$0	\$35,339 \$20,310 \$55,648	. ,	\$0 \$0 \$0	\$3,813 \$3,178 \$6,991	. ,	\$45
9	COOLING WATER SYSTEM	\$6,851	\$7,445	\$6,855	\$0	\$0	\$21,152	\$1,701	\$0	\$3,338	\$26,191	\$47
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$27,476	\$8,326	\$16,640	\$0	\$0	\$52,443	\$3,935	\$0	\$6,150	\$62,528	\$113
12	INSTRUMENTATION & CONTROL	\$7,863	\$890	\$6,667	\$0	\$0	\$15,420	\$1,265	\$771	\$2,004	\$19,460	\$35
13	IMPROVEMENTS TO SITE	\$2,104	\$1,143	\$5,958	\$0	\$0	\$9,205	\$816	\$0	\$2,004	\$12,025	\$22
14	BUILDINGS & STRUCTURES	\$0	\$5,169	\$5,398	\$0	\$0	\$10,567	\$840	\$0	\$1,711	\$13,118	\$24
	TOTAL COST	\$415,239	\$31,983	\$128,042	\$0	\$0	\$575,263	\$46,953	\$36,641	\$99,853	\$758,709	\$1,372

Exhibit 3-20 Case 1b - SOA turbine with CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1b - 7F	A.05 CCS									
	Plant Size:	552.8	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING											
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$2,940	\$3,045	\$2,486	\$0	\$0	\$8,471	\$682	\$0	\$1,373		\$19
	Water Makeup & Pretreating	\$2,514	\$260	\$1,290	\$0	\$0	\$4,063	\$335	\$0	\$880		\$10
3.3	Other Feedwater Subsystems	\$1,377	\$455	\$380	\$0	\$0	\$2,213	\$171	\$0	\$358	\$2,741	\$5
3.4	Service Water Systems	\$304	\$605	\$1,950	\$0	\$0	\$2,859	\$243	\$0	\$620	\$3,723	\$7
	Other Boiler Plant Systems	\$2,045	\$764	\$1,758	\$0	\$0	\$4,567	\$372	\$0	\$741	\$5,680	\$10
3.6	Natural Gas, incl. pipeline	\$17,695	\$635	\$549	\$0	\$0	\$18,879	\$1,557	\$0	\$3,065	\$23,501	\$43
3.7	Waste Treatment Equipment	\$878	\$0	\$508	\$0	\$0	\$1,386	\$120	\$0	\$301	\$1,807	\$3
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,213	\$162	\$589	\$0	\$0	\$1,964	\$168	\$0	\$426	\$2,558	\$5
	SUBTOTAL 3.	\$28,966	\$5,926	\$9,512	\$0	\$0	\$44,403	\$3,648	\$0	\$7,765	\$55,815	\$101
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
0,	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0
5B	CO2 REMOVAL & COMPRESSION						+-					
	CO2 Removal System	\$137.818	\$0	\$41.530	\$0	\$0	\$179,348	\$14 964	\$35.870	\$46.036	\$276.219	\$500
	CO2 Compression & Drying	\$20,138	\$0	\$8.227	\$0	\$0	\$28,365	\$2.375	\$00,070 \$0	\$6,148	, -, -	\$67
00.2	SUBTOTAL 5.	\$157,956	\$0	\$49,757	\$0	\$0	\$207,713	· /·	\$35,870	\$52,184		\$566
6	COMBUSTION TURBINE/ACCESSORIES	 ,	ΨŪ	4 .0,.07	ψŪ	ΨŪ	¢201,710	<i></i> ,	÷00,010	<i>voz</i> , 104		400
-	Combustion Turbine Generator	\$104.200	\$0	\$6.364	\$0	\$0	\$110,564	\$9.132	\$0	\$11,970	\$131.665	\$238
	Combustion Turbine Accessories	\$104,200 \$0	\$0 \$0	\$0,304 \$0	\$0 \$0	\$0 \$0	\$110,304 \$0	\$9,132	\$0 \$0	\$11,970 \$0		φ230 \$(
	Compressed Air Piping	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$C \$C		\$(
	Computing Combustion Turbing Foundations	\$0 \$0	\$881	\$952	\$0 \$0	\$0 \$0	پو \$1,833	پو \$153	\$0 \$0	\$397	· ·	\$4 \$2
0.9												\$242
	SUBTOTAL 6.	\$104,200	\$881	\$7,316	\$0	\$0	\$112,397	\$9,285	\$0	\$12,367	\$134,049	

Exhibit 3-21 Case 1b - SOA turbine with CO₂ capture capital cost estimate detail

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1b - 7F	-									
	Plant Size:		MW.net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies		TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
7	HRSG. DUCTING & STACK										· · · ·	
	Heat Recovery Steam Generator	\$35,170	\$0	\$6,187	\$0	\$0	\$41,357	\$3,434	\$0	\$4,479	\$49.270	\$89
	HRSG Accessories	\$1,973	\$828	\$1.155	\$0		\$3,956	\$331	\$0	\$643	, ., .	\$9
	Ductwork	\$0	\$0 \$0	\$0	\$0		\$0	\$0	\$0	\$0	· /· ·	\$0
-	Stack	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0		\$0
7.9	HRSG.Duct & Stack Foundations	\$0	\$517	\$485	\$0		\$1,002	\$84	\$0	\$217	· ·	\$2
	SUBTOTAL 7.	\$37,143	\$1,345	\$7,827	\$0		\$46,315	\$3,849	\$0	\$5,339		\$100
8	STEAM TURBINE GENERATOR		+ - ,	<i></i>			+ ,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Steam TG & Accessories	\$30.390	\$0	\$4.949	\$0	\$0	\$35,339	\$2,790	\$0	\$3.813	\$41.941	\$76
-	Turbine Plant Auxiliaries	\$200	\$0	\$445	\$0 \$0		\$645	\$55	\$0	\$70	, , -	\$1
	Condenser & Auxiliaries	\$2,070	\$0	\$1,241	\$0		\$3,311	\$279	\$0	\$359	· ·	\$7
	Steam Piping	\$10,019	\$0	\$4,061	\$0	+ -	\$14,079	\$959	\$0	\$2,256		\$31
	TG Foundations	\$0	\$858	\$1,416	\$0	• -	\$2,274	\$192	\$0	\$493		\$5
0.0	SUBTOTAL 8.	\$42,679	\$858	\$12,112	\$0	+ -	\$55,648	\$4,275	\$0	\$6,991		\$121
9	COOLING WATER SYSTEM	+ -=,• • •		+.=,=	֥	* *	<i>+••</i> ,•••	¥ .,=: ¥		<i>+ •,• • •</i>	+++++++++++++++++++++++++++++++++++++++	÷.=.
	Cooling Towers	\$4,040	\$0	\$1,230	\$0	\$0	\$5,270	\$440	\$0	\$571	\$6,281	\$11
	Circulating Water Pumps	\$1,961	\$0	\$118	\$0 \$0	, -	\$2,080	\$159	\$0	\$224		\$4
	Circ.Water System Auxiliaries	\$157	\$0	\$21	\$0 \$0	• -	\$178	\$15	\$0	\$19	, , -	\$0
	Circ.Water Piping	\$0	\$4,870	\$1,102	\$0 \$0	1 -	\$5,972	\$448	\$0	\$963		\$13
	Make-up Water System	\$380	\$0	\$488	\$0 \$0	1 -	\$868	\$72	\$0	\$141		\$2
	Component Cooling Water Sys	\$313	\$375	\$240	\$0 \$0	÷ •	\$928	\$74	\$0	\$150	¥)	\$ <u>-</u> \$2
	Circ.Water System Foundations	\$0	\$2,201	\$3,655	\$0 \$0	+-	\$5,856	\$494	\$0	\$1,270		\$14
0.0	SUBTOTAL 9.	\$6,851	\$7,445	\$6,855	\$0		\$21,152	\$1,701	\$0	\$3,338		\$47
10	ASH/SPENT SORBENT HANDLING SYS	<i>t</i> ,	<i>•••</i> ,•••	<i>+•</i> ,• <i>••</i>	+ •	÷-	+= -,- +=	÷ .,. • .		<i>+</i> -,----	+===,	•
10	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	* *	ψ υ	ţ,	ψu	4 0	<i>v</i> •	ΨŪ	ΨŬ	ţ.		ΨŪ
	Generator Equipment	\$7,221	\$0	\$4,271	\$0	\$0	\$11,492	\$944	\$0	\$933	\$13,369	\$24
	Station Service Equipment	\$2,745	\$0	\$236	\$0	• -	\$2,981	\$246	\$0	\$242		\$6
	Switchgear & Motor Control	\$3,378	\$0	\$587	\$0 \$0	• -	\$3,965	\$328	\$0	\$429	, . ,	\$9
	Conduit & Cable Tray	\$0,570	\$1,765	\$5,086	\$0 \$0	• -	\$6,851	\$571	\$0 \$0	\$1.113		\$15
	Wire & Cable	\$0 \$0	\$5,673	\$3,226	\$0	+-	\$8,899	\$535	\$0	\$1,415		\$20
-	Protective Equipment	\$0 \$0	\$730	\$2,533	\$0 \$0		\$3,263	\$281	\$0	\$354		¢20 \$7
11.7	Standby Equipment	\$125	¢700 \$0	\$116	\$0	• -	\$242	\$20	\$0	\$26		\$1
	Main Power Transformers	\$14,007	\$0	\$183	\$0	· -	\$14,190		\$0	\$1,515		\$30
-	Electrical Foundations	\$0	\$158	\$402	\$0 \$0		\$559	\$47	\$0	\$121		\$1
	SUBTOTAL 11.		\$8,326	\$16.640	\$0		\$52,443	\$3,935	\$0	\$6,150		\$113

Exhibit 3-21 Case 1b - SOA turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	г созт	SUMM	ARY					
	Case:	Case 1b - 7F	A.05 CCS									
	Plant Size:	552.8	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	igencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.4	Other Major Component Control	\$1,000	\$0	\$637	\$0	\$0	\$1,637	\$137	\$82	\$278	\$2,134	\$4
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.6	Control Boards, Panels & Racks	\$299	\$0	\$183	\$0	\$0	\$481	\$40	\$24	\$82	\$628	\$
12.7	Computer & Accessories	\$4,782	\$0	\$146	\$0	\$0	\$4,928	\$405	\$246	\$558	\$6,137	\$1
12.8	Instrument Wiring & Tubing	\$0	\$890	\$1,574	\$0	\$0	\$2,464	\$177	\$123	\$415	\$3,178	\$
12.9	Other I & C Equipment	\$1,783	\$0	\$4,127	\$0	\$0	\$5,910	\$506	\$296	\$671	\$7,382	\$1
	SUBTOTAL 12.	\$7,863	\$890	\$6,667	\$0	\$0	\$15,420	\$1,265	\$771	\$2,004	\$19,460	\$3
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$112	\$2,388	\$0	\$0	\$2,501	\$218	\$0	\$544	\$3,263	\$
13.2	Site Improvements	\$0	\$1,031	\$1,362	\$0	\$0	\$2,392	\$213	\$0	\$521	\$3,126	\$
13.3	Site Facilities	\$2,104	\$0	\$2,208	\$0	\$0	\$4,312	\$384	\$0	\$939	\$5,636	\$1
	SUBTOTAL 13.	\$2,104	\$1,143	\$5,958	\$0	\$0	\$9,205	\$816	\$0	\$2,004	\$12,025	\$2
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$304	\$161	\$0	\$0	\$464	\$36	\$0	\$75	\$575	\$
14.2	Steam Turbine Building	\$0	\$2,242	\$2,983	\$0	\$0	\$5,224	\$420	\$0	\$847	\$6,491	\$1
14.3	Administration Building	\$0	\$585	\$397	\$0	\$0	\$982	\$76	\$0	\$159	\$1,217	\$
14.4	Circulation Water Pumphouse	\$0	\$186	\$92	\$0	\$0	\$278	\$21	\$0	\$45	\$345	\$
14.5	Water Treatment Buildings	\$0	\$533	\$486	\$0	\$0	\$1,019	\$81	\$0	\$165	\$1,265	\$
14.6	Machine Shop	\$0	\$508	\$325	\$0	\$0	\$833	\$65	\$0	\$135	\$1,032	\$
14.7	Warehouse	\$0	\$328	\$198	\$0	\$0	\$526	\$41	\$0	\$85	\$651	\$
14.8	Other Buildings & Structures	\$0	\$98	\$71	\$0	\$0	\$170	\$13	\$0	\$27	\$210	\$
14.9	Waste Treating Building & Str.	\$0	\$384	\$686	\$0	\$0	\$1,070	\$87	\$0	\$174	\$1,331	\$
	SUBTOTAL 14.	\$0	\$5,169	\$5,398	\$0	\$0	\$10,567	\$840	\$0	\$1,711	\$13,118	\$2
	TOTAL COST	\$415,239	\$31,983	\$128,042	\$0	\$0	\$575,263	\$46,953	\$36,641	\$99,853	\$758,709	\$1,37

Exhibit 3-21 Case 1b - SOA turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses						
		T	OTAL P	LANT CO	OST SU	MMARY					
	Case:	Case 1b - 7F	A.05 CCS								
	Plant Size:	552.8	MW,net	Estim	nate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$415,239	\$31,983	\$128,042	\$0	\$575,263	\$46,953	\$36,641	\$99,853	\$758,709	\$1,372
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$5,253	\$10
	1 Month Maintenance Materials									\$815	\$1
	1 Month Non-fuel Consumables									\$455	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$4,669	\$8
	2% of TPC									\$15,174	\$27
	Total									\$26,366	\$48
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$629	\$1
	0.5% of TPC (spare parts)									\$3,794	\$7
	Total									\$4,423	\$8
	Initial Cost for Catalyst and Chemicals									\$1,383	\$3
	Land									\$300	\$1
	Other Owner's Costs									\$113,806	\$206
	Financing Costs									\$20,485	\$37
	Total Overnight Costs (TOC)									\$925,473	\$1,674
	TASC Multiplier							(IOLI high	risk, 33 year)	1.078	ψι,σ/٦
	Total As-Spent Cost (TASC)							(100, mgn	non, oo year)	\$997,659	\$1,805

Exhibit 3-21 Case 1b - SOA turbine with CO₂ capture capital cost estimate detail (continued)

INITIAL & A	ANNUAL O	&M EXPENS	ES		Cost Base (Jun)	2011
Case 1b - 7FA.05 CCS				Heat Rate	e-net (Btu/kWh):	7,549
					MWe-net:	553
				Сара	acity Factor (%):	85
OPERATING & M	IAINTENANC	<u>E LABOR</u>				
Operating Labor	~~ ~~	• "				
Operating Labor Rate(base):		\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cos
					\$	\$/kW-net
Annual Operating Labor Cost					\$2,861,816	\$5.177
Maintenance Labor Cost					\$5,542,918	\$10.027
Administrative & Support Labor					\$2,101,183	\$3.801
Property Taxes and Insurance					\$15,174,186	\$27.449
TOTAL FIXED OPERATING COS	TS				\$25,680,103	\$46.453
VARIABLE OPERATING COSTS	-				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$8,314,377	\$0.00202
Consumables	<u>Consu</u>	imption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	2,752.56	1.67	\$0	\$1,429,561	\$0.00035
Chemicals						
MU & WT Chem.(lbs)	0.00	16,398.96	0.27	\$0	\$1,362,705	\$0.00033
MEA Solvent (ton)	382.15	0.54	3,481.91	\$1,330,624	\$579,745	\$0.00014
Activated Carbon (lb)	0.00		1.63	\$0	\$323,251	\$0.00008
Corrosion Inhibitor	0.00	0.00	0.00	\$52,355	\$2,493	\$0.00000
SCR Catalyst (m3)	w/equip.		8,938.80	\$0_,000 \$0	\$229,367	\$0.00006
Ammonia (19% NH3) (ton)	0.00	6.96	330.00	\$0	\$712,171	\$0.00017
Subtotal Chemicals	0.00	0.00	000.00	\$1,382,978	\$3,209,732	\$0.00078
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00		0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00		0.00		\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products	_ ~ .			_		
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING	COSTS			\$1,382,978	\$12,953,669	\$0.00315
Fuel (MMBtu)	0	100,157	6.13	\$0	\$190,481,718	\$0.04625

Exhibit 3-22 Case 1b - SOA turbine with CO_2 capture operating cost estimate

3.3 Case 1c – NGCC with CO₂ Capture and EGR Modeling Results

The block flow diagram of the combined cycle with CO_2 capture and EGR is shown in Exhibit 3-23. This case also uses the same 7FA.05 gas turbine model as that of Case 1a with the addition of EGR and CO_2 capture at the back end. Exhibit 3-24 provides process data for the numbered streams in the BFD. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle similar to case 1b. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at $1,359^{\circ}C$ ($2,479^{\circ}F$). The flue gas exits the turbine at $615^{\circ}C$ ($1,139^{\circ}F$) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at $107^{\circ}C$ ($225^{\circ}F$). A portion of the stream (stream 6) is recycled back to the air inlet and the remainder (stream 4) passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance and exhaust characteristics are impacted due to addition of the EGR. Of particular interest is that the CO₂ composition at gas turbine exhaust increases from 3.9 percent in the capture only case (Case 1b) to 6.1 percent in this capture with EGR case. The O₂ composition concurrently decreases from 8.3 percent in the capture only case (Case 1b) to 7.4 percent in this capture with EGR. The higher concentration of the CO₂ in the exhaust gas stream reduces the energy consumption of the CO₂ capture system. Because of this, the EGR case provides a better output and efficiency compared to the capture case without EGR (Case 1b). However, the overall plant output and efficiency are reduced compared to the no CO₂ capture case (Case 1a) due to heat integration requirements and increased auxiliary loads for the EGR and CO₂ capture process.

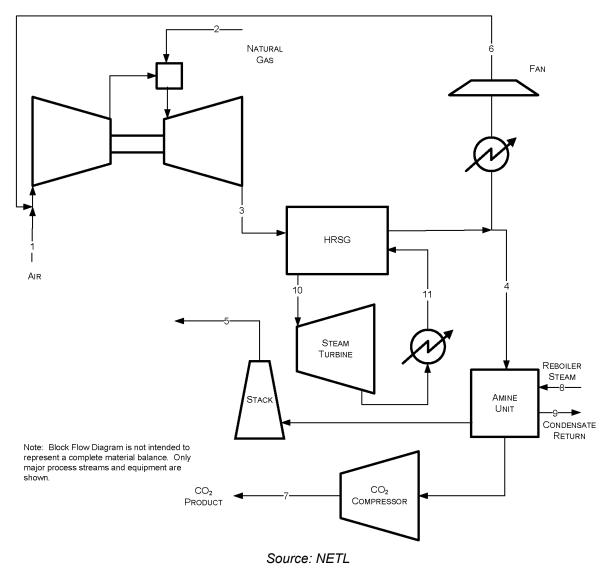


Exhibit 3-23 Case 1c - SOA turbine with CO₂ capture and EGR block flow diagram

V-L Mole Fraction N N N N Ar 0.0093 0.0000 0.0090 0.0011 0.0005 0.0000 0		1	2	3	4	5	6	7	8	9	10	11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V-L Mole Fraction		-	.		•	•				10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.0093	0.0000	0.0090	0.0090	0.0101	0.0095	0.0000	0.0000	0.0000	0.0000	0.0000
$ \begin{array}{c} \hline C_3H_8 & 0.0000 & 0.0070 & 0.0000 & 0 & $		0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO 0.0000 0.000 0 0 <t< td=""><td>C₃H₈</td><td>0.0000</td><td>0.0070</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td></t<>	C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{c ccccc} CO_2 & 0.0003 & 0.0100 & 0.0607 & 0.0607 & 0.0668 & 0.0640 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ H_2O & 0.0101 & 0.0000 & 0.0978 & 0.0978 & 0.0555 & 0.0480 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.000 & 0 & $	C₄H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N2 0.7729 0.0160 0.7496 0.8353 0.7910 0.0000 1.0000	CO ₂	0.0003	0.0100	0.0607	0.0607	0.0068	0.0640	1.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H₂O	0.0101	0.0000	0.0978	0.0978	0.0555	0.0480	0.0000	1.0000	1.0000	1.0000	1.0000
SO2 0.0000 1.0000 <td>N₂</td> <td>0.7729</td> <td>0.0160</td> <td>0.7496</td> <td>0.7496</td> <td>0.8353</td> <td>0.7910</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td>	N ₂	0.7729	0.0160	0.7496	0.7496	0.8353	0.7910	0.0000	0.0000	0.0000	0.0000	0.0000
Total 1.0000 </td <td>O₂</td> <td>0.2074</td> <td>0.0000</td> <td>0.0829</td> <td>0.0829</td> <td>0.0924</td> <td>0.0875</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td>	O ₂	0.2074	0.0000	0.0829	0.0829	0.0924	0.0875	0.0000	0.0000	0.0000	0.0000	0.0000
V-L Flowrate (kg _{mol} /hr) 81,816 4,894 129,957 84,471 75,804 43,113 4,612 12,719 12,719 23,567 20 V-L Flowrate (kg/hr) 2,361,220 84,815 3,697,286 2,403,187 2,127,058 1,251,153 202,974 229,133 229,133 424,562 37 Solids Flowrate (kg/hr) 0 <td< td=""><td>SO₂</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td></td<>	SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
V-L Flowrate (kg/hr) 2,361,220 84,815 3,697,286 2,403,187 2,127,058 1,251,153 202,974 229,133 229,133 424,562 37 Solids Flowrate (kg/hr) 0	Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg/hr) 2,361,220 84,815 3,697,286 2,403,187 2,127,058 1,251,153 202,974 229,133 229,133 424,562 37 Solids Flowrate (kg/hr) 0	V-L Flowrate (kg/hr)	81 816	4 894	129 957	84 471	75 804	43 113	4 612	12 719	12 719	23 567	20,539
Solids Flowrate (kg/hr) 0			,	,		,		,	,	,	,	370,023
Pressure (MPa, abs) 0.10 2.76 0.10 0.10 0.10 0.10 15.17 0.34 0.39 16.65 0.0 Enthalpy (kJ/kg) ^A 30.23 46.30 661.75 87.41 10.51 8.47 -225.74 3,052.41 578.94 3,476.21 2,3 Density (kg/m ³) 1.2 18.5 0.4 0.9 1.1 1.2 796.1 2.7 915.8 47.7 9 V-L Molecular Weight 28.860 17.330 28.450 28.450 28.060 29.020 44.010 18.015 18.015 18.015 18 V-L Flowrate (lb _{mol} /hr) 180,374 10,790 286,507 186,226 167,119 95,049 10,168 28,040 28,040 51,956 45 V-L Flowrate (lb/mol/hr) 5,205,600 186,984 8,151,120 5,298,120 4,689,360 2,758,320 447,480 505,152 936,000 81 Solids Flowrate (lb/hr) 0 0 0 0 0 0 0 <td></td> <td>, ,</td> <td>,</td> <td>, ,</td> <td>, ,</td> <td>, ,</td> <td></td> <td>,</td> <td></td> <td>,</td> <td>,</td> <td>0</td>		, ,	,	, ,	, ,	, ,		,		,	,	0
Pressure (MPa, abs) 0.10 2.76 0.10 0.10 0.10 0.10 15.17 0.34 0.39 16.65 0.0 Enthalpy (kJ/kg) ^A 30.23 46.30 661.75 87.41 10.51 8.47 -225.74 3,052.41 578.94 3,476.21 2,3 Density (kg/m ³) 1.2 18.5 0.4 0.9 1.1 1.2 796.1 2.7 915.8 47.7 9 V-L Molecular Weight 28.860 17.330 28.450 28.450 28.060 29.020 44.010 18.015 18.015 18.015 18 V-L Flowrate (lb/mo//hr) 180,374 10,790 286,507 186,226 167,119 95,049 10,168 28,040 28,040 51,956 45 V-L Flowrate (lb/mo//hr) 5,205,600 186,984 8,151,120 5,298,120 4,689,360 2,758,320 447,480 505,152 936,000 81 Solids Flowrate (lb/hr) 0 0 0 0 0 0 0												
Enthalpy (kJ/kg) ^A 30.23 46.30 661.75 87.41 10.51 8.47 -225.74 3,052.41 578.94 3,476.21 2,3 Density (kg/m ³) 1.2 18.5 0.4 0.9 1.1 1.2 796.1 2.7 915.8 47.7 9 V-L Molecular Weight 28.860 17.330 28.450 28.450 28.060 29.020 44.010 18.015	Temperature (°C)	15	38	615	107	35	33	38	292	138	566	32
Density (kg/m³) 1.2 18.5 0.4 0.9 1.1 1.2 796.1 2.7 915.8 47.7 9 V-L Molecular Weight 28.860 17.330 28.450 28.450 28.060 29.020 44.010 18.015	Pressure (MPa, abs)	0.10	2.76	0.10	0.10	0.10	0.10	15.17	0.34	0.39	16.65	0.00
V-L Molecular Weight 28.860 17.330 28.450 28.450 28.060 29.020 44.010 18.015	Enthalpy (kJ/kg) ^A	30.23	46.30	661.75	87.41	10.51	8.47	-225.74	3,052.41	578.94	3,476.21	2,379.03
V-L Flowrate (lb/mol/hr) 180,374 10,790 286,507 186,226 167,119 95,049 10,168 28,040 28,040 51,956 45 V-L Flowrate (lb/hr) 5,205,600 186,984 8,151,120 5,298,120 4,689,360 2,758,320 447,480 505,152 505,152 936,000 81 Solids Flowrate (lb/hr) 0	Density (kg/m ³)	1.2	18.5	0.4	0.9	1.1	1.2	796.1	2.7	915.8	47.7	992.9
V-L Flowrate (lb/hr) 5,205,600 186,984 8,151,120 5,298,120 4,689,360 2,758,320 447,480 505,152 505,152 936,000 81 Solids Flowrate (lb/hr) 0	V-L Molecular Weight	28.860	17.330	28.450	28.450	28.060	29.020	44.010	18.015	18.015	18.015	18.015
V-L Flowrate (lb/hr) 5,205,600 186,984 8,151,120 5,298,120 4,689,360 2,758,320 447,480 505,152 505,152 936,000 81 Solids Flowrate (lb/hr) 0	VI Flowrote (lb. /br)	100 074	10 700	200 507	196 006	167 110	05.040	10 169	28.040	28.040	E1 0E6	45 000
Solids Flowrate (lb/hr) 0			,		,	,	,	,	,		,	45,282
Temperature (°F) 59 100 1,139 225 95 92 101 557 280 1,050 Pressure (psia) 14.7 399.7 15.2 14.7 14.7 14.7 2,200.0 49.0 56.7 2,415.0 Enthalpy (Btu/lb) ^A 13.0 19.9 284.5 37.6 4.5 3.6 -97.1 1,312.3 248.9 1,494.5 1,0	(/	, ,	,	· · ·	, ,	, ,	, ,	,	,	ŗ	,	815,760
Pressure (psia) 14.7 399.7 15.2 14.7 14.7 14.7 2,200.0 49.0 56.7 2,415.0 Enthalpy (Btu/lb) ^A 13.0 19.9 284.5 37.6 4.5 3.6 -97.1 1,312.3 248.9 1,494.5 1,0	Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
Pressure (psia) 14.7 399.7 15.2 14.7 14.7 14.7 2,200.0 49.0 56.7 2,415.0 Enthalpy (Btu/lb) ^A 13.0 19.9 284.5 37.6 4.5 3.6 -97.1 1,312.3 248.9 1,494.5 1,0	Temperature (°F)	59	100	1,139	225	95	92	101	557	280	1,050	90
Enthalpy (Btu/lb) ^A 13.0 19.9 284.5 37.6 4.5 3.6 -97.1 1,312.3 248.9 1,494.5 1,0				,			-					0.7
	u /			-				,			,	1,022.8
ן 1.153 U.U25 U.U57 U.U69 U.U72 H9.700 U.169 S7.172 Z.977 61	Density (lb/ft ³)	0.076	1.153	0.025	0.057	0.069	0.072	49.700	0.169	57.172	2.977	61.982

Exhibit 3-24 Case 1c - SOA turbine with CO₂ capture and EGR stream table

A - Enthalpy is 32F (0C) with H2O as liquid

Note: Total flow rates shown equal the sum for all process trains

3.3.1 Performance Results

The performance results are summarized in Exhibit 3-25 and when compared with Case 1b show that adding exhaust gas recycle increases the efficiency only by approximately 0.6 percentage points. This is due to lowering the steam requirement for the reboiler slightly (to 2,790 kJ/kg CO_2 (1,200 Btu/lb CO_2) from the 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) used in Case 1b) and based on the CO_2 concentration increasing and the oxygen concentration decreasing for the exhaust gas recycle was increased from the 35 percent used to 50 percent. This was not explored in the current study since it was determined based on information from GE that 35 percent was a limit above which the gas turbine's combustor would need major redesign.

Additional tables below provide overall energy balance (Exhibit 3-26), water balance (Exhibit 3-27), carbon balance (Exhibit 3-28), and an emissions summary (Exhibit 3-29).

-	
	kW _e
	kW _e
•	kW _e
y Load	
268	kW _e
4,834	kW _e
376	kW _e
13,128	kW _e
18,815	kW _e
301	kW _e
4,463	kW _e
370	kW _e
2,846	kW _e
10	kW _e
860	kW _e
556	kW _e
2,148	kW _e
3,000	kW _e
51,975	kW _e
ormance	
563,165	kW _e
85.0	
45.7%	
50.6%	
7,879 (7,468)	kJ/kWh (Btu/kWh)
7,112 (6,741)	kJ/kWh (Btu/kWh)
84,815 (186,984)	kg/hr (lb/hr)
1,232,595	kWt
1,112,558	kWt
833 (790)	GJ/hr (MMBtu/hr)
15.6 (4,109)	m ³ /min (gpm)
11.6 (3,069)	m ³ /min (gpm)
	4,834 376 13,128 18,815 301 4,463 370 2,846 10 860 556 2,148 3,000 51,975 ormance 563,165 85.0 45.7% 50.6% 7,879 (7,468) 7,112 (6,741) 84,815 (186,984) 1,232,595 1,112,558 833 (790) 15.6 (4,109)

Exhibit 3-25 Case 1c - SOA turbine with CO_2 capture and EGR plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total		
	Energy I	n, GJ/hr (MMBtu/hr)				
Natural Gas	4,437 (4,206)	3.0 (2.8)	0 (0)	4,440 (4,209)		
GT Air	0 (0)	71.4 (67.6)	0 (0)	71 (68)		
Raw Water Withdrawal	0 (0)	58.5 (55.4)	0 (0)	58 (55)		
Auxiliary Power	0 (0)	0.0 (0.0)	187 (177)	187 (177)		
TOTAL	4,437 (4,206)	132.8 (125.9)	187 (177)	4,757 (4,509)		
	Energy Out, GJ/hr (MMBtu/hr)					
Cooling Tower Blowdown	0 (0)	29.1 (27.6)	0 (0)	29 (28)		
Stack Gas	0 (0)	22 (21)	0 (0)	22 (21)		
Condenser	0 (0)	830 (787)	0 (0)	830 (787)		
CO ₂ Product	0 (0)	-45.8 (-43.4)	0 (0)	-46 (-43)		
CO ₂ Intercoolers	0 (0)	117.4 (111.3)	0 (0)	117 (111)		
EGR Cooling	0 (0)	209.6 (198.7)	0 (0)	210 (199)		
Amine System Losses	0 (0)	785.2 (744.2)	0 (0)	785 (744)		
Process Losses*	0 (0)	-595 (-564)	0 (0)	-595 (-564)		
Power	0 (0)	0.0 (0.0)	2,215 (2,099)	2,215 (2,099)		
TOTAL	0 (0)	2,543 (2,410)	2,215 (2,099)	4,757 (4,509)		

Exhibit 3-26 Case 1c - SOA turbine with CO₂ capture and EGR overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 3-27	Case 1c - SOA turbine with CO ₂ capture and EGR water balance

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m³/min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine CO ₂ Capture System	0.05 (13)	0.0 (0)	0.05 (13)	0.0 (0)	0.05 (13)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.06 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	17.4 (4,607)	2.0 (527)	15.5 (4,081)	3.9 (1,040)	11.5 (3,041)
BFW Blowdown	0.00 (0)	0.06 (15)	-0.06 (-15)	0.0 (0)	0.0 (0)
EGR Condensate	0.00 (0)	0.72 (189)	-0.72 (-189)	0.0 (0)	0.0 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	1.22 (322)	-1.22 (-322)	0.0 (0)	0.0 (0)
Total	17.5 (4,636)	2.0 (527)	15.6 (4,109)	3.9 (1,040)	11.6 (3,069)

Carbon In, kg/hr (lb/hr)		Carbon Out, kg/hr (lb/hr)		
Natural Gas	61,252 (135,037)	Stack Gas	6,157 (13,573)	
Air (CO ₂)	295 (650)	CO ₂ Product	55,395 (122,124)	
		Convergence Tolerance*	-5 (-10)	
Total	61,547 (135,687)	Total	61,547 (135,687)	

Exhibit 3-28 Case 1c - SOA turbine with CO₂ capture and EGR carbon balance

*by difference

Emissions are estimated based on user input specifications to models.

Exhibit 3-29 Case 1c - SOA turbine with CO₂ capture and EGR air emissions

	kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (Ib/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.002 (0.005)	71 (78)	0.016 (0.034)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	167,973 (185,158)	37 (81)
CO ₂ ¹			40 (88)

¹ CO₂ emissions based on net power instead of gross power

3.3.2 Major Equipment List

This section contains a portion of the equipment list corresponding to the 7FA.05 GT with CO_2 capture and EGR plant configuration for case 1c. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	454,253 liters (120,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	3,407 lpm @ 49 m H₂O (900 gpm @ 160 ft H₂O)	2 (1)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with interstage bleed for IP and LP feedwater	HP water: 3,937 lpm @ 1,878 m H ₂ O (1,040 gpm @ 6,160 ft H ₂ O) IP water: 4,845 lpm @ 311 m H ₂ O (1,280 gpm @ 1,020 ft H ₂ O) LP water: 720 lpm @ 0.0 m H ₂ O (190 gpm @ 00 ft H ₂ O)	2 (1)
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H₂O (1,000 gpm @ 350 ft H₂O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H₂O (700 gpm @ 250 ft H₂O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	9,842 lpm @ 18 m H ₂ O (2,600 gpm @ 60 ft H ₂ O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	170 lpm @ 49 m H ₂ O (45 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	166,560 liter (44,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro-deionization unit	379 lpm (100 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)

Account 3 - Feedwater and Miscellaneous Systems and	Equipment
---	-----------

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	84 m ³ /min @ 2.8 MPa (2,973 acfm @ 399.7 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		84 m ³ /min (2,973 acfm)	1 (0)

Account 4 – Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Account 5B - CO₂ Capture and Compression

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Amine CO ₂ Capture System	Amine-based CO ₂ capture technology	1,321,770 kg/hr (2,914,000 lb/hr) 9.4 wt % CO ₂ concentration	2 (0)
2	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	111,584 kg/hr @ 15.2 MPa (246,000 lb/hr @ 2,200 psia)	2 (0)
3	Exhaust Gas Recycle Blowers	Centrifugal	10,000 m ³ /min @ 12.7 cm WG (353,170 acfm @ 5 in WG)	2 (0)
4	EGR Cooler	Contact Heat Exchanger	116 GJ/hr, (110 MMBtu/hr), Gas Stream 1,423,000 kg/hr, (3,138,000 lb/hr) 26,030 m ³ /min, (919,000 acfm) from 107°C (225°F) to 32°C (90°F), Water Stream 4,910,000 kg/hr, (10,875,000 lb/hr) 6,691,000 lpm, (1,503,000 gpm) from 18°C (64.5°F) to 29°C (84.5°F)	1 (0)
5	EGR Cooler Pumps	Horizontal Centrifugal	41,600 lpm @ 18 m H ₂ O (10,990 gpm @ 60 ft H ₂ O)	4 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Gas Turbine	7FA.05 Advanced F frame w/ dry low-NOx burner	225 MW	2 (0)
2	Gas Turbine Generator	TEWAC	250 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 5.3 m (17 ft) diameter	2 (0)
2	Heat Recovery Steam Generator	Drum, multi- pressure with economizer section and integral deaerator	Main steam - 233,510 kg/hr, 16.5 MPa/566°C (514,800 lb/hr, 2,400 psig/1,050°F) Reheat steam - 277,787 kg/hr, 2.4 MPa/566°C (612,414 lb/hr, 345 psig/1,050°F)	2 (0)
3	SCR Reactor	Space for spare layer	1,070,270 kg/hr (2,580,000 lb/hr)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5	Dilution Air Blowers	Centrifugal	12 m ³ /min @ 107 cm WG (440 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H ₂ O (1 gpm @ 300 ft H ₂ O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	75,709 liter (20,000 gal)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	207 MW 16.5 MPa/566°C/566°C (2,400 psig / 1,050°F/1,050°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	230 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)	
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)	
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	917 GJ/hr, (870 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)	

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	450,468 lpm @ 30.5 m (119,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 2,503 GJ/hr (2,375 MMBtu/hr) heat load	1 (0)

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	CTG Transformer	Oil-filled	24 kV/345 kV, 250 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 190 MVA, 3-ph, 60 Hz	1 (0)
3	High Voltage Auxiliary Transformer	Oil-filled	345 kV/13.8 kV, 10 MVA, 3-ph, 60 Hz	2 (0)
4	Medium Voltage Transformer	Oil-filled	24 kV/4.16 kV, 34 MVA, 3-ph, 60 Hz	1 (1)
5	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 5 MVA, 3-ph, 60 Hz	1 (1)
6	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
7	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)
8	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
9	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
10	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Account 12 – Instrumentation and Control

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

3.3.3 Cost Estimate Results

Capital and operating costs for Cases 1c using the 7FA.05 turbine were estimated by WorleyParsons based on simulation results and vendor quotes/discussions, costing software, or a combination of the two. All costs are in June 2011 dollars.

The cost estimation results for this case are summarized in Exhibit 3-30. The summary and detail capital cost estimates for this case are shown in Exhibit 3-31 and Exhibit 3-32, respectively. The annual operating cost estimates are shown in Exhibit 3-33.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	1c
Total Plant Cost (2011\$/kW)	1,285
Total Overnight Cost (2011\$/kW)	1,568
Total As-spent Capital (2011\$/kW)	1,691
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	23.38
Fixed O&M	5.99
Variable O&M	3.18
Fuel	45.77
CO ₂ T&S total	3.60
COE ¹ Total	81.92
LCOE ¹ , total (including T&S)	103.85
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	78.94 (71.61)
$Cost^{1,2}$ of CO_2 captured, \$/tonne of CO_2 (\$/ton of CO_2)	58.75 (53.30)

Exhibit 3-30 Case 1c - SOA turbine with CO₂ capture and EGR cost estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 1a – 7FA.05 without capture

	Client: Project:	USDOE/NET Costing Supp	oort for NGC	C with CCS A	•	SUMM	ARY			Report Date:	2012-Apr-04	
	Case:	Case 1c - 7F									(* (****)	
	Plant Size:		MW,net		ate Type:	-			Base (Jun)	2011	(\$x1000)	<u> </u>
Acct No.	Item/Description	Equipment Cost	Material Cost	Lab Direct	or Indirect	Sales Tax	Bare Erected Cost	H.O.& Fee		ngencies Project	TOTAL PLAN \$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$29,483	\$6,179	\$9,947	\$0	\$0	\$45,609	\$3,746	\$0	\$7,985	\$57,340	\$102
4	GASIFIER & ACCESSORIES	. ,	. ,	. ,			. ,	. ,	·			
4.1	Gasifier, Syngas Cooler & Auxiliaries	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Syngas Cooling	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0		+ -
	ASU/Oxidant Compression	\$0	\$0 ©0	\$0 ©0	\$0	\$0 \$0	\$0	· ·	\$0	\$0		\$C
4.4-4.9	Other gasification Equipment SUBTOTAL 4	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	+ -	\$0 \$0	\$0 \$0		\$0 \$0
54	GAS CLEANUP & PIPING	\$0	\$9,254	\$5,834	\$0 \$0	\$0 \$0	\$15.088		\$0 \$0	\$3,253		\$35
-	CO2 REMOVAL & COMPRESSION	\$122.476	\$0, <u>2</u> 01	\$39,143	\$0	\$0 \$0	\$161,619		\$26.642	\$40, <u>2</u> 00	\$242,106	
-	COMBUSTION TURBINE/ACCESSORIES	ψ122,470	φυ	φ00,140	φυ	ψŪ	<i><i><i></i></i></i>	ψ10,400	Ψ20,0 4 2	φ+0,001	<i>4242,100</i>	ϕ+00
-	Combustion Turbine Generator	\$109,410	\$0	\$6,913	\$0	\$0	\$116,323	\$9.920	\$0	\$13.002	\$139.245	\$247
-	Combustion Turbine Other	\$0	\$881	\$952	\$0	\$0	\$1,833		\$0	\$397	\$2,384	\$4
	SUBTOTAL 6	\$109,410	\$881	\$7,865	\$0	\$0	\$118,156	\$10,073	\$0	\$13,399	\$141,628	\$251
	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$36,130	\$0	\$6,355	\$0	\$0	\$42,485	. ,	\$0	\$4,601	\$50,614	\$90
7.2-7.9	SCR System, Ductwork and Stack SUBTOTAL 7	\$1,963	\$1,354 \$1,354	\$1,647 \$8,002	\$0 \$0	\$0 \$0	\$4,965		\$0 \$0	\$863	. ,	\$11 \$10 1
		\$38,093	\$1,354	\$0,002	φU	φU	\$47,450	\$3,943	φU	\$5,464	\$56,857	\$101
-	STEAM TURBINE GENERATOR Steam TG & Accessories	\$32.000	\$0	\$5.198	\$0	\$0	\$37,198	\$2.936	\$0	\$4,013	\$44.148	\$78
-	Turbine Plant Auxiliaries and Steam Piping	\$32,000	\$0 \$897	\$5,198	\$0 \$0	\$0 \$0	\$21,155	. ,	\$0 \$0	\$4,013		\$76 \$46
0.2 0.0	SUBTOTAL 8	\$44,798	\$897	\$12,657	\$0	\$0	\$58,352	• • •	\$0	\$7,322	. ,	+ · ·
9	COOLING WATER SYSTEM	\$7,381	\$7,942	\$7,332	\$0	\$0	\$22,655	\$1,822	\$0	\$3,571	\$28,048	\$50
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$27,868	\$8,176	\$16,492	\$0	\$0	\$52,535	\$3,940	\$0	\$6,142	\$62,617	\$111
12	INSTRUMENTATION & CONTROL	\$7,912	\$895	\$6,708	\$0	\$0	\$15,516	\$1,273	\$776	\$2,016	\$19,581	\$35
13	IMPROVEMENTS TO SITE	\$2,117	\$1,150	\$5,994	\$0	\$0	\$9,261	\$821	\$0	\$2,016	\$12,098	\$21
14	BUILDINGS & STRUCTURES	\$0	\$5,291	\$5,543	\$0	\$0	\$10,834	\$861	\$0	\$1,754	\$13,450	\$24
	TOTAL COST	\$389,539	\$42,019	\$125,518	\$0	\$0	\$557,076	\$45,633	\$27,418	\$93,275	\$723,402	\$1,285

Exhibit 3-31 Case 1c - SOA turbine with CO₂ capture and EGR capital cost estimate summary

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGCC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1c - 7F	-			••••••	,					
	Plant Size:		MW,net		ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
A			Material				Bare Erected		, ,	-		TOOST
Acct No.	Item/Description	Equipment Cost	Cost	Lab Direct	or Indirect	Sales Tax	Cost	Eng'g CM H.O.& Fee		ngencies	S	\$/kW
_	COAL & SORBENT HANDLING	COSL	COSL	Direct	mairect	Tax	COSI	п.О.а гее	Process	Project	- P	⊅/KVV
1	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$ 0	φU	\$ 0	φU	φU	Φ 0	φU	φU	φu	φ υ	φU
2	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	FEEDWATER & MISC. BOP SYSTEMS	\$ 0	Φ 0	φU	ΦU	φυ	φU	φU	φU	ΨΟ	, v	φυ
-	Feedwater System	\$3.075	\$3,184	\$2.600	\$0	\$0	\$8,858	\$713	\$0	\$1,436	\$11.008	\$20
	Water Makeup & Pretreating	\$2.648	\$274	\$2,000 \$1.359	\$0 \$0	\$0 \$0	\$4,281	\$353	\$0 \$0	\$927	. ,	
	Other Feedwater Subsystems	\$1,440	\$476	\$398	\$0	\$0	\$2,314	\$179	\$0	\$374	+ - /	\$5
	Service Water Systems	\$320	\$638	\$2.055	\$0 \$0	\$0	\$3.012	\$256	\$0 \$0	\$654	. ,	
	Other Boiler Plant Systems	\$2,155	\$805	\$1,852	\$0 \$0	\$0	\$4,812	\$392	\$0	\$781	+ - / -	\$11
	Natural Gas, incl. pipeline	\$17.698	\$639	\$554	\$0	\$0	\$18,891	\$1,558	\$0	\$3,067	. ,	\$42
	Waste Treatment Equipment	\$925	\$0	\$535	\$0	\$0	\$1,460	\$126	\$0	\$317	. ,	\$3
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,222	\$163	\$594	\$0	\$0	\$1,979	\$169	\$0	\$430	\$2,578	\$5
	SUBTOTAL 3.	\$29,483	\$6,179	\$9,947	\$0	\$0	\$45,609	\$3,746	\$0	\$7,985	\$57,340	\$102
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$9,254	\$5,834	\$0	\$0	\$15,088	\$1,176	\$0	\$3,253	\$19,518	\$35
5A.9	HGCU Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$9,254	\$5,834	\$0	\$0	\$15,088	\$1,176	\$0	\$3,253	\$19,518	\$35
-	CO2 REMOVAL & COMPRESSION											
	CO2 Removal System	\$102,365	\$0	\$30,847	\$0	\$0	\$133,212	. ,	\$26,642	\$34,194	. ,	
5B.2	CO2 Compression & Drying	\$20,111	\$0	\$8,296	\$0	\$0	\$28,408		\$0	\$6,157	. ,	•
	SUBTOTAL 5.	\$122,476	\$0	\$39,143	\$0	\$0	\$161,619	\$13,493	\$26,642	\$40,351	\$242,106	\$430
-	COMBUSTION TURBINE/ACCESSORIES											
	Combustion Turbine Generator	\$109,410	\$0	\$6,913	\$0	\$0	\$116,323	\$9,920	\$0	\$13,002	. ,	•
-	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	1 -	\$0	\$C		\$0
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	÷ •	\$0	\$0		\$0
6.9	Combustion Turbine Foundations	\$0	\$881	\$952	\$0	\$0	\$1,833		\$0	\$397	. ,	\$4
	SUBTOTAL 6.	\$109,410	\$881	\$7,865	\$0	\$0	\$118,156	\$10,073	\$0	\$13,399	\$141,628	\$251

Exhibit 3-32 Case 1c - SOA turbine with CO₂ capture and EGR capital cost estimate detail

	Client:	USDOE/NET								Report Date:	2012-Apr-04	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1c - 7F				•••						
	Plant Size:		MW,net		ato Typo:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
	Fiant Size.										. ,	
Acct		Equipment	Material	Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK	* ***	•••	* ** **	•••	•	A / A / A =	* • • • • • •	•••	.		
	Heat Recovery Steam Generator	\$36,130	\$0	\$6,355	\$0		\$42,485	\$3,528	\$0	\$4,601		\$90
	HRSG Accessories	\$1,963	\$825	\$1,150	\$0	\$0	\$3,938	\$330	\$0	\$640		\$9
-	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0
	Stack	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	· ·	\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$530	\$497	\$0	\$0	\$1,026	\$86	\$0	\$222	, ,	\$2
	SUBTOTAL 7.	\$38,093	\$1,354	\$8,002	\$0	\$0	\$47,450	\$3,943	\$0	\$5,464	\$56,857	\$101
-	STEAM TURBINE GENERATOR											
-	Steam TG & Accessories	\$32,000	\$0	\$5,198	\$0	\$0	\$37,198	\$2,936	\$0	\$4,013	, , -	\$78
- · -	Turbine Plant Auxiliaries	\$209	\$0	\$466	\$0	\$0	\$675	\$58	\$0	\$73		\$1
	Condenser & Auxiliaries	\$2,190	\$0	\$1,298	\$0	\$0	\$3,488	\$293	\$0	\$378		\$7
	Steam Piping	\$10,399	\$0	\$4,215	\$0	\$0	\$14,614	\$996	\$0	\$2,341		\$32
8.9	TG Foundations	\$0	\$897	\$1,481	\$0	\$0	\$2,378	\$201	\$0	\$516		\$5
	SUBTOTAL 8.	\$44,798	\$897	\$12,657	\$0	\$0	\$58,352	\$4,484	\$0	\$7,322	\$70,158	\$125
-	COOLING WATER SYSTEM											
	Cooling Towers	\$4,370	\$0	\$1,330	\$0	\$0	\$5,700	\$476	\$0	\$618	, . ,	\$12
	Circulating Water Pumps	\$2,113	\$0	\$132	\$0	\$0	\$2,245	\$171	\$0	\$242	+)	\$5
	Circ.Water System Auxiliaries	\$167	\$0	\$22	\$0	\$0	\$189	\$16	\$0	\$21		\$0
	Circ.Water Piping	\$0	\$5,190	\$1,175	\$0	\$0	\$6,365	\$477	\$0	\$1,026		\$14
	Make-up Water System	\$397	\$0	\$510	\$0	\$0	\$907	\$75	\$0	\$147	, ,	\$2
	Component Cooling Water Sys	\$334	\$399	\$256	\$0	\$0	\$989	\$79	\$0	\$160	, , -	\$2
9.9	Circ.Water System Foundations	\$0	\$2,353	\$3,907	\$0	\$0	\$6,260	\$528	\$0	\$1,358		\$14
	SUBTOTAL 9.	\$7,381	\$7,942	\$7,332	\$0	\$0	\$22,655	\$1,822	\$0	\$3,571	\$28,048	\$50
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
	Generator Equipment	\$7,275	\$0	\$4,304	\$0	\$0	\$11,579	\$951	\$0	\$940	\$13,470	\$24
11.2	Station Service Equipment	\$2,689	\$0	\$231	\$0	\$0	\$2,920	\$241	\$0	\$237	\$3,398	\$6
11.3	Switchgear & Motor Control	\$3,309	\$0	\$575	\$0	\$0	\$3,884	\$322	\$0	\$421	\$4,626	\$8
	Conduit & Cable Tray	\$0	\$1,729	\$4,982	\$0	\$0	\$6,711	\$559	\$0	\$1,091	\$8,361	\$15
11.5	Wire & Cable	\$0	\$5,557	\$3,160	\$0	\$0	\$8,717	\$524	\$0	\$1,386	\$10,627	\$19
11.6	Protective Equipment	\$0	\$730	\$2,533	\$0	\$0	\$3,263	\$281	\$0	\$354	\$3,898	\$7
11.7	Standby Equipment	\$126	\$0	\$117	\$0	\$0	\$243	\$21	\$0	\$26	\$290	\$1
11.8	Main Power Transformers	\$14,468	\$0	\$185	\$0	\$0	\$14,653	\$995	\$0	\$1,565	\$17,213	\$31
11.9	Electrical Foundations	\$0	\$159	\$405	\$0	\$0	\$565	\$48	\$0	\$122	\$735	\$1
	SUBTOTAL 11.	\$27,868	\$8,176	\$16,492	\$0	\$0	\$52,535	\$3,940	\$0	\$6,142	\$62,617	\$111

Exhibit 3-32 Case 1c - SOA turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 1c - 7F.	A.05 CCS E	GR								
	Plant Size:	563.2	MW,net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	r cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,006	\$0	\$641	\$0	\$0	\$1,647	\$138	\$82	\$280	\$2,147	\$4
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$301	\$0	\$184	\$0	\$0	\$484	\$41	\$24	\$82	\$632	\$´
12.7	Computer & Accessories	\$4,812	\$0	\$147	\$0	\$0	\$4,959	\$407	\$248	\$561	\$6,175	\$1 <i>1</i>
12.8	Instrument Wiring & Tubing	\$0	\$895	\$1,584	\$0	\$0	\$2,479	\$178	\$124	\$417	\$3,198	\$6
12.9	Other I & C Equipment	\$1,794	\$0	\$4,153	\$0	\$0	\$5,947	\$509	\$297	\$675	\$7,428	\$13
	SUBTOTAL 12.	\$7,912	\$895	\$6,708	\$0	\$0	\$15,516	\$1,273	\$776	\$2,016	\$19,581	\$35
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$113	\$2,403	\$0	\$0	\$2,516	\$220	\$0	\$547	\$3,283	\$6
13.2	Site Improvements	\$0	\$1,037	\$1,370	\$0	\$0	\$2,407	\$214	\$0	\$524	\$3,145	\$6
13.3	Site Facilities	\$2,117	\$0	\$2,221	\$0	\$0	\$4,338	\$387	\$0	\$945	\$5,670	\$10
	SUBTOTAL 13.	\$2,117	\$1,150	\$5,994	\$0	\$0	\$9,261	\$821	\$0	\$2,016	\$12,098	\$2 [.]
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$304	\$161	\$0	\$0	\$464	\$36	\$0	\$75	\$575	\$
14.2	Steam Turbine Building	\$0	\$2,326	\$3,095	\$0	\$0	\$5,420	\$436	\$0	\$878	\$6,735	\$1
14.3	Administration Building	\$0	\$588	\$398	\$0	\$0	\$986	\$77	\$0	\$159	\$1,222	\$
14.4	Circulation Water Pumphouse	\$0	\$187	\$93	\$0	\$0	\$280	\$21	\$0	\$45	\$346	\$
14.5	Water Treatment Buildings	\$0	\$562	\$512	\$0	\$0	\$1,074	\$85	\$0	\$174	\$1,333	\$
14.6	Machine Shop	\$0	\$510	\$326	\$0	\$0	\$836	\$65	\$0	\$135	\$1,036	\$
14.7	Warehouse	\$0	\$329	\$199	\$0	\$0	\$528	\$41	\$0	\$85	\$654	\$
14.8	Other Buildings & Structures	\$0	\$99	\$72	\$0	\$0	\$170	\$13	\$0	\$28	\$211	\$0
14.9	Waste Treating Building & Str.	\$0	\$386	\$689	\$0	\$0	\$1,075	\$88	\$0	\$174	\$1,337	\$2
	SUBTOTAL 14.	\$0	\$5,291	\$5,543	\$0	\$0	\$10,834	\$861	\$0	\$1,754	\$13,450	\$24
	TOTAL COST	\$389,539	\$42,019	\$125,518	\$0	\$0	\$557,076	\$45,633	\$27,418	\$93,275	\$723,402	\$1,28

Exhibit 3-32 Case 1c - SOA turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 1c - 7F	A.05 CCS E	GR							
	Plant Size:	563.2	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee		Project	\$	\$/kW
	TOTAL COST	\$389,539	\$42,019	\$125,518	\$0	\$557,076	\$45,633	\$27,418	\$93,275	\$723,402	\$1,285
	Owner's Costs										
	Preproduction Costs									AF 00 (* •
	6 Months All Labor 1 Month Maintenance Materials									\$5,324	\$9
										\$832	•
	1 Month Non-fuel Consumables									\$476	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF 2% of TPC									\$4,705 \$14,468	\$8 \$26
	Z% 01 PC									\$25,804	<u>محو</u> \$46
	Inventory Capital									Ψ25,004	φ +0
	60 day supply of consumables at 100% CF									\$650	\$1
	0.5% of TPC (spare parts)									\$3,617	\$6
	Total									\$4,267	\$8
										. ,	
	Initial Cost for Catalyst and Chemicals									\$1,390	\$2
	Land									\$300	\$1
	Other Owner's Costs									\$108,510	\$193
	Financing Costs									\$19,532	\$35
	Total Overnight Costs (TOC)									\$883,204	\$1,568
	TASC Multiplier							(IOU, hiah-	risk, 33 year)	1.078	, ,
	Total As-Spent Cost (TASC)							(· · ·) 3··	, , ,	\$952,094	\$1,691

Exhibit 3-32 Case 1c - SOA turbine with CO₂ capture and EGR capital cost estimate detail (continued)

INITIAL & A	NNUAL O&	MEXPENS	ES	(Cost Base (Jun)	2011
Case 1c - 7FA.05 CCS EGR				Heat Rate	e-net (Btu/kWh):	7,468
					MWe-net:	563
				Capa	acity Factor (%):	85
OPERATING & M	AINTENANCE	LABOR				
Operating Labor	20.70	t/bour				
Operating Labor Rate(base): Operating Labor Burden:	39.70	% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cost
					<u>\$</u>	<u>\$/kW-net</u>
Annual Operating Labor Cost					\$2,861,816	\$5.082
Maintenance Labor Cost					\$5,655,968	\$10.043
Administrative & Support Labor					\$2,129,446	\$3.781
Property Taxes and Insurance					\$14,468,036	\$25.691
TOTAL FIXED OPERATING COST	S				\$25,115,266	\$44.597
VARIABLE OPERATING COSTS						
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$8,483,952	\$0.00202
Consumables	Consun	nption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	2,958.58	1.67	\$0	\$1,536,558	\$0.00037
Chemicals						
MU & WT Chem.(lbs)	0.00	17,626.35	0.27	\$0	\$1,464,698	\$0.00035
MEA Solvent (ton)	384.01	0.54	3,481.91	\$1,337,078	\$582,557	\$0.00014
Activated Carbon (lb)	0.00	644.19	1.63	\$0\$	\$324,818	\$0.00008
Corrosion Inhibitor	0.00	0.00	0.00	\$52,609	\$2,505	\$0.00000
SCR Catalyst (m3)	w/equip.	0.08	8,938.80	¢02,000 \$0	\$228,781	\$0.00005
Ammonia (19% NH3) (ton)	0.00	6.94	330.00	\$0 \$0	\$710,351	\$0.00017
Subtotal Chemicals	0.00	0.34	330.00	\$1,389,687	\$3,313,711	\$0.00079
				ψ1,000,007	<i>\\</i> 0,010,711	<i>Q</i> 0.00070
Other	0.00	0.00	0.00	* •	* •	* ******
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0 ©0	\$0 \$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0 ©0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00		\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING C	OSTS			\$1,389,687	\$13,334,220	\$0.00318
Fuel (MMBtu)	0	100,937	6.13	\$0	\$191,965,780	\$0.04575

Exhibit 3-33 Case 1c - SOA turbine with CO₂ capture and EGR operating cost estimate

4 Case 2 – State-of-the-art Gas Turbine – ("H" frame)

Cases 2a, 2b, and 2c are based on the previous cases but use a gas turbine design primarily based on the Siemens 8000 H.

The "8000H" is Siemens's latest addition in their advanced frame design that has an ISO output of 275 MW and LHV heat rate of 9,000 kJ/kWh (8,531 Btu/kWh) on natural gas fuel. The output is approximately 30 percent more and the heat rate is approximately 3.8 percent better than the 7FA.05 model considered in Case 1a. This gas turbine model also has approximately 17 percent more exhaust flow and approximately 14°C (25°F) higher exhaust temperature than the 7FA.05 model. This model uses air cooling of hot gas path components similar to the "F" frame design. The design also includes fast start capability.

The performance summaries, block flow diagrams, stream tables, carbon balances, water balances, and overall energy balances for each of these three cases are presented in this section. Detailed process flow diagrams from the Thermoflow software are provided in the appendix.

The turbine cost for each of the cases was estimated by WorleyParsons based on simulation results and vendor quotes/discussions. The remaining capital and operating cost estimation results were based on scaling from the previous Case 1 results and are included at the end of each case section. All costs are in June 2011 dollars.

4.1 Case 2a – NGCC without CO₂ Capture Modeling Results

The block flow diagram of the combined cycle is shown in Exhibit 4-1. This includes two Hframe gas turbines, two triple pressure level single reheat type HRSGs, and one condensing steam turbine with evaporative cooling tower. Exhibit 4-2 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. A fuel gas heating system is integrated in this design for the gas turbine and overall plant heat rate improvement.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,487°C (2,709°F). The flue gas exits the turbine at 619°C (1,146°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine. Flue gas exits the HRSG (stream 4) at 88°C (190°F) and passes to the plant stack. Cooling is supplied to the condenser via water from the cooling tower.

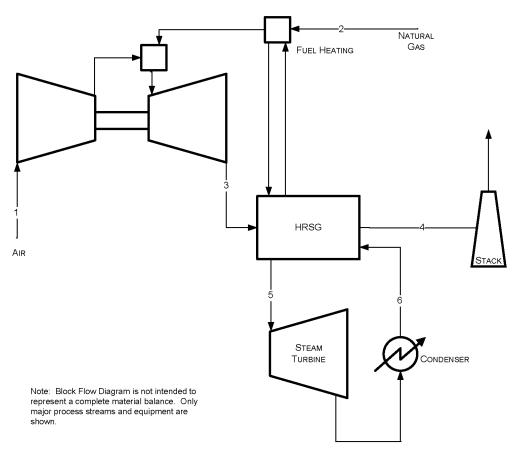


Exhibit 4-1 Case 2a – "H" frame turbine without CO₂ capture block flow diagram

Source: NETL

	1	2	3	4	5	6
V-L Mole Fraction				-		
Ar	0.0092	0.0000	0.0089	0.0089	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0416	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0893	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7420	0.0000	0.0000
0 ₂	0.2074	0.0000	0.1209	0.1182	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	146,844	6,069	153,011	153,065	28,634	37,961
V-L Flowrate (kg/hr)	4,237,460	105,161	4,342,621	4,342,457	515,843	683,872
Solids Flowrate (kg/hr)	0	0	0	0	0	0
	-					
Temperature (°C)	15	38	619	88	579	32
Pressure (MPa, abs)	0.10	2.84	0.10	0.10	16.65	0.00
Enthalpy (kJ/kg) ^A	30.98	52,530.38	830.38	234.46	3,513.89	2,385.55
Density (kg/m ³)	1.2	22.2	0.4	0.9	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.370	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	323,735	13,380	337,332	337,451	63,126	83,689
V-L Flowrate (lb/hr)	9,342,000	231,840	9,573,840	9,573,480	1,137,240	1,507,680
Solids Flowrate (lb/hr)	0	0	0	0	0	0
	-					
Temperature (°F)	59	100	1,146	190	1,075	90
Pressure (psia)	14.6	411.5	15.2	14.7	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	357.0	100.8	1,510.7	1,025.6
Density (lb/ft ³)	0.076	1.384	0.025	0.057	2.977	61.982

Exhibit 4-2 Case 2a – "H" frame turbine without CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water Note: Total flow rates shown equal the sum for all process trains

4.1.1 Performance Results

The performance results are summarized in Exhibit 4-3 and are in general agreement with Siemens published values. [11] The overall efficiency of 59.5 percent represents an increase in the overall process efficiency of 2.1 percentage points and approximately 30 percent power increase when compared with Case 1a based on the 7FA.05 gas turbine. Additional tables below provide overall energy balance (Exhibit 4-4), water balance (Exhibit 4-5), carbon balance (Exhibit 4-6), and an emissions summary (Exhibit 4-7).

Plant (Dutput	
Gas Turbine Power	551,220	kW _e
Steam Turbine Power	289,730	kW _e
Total	840,950	kW _e
Auxilia	ry Load	
Condensate Pumps	0	kW _e
Boiler Feedwater Pumps	6,085	kW _e
Amine CO ₂ Capture System Auxiliaries	0	kW _e
CO ₂ Compression	0	kW _e
Circulating Water Pump	2,791	kW _e
Ground Water Pumps	290	kW _e
Cooling Tower Fans	2,085	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,097	kW _e
Steam Turbine Auxiliaries	615	kW _e
Miscellaneous Balance of Plant ²	3,279	kW _e
Transformer Losses	4,205	kW _e
Total	20,457	kW _e
Plant Per	formance	
Net Plant Power	820,493	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	53.7%	
Net Plant Efficiency (LHV) ¹	59.5%	
Net Plant Heat Rate (HHV) ¹	6,705 (6,355)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	6,052 (5,736)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	105,161 (231,840)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,528,164	kWt
Thermal Input (LHV) ¹	1,379,364	kWt
Condenser Duty	1,540 (1,460)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	12.0 (3,170)	m ³ /min (gpm)
Raw Water Consumption	10.0 (2,629)	m ³ /min (gpm)
1		

Exhibit 4-3 Case 2a – "H" frame turbine without CO₂ capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb)² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total
	Energy I	In, GJ/hr (MMBtu/hr)		
Natural Gas	5,501 (5,214)	3.7 (3.5)	0 (0)	5,506 (5,218)
GT Air	0 (0)	131.3 (124.4)	0 (0)	131 (124)
Raw Water Withdrawal	0 (0)	45.1 (42.8)	0 (0)	45 (43)
Auxiliary Power	0 (0)	0.0 (0.0)	74 (70)	74 (70)
TOTAL	5,501 (5,214)	180.4 (171.0)	74 (70)	5,755 (5,455)
	Energy C	out, GJ/hr (MMBtu/hr)	
Cooling Tower Blowdown	0 (0)	20.0 (19.0)	0 (0)	20 (19)
Stack Gas	0 (0)	1,018 (965)	0 (0)	1,018 (965)
Condenser	0 (0)	1,540 (1,460)	0 (0)	1,540 (1,460)
Process Losses*	0 (0)	149 (141)	0 (0)	149 (141)
Power	0 (0)	0.0 (0.0)	3,027 (2,869)	3,027 (2,869)
TOTAL	0 (0)	2,728 (2,586)	3,027 (2,89)	5,755 (5,455)

Exhibit 4-4 Case 2a – "H" frame turbine without CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 4-5 Case 2a – "H" frame turbine without CO₂ capture water balance

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Condenser Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.06 (16)
BFW Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.0 (0)
Cooling Tower	12.00 (3,170)	0.06 (16)	11.94 (3,154)	2.0 (541)	9.9 (2,613)
BFW Blowdown	0.00 (0)	0.06 (16)	-0.06 (-16)	0.00 (0)	0.00 (0)
Flue Gas Condensate	0.00 (0)	0.0 (0)	0.00 (0)	0.00 (0)	0.00 (0)
Total	12.1 (3,185)	0.06 (16)	12.0 (3,170)	2.0 (541)	10.0 (2,629)

Exhibit 4-6 Case 2a – "H" frame turbine without CO₂ capture carbon balance

Carbon In, ke	g/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)				
Natural Gas	75,956 (167,455)	Stack Gas	76,462 (168,569)			
Air (CO ₂)	576 (1,270)					
		Convergence Tolerance*	71 (156)			
Total	76,533 (168,726)	Total	76,533 (168,726)			
*by differen	20		•			

*by difference

	Kg/GJ (Ib/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.004 (0.009)	160 (176)	0.026 (0.058)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	50.9 (118.5)	2,086,112 (2,299,545)	333 (734)
			341 (753)

Emissions are estimated based on user input specifications to models.

Exhibit 4-7 Case 2a – "H" frame turbine without CO₂ capture air emissions

¹ CO₂ emissions based on net power instead of gross power

4.1.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the Siemens "H" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 4-8. The summary and detailed capital cost estimates are shown in Exhibit 4-9 and Exhibit 4-10, respectively. The annual operating cost estimates are shown in Exhibit 4-11.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	2a
Total Plant Cost (2011\$/kW)	617
Total Overnight Cost (2011\$/kW)	756
Total As-spent Capital (2011\$/kW)	812
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	10.65
Fixed O&M	2.98
Variable O&M	1.59
Fuel	38.96
CO ₂ T&S total	0.00
COE ¹ Total	54.19
LCOE ¹ , total (including T&S)	68.69

Exhibit 4-8 Case 2a - "H" frame turbine without CO₂ capture cost estimation summary

¹ Capacity factor assumed to be 85 percent

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp										
	_		-	L PLAN	I COSI	SOMM	ARY					
	Case: Plant Size:	Case 2a - H-1	frame MW.net	Ectim	ato Typo:	Conceptual		Cost P	ase (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	· /	aencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	S	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$29,379	\$6,596	\$9,615	\$0	\$0	\$45,590	\$3,740	\$0	\$7,916	\$57,246	\$70
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$132,918 \$0 \$132,918	\$0 \$1,007 \$1.007	\$7,053 \$1,089 \$8.142	\$0 \$0 \$0	\$0 \$0 \$0	\$139,971 \$2,097 \$142,068	\$11,561 \$175 \$11,736	\$0 \$0 \$0	\$15,153 \$454 \$15,608	\$2,726	
7.1	HRSG, DUCTING & STACK Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$41,422 \$2,567 \$43,989	\$0 \$1,683 \$1,683	\$7,286 \$2,071 \$9,357	\$0 \$0 \$0	\$0 \$0 \$0	\$48,708 \$6,320 \$55,029	\$4,045 \$529 \$4,574	\$0 \$0 \$0	\$5,275 \$1,091 \$6,366	\$58,028 \$7,940	\$10
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$43,452 \$15,231 \$58,683	\$0 \$1,188 \$1,188	\$6,148 \$8,939 \$15,087	\$0 \$0 \$0	\$0 \$0 \$0	\$49,600 \$25,358 \$74,958		\$0 \$0 \$0	\$5,351 \$3,946 \$9,297	\$31,174	\$38
9	COOLING WATER SYSTEM	\$5,718	\$6,310	\$5,832	\$0	\$0	\$17,859	\$1,436	\$0	\$2,826	\$22,121	\$27
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$23,528	\$6,637	\$14,519	\$0	\$0	\$44,683	\$3,370	\$0	\$5,177	\$53,231	\$65
12	INSTRUMENTATION & CONTROL	\$8,134	\$920	\$6,897	\$0	\$0	\$15,951	\$1,309	\$0	\$1,981	\$19,242	\$23
13	IMPROVEMENTS TO SITE	\$2,361	\$1,283	\$6,685	\$0	\$0	\$10,329	\$915	\$0	\$2,249	\$13,493	\$16
14	BUILDINGS & STRUCTURES	\$0	\$5,999	\$6,406	\$0	\$0	\$12,405	\$987	\$0	\$2,009	\$15,402	\$19
	TOTAL COST	\$304,709	\$31,622	\$82,540	\$0	\$0	\$418,872	\$33,845	\$0	\$53,429	\$506,146	\$617

Exhibit 4-9 Case 2a - "H" frame turbine without CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	т соѕт	SUMM	ARY					
	Case:	Case 2a - H-f	frame									
	Plant Size:	820.5	MW,net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING											
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
-	FEEDWATER & MISC. BOP SYSTEMS											
	Feedwater System	\$3,529	\$3,655	\$2,984	\$0	\$0	\$10,168		\$0	\$1,648		\$15
	Water Makeup & Pretreating	\$2,201	\$227	\$1,130	\$0	\$0	\$3,557	\$294	\$0	\$770	. ,	\$6
	Other Feedwater Subsystems	\$1,653	\$546	\$456	\$0	\$0	\$2,656		\$0	\$429	. ,	\$4
	Service Water Systems	\$266	\$530	\$1,707	\$0	\$0	\$2,503		\$0	\$543	. ,	\$4
	Other Boiler Plant Systems	\$1,790	\$669	\$1,539	\$0	\$0	\$3,998	\$326	\$0	\$649	. ,	
3.6	Natural Gas, incl. pipeline	\$17,779	\$783	\$678	\$0	\$0	\$19,240	\$1,587	\$0	\$3,124	\$23,950	\$29
3.7	Waste Treatment Equipment	\$769	\$0	\$445	\$0	\$0	\$1,214	\$105	\$0	\$264	\$1,582	\$2
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,392	\$186	\$676	\$0	\$0	\$2,254	\$193	\$0	\$489	. ,	\$4
	SUBTOTAL 3.	\$29,379	\$6,596	\$9,615	\$0	\$0	\$45,590	\$3,740	\$0	\$7,916	\$57,246	\$70
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
5B	CO2 REMOVAL & COMPRESSION							-				
	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
-	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$(
6	COMBUSTION TURBINE/ACCESSORIES											
6.1	Combustion Turbine Generator	\$132,918	\$0	\$7,053	\$0	\$0	\$139,971	\$11.561	\$0	\$15,153	\$166,685	\$203
	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	1 1	\$0	\$0	. ,	\$
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0 \$0		\$(
	Combustion Turbine Foundations	\$0	\$1,007	\$1,089	\$0	\$0	\$2,097	\$175	\$0	\$454		\$3
0.0	SUBTOTAL 6.	\$132,918	\$1,007	\$8,142	\$0	\$0 \$0	\$142,068	· · ·	\$0	\$15,608		\$20

Exhibit 4-10 Case 2a - "H" frame turbine without CO₂ capture capital cost estimate detail

7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	Project: Case: Plant Size: Item/Description RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories urbine Plant Auxiliaries	Costing Supp Case 2a - H-fi 820.5 Equipment Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0 \$43,989	TOTA rame MW,net <u>Material</u> Cost \$0 \$1,078 \$0 \$0 \$0 \$605	L PLAN	T COST	Conceptual Sales Tax	Bare Erected Cost	Eng'g CM H.O.& Fee	Process	2011 Igencies Project	(\$x1000) TOTAL PLAN \$	T COST \$/kW
No. 7 HF 7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	Plant Size: Item/Description RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	820.5 Equipment Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0	rame MW,net Material Cost \$0 \$1,078 \$0 \$0 \$605	Estim Lab Direct \$7,286 \$1,504 \$0	ate Type: or Indirect \$0 \$0	Conceptual Sales Tax	Bare Erected Cost	Eng'g CM H.O.& Fee	Contir Process	igencies Project	TOTAL PLAN	
No. 7 HF 7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	Plant Size: Item/Description RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	820.5 Equipment Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0	rame MW,net Material Cost \$0 \$1,078 \$0 \$0 \$605	Estim Lab Direct \$7,286 \$1,504 \$0	ate Type: or Indirect \$0 \$0	Conceptual Sales Tax	Bare Erected Cost	Eng'g CM H.O.& Fee	Contir Process	igencies Project	TOTAL PLAN	
No. 7 HF 7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	Plant Size: Item/Description RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	820.5 Equipment Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0	MW,net Material Cost \$0 \$1,078 \$0 \$0 \$0 \$0 \$605	Lab Direct \$7,286 \$1,504 \$0	or Indirect \$0 \$0	Sales Tax	Cost	Eng'g CM H.O.& Fee	Contir Process	igencies Project	TOTAL PLAN	
No. 7 HF 7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	Item/Description RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	Equipment Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0	Material Cost \$0 \$1,078 \$0 \$0 \$00 \$605	Lab Direct \$7,286 \$1,504 \$0	or Indirect \$0 \$0	Sales Tax	Cost	Eng'g CM H.O.& Fee	Contir Process	igencies Project	TOTAL PLAN	
No. 7 HF 7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	Cost \$41,422 \$2,567 \$0 \$0 \$0 \$0	Cost \$0 \$1,078 \$0 \$0 \$605	Direct \$7,286 \$1,504 \$0	Indirect \$0 \$0	Тах	Cost	H.O.& Fee	Process	Project		
7 HF 7.1 He 7.2 HF 7.3 Du 7.4 St 7.9 HF 8 ST 8.1 St 8.2 Tu	RSG, DUCTING & STACK eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$41,422 \$2,567 \$0 \$0 \$0 \$0	\$0 \$1,078 \$0 \$0 \$605	\$7,286 \$1,504 \$0	\$0 \$0				•		\$	\$/KVV
7.1 He 7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	eat Recovery Steam Generator RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$2,567 \$0 \$0 \$0	\$1,078 \$0 \$0 \$605	\$1,504 \$0	\$0	\$0	* 40 T 00	<u> </u>	•••			
7.2 HF 7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	RSG Accessories uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$2,567 \$0 \$0 \$0	\$1,078 \$0 \$0 \$605	\$1,504 \$0	\$0	\$0					#FO 000	A7 4
7.3 Du 7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	uctwork tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$0 \$0 \$0	\$0 \$0 \$605	\$0	• -	# 0	\$48,708	\$4,045	\$0 ©0	\$5,275	\$58,028	\$71
7.4 Sta 7.9 HF 8 ST 8.1 Sta 8.2 Tu	tack RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$0 \$0	\$0 \$605			\$0 \$0	\$5,148	\$431	\$0 \$0	\$837	\$6,416	\$8
7.9 HF 8 ST 8.1 St 8.2 Tu	RSG,Duct & Stack Foundations SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	\$0	\$605	50	• -	\$0	\$0	\$0	\$0 ©0	\$0 \$0	\$0	\$0
8 ST 8.1 Ste 8.2 Tu	SUBTOTAL 7. TEAM TURBINE GENERATOR team TG & Accessories	+ -		1 -	\$0 \$0	\$0 \$0	\$0 \$1.172	\$0	\$0 \$0	\$0 \$254	\$0	\$0 \$2
8.1 Ste 8.2 Tu	TEAM TURBINE GENERATOR team TG & Accessories	\$43,989	\$1,683	\$567 \$9,357	\$0 \$0	ֆՍ \$0	\$1,172 \$55,029	\$98 \$4,574	ֆՍ \$0	ֆ∠Ե4 \$6,366	\$1,524 \$65,968	∠⊄ \$80
8.1 Ste 8.2 Tu	team TG & Accessories		\$1,663	\$9,35 <i>1</i>	\$ U	۵ 0	\$55,029	\$4,574	φU	\$0,300	\$05,968	\$80
8.2 Tu		¢40.450	* 0	¢C 140	C	C O	¢40.000	¢2.000	¢0	<i>¢<i>E</i></i> 0 <i>E</i> 1	<i>¢</i>F0 0F0	¢70
		\$43,452	\$0 ©0	\$6,148	\$0 \$0	\$0 ©0	\$49,600	\$3,908	\$0 ©0	\$5,351	\$58,858	\$72
	ondenser & Auxiliaries	\$252	\$0 \$0	\$574	\$0 \$0	\$0 \$0	\$826	\$71 \$409	\$0 \$0	\$90 \$529	\$986 \$5.015	\$1 \$7
	team Piping	\$3,233 \$11.746	\$0 \$0	\$1,644 \$4.761	\$0 \$0	\$0 \$0	\$4,877 \$16,507	\$409 \$1.125	\$0 \$0	۶529 \$2,645	\$5,815 \$20,276	ېر \$25
	G Foundations	· / -	+ -	, , -	\$0 \$0	\$0 \$0		• • •	1 -	ֆ∠,645 \$683	, ., .	ֆ∠Ե \$5
8.9 TG	S Foundations SUBTOTAL 8.	\$0 ¢ 50 692	\$1,188	\$1,961	ΦU \$0	ֆՍ \$0	\$3,149	\$266 \$5,778	\$0 \$0	ֆԾԾՅ \$9,297	\$4,097	ა⊃ \$110
0.00	OOLING WATER SYSTEM	\$58,683	\$1,188	\$15,087	\$ U	\$ U	\$74,958	\$5,778	φU	\$9,29 <i>1</i>	\$90,033	\$110
	ooling Towers	\$3,351	\$0	\$1,022	\$0	\$0	\$4,373	\$365	\$0	\$474	\$5,212	\$6
	irculating Water Pumps	\$3,351 \$1,627	\$0 \$0	\$1,022	\$0 \$0	\$0 \$0	\$4,373 \$1,728	\$305 \$132	\$0 \$0	\$474 \$186		\$0 \$2
	irc.Water System Auxiliaries	\$1,027 \$134	φ0 \$0	\$101 \$18	\$0 \$0	\$0 \$0	۵۱,720 \$151	\$132	\$0 \$0	ə 100 \$16	. ,	⇒∠ \$0
	irc.Water Piping	· ·	۵۵ \$4.149	\$18 \$939	\$0 \$0	\$0 \$0	۵۱۵۱ \$5,088	\$13 \$381	\$0 \$0	\$16 \$820		\$U \$8
	ake-up Water System	\$0 \$340	\$4,149 \$0	\$939 \$436	\$0 \$0	\$0 \$0	ან,088 \$776	\$381 \$64	\$0 \$0	\$820 \$126		əծ \$1
	omponent Cooling Water Sys	\$340 \$267	₄₀ \$288	\$430 \$205	\$0 \$0	\$0 \$0	\$776 \$760	۵ 04 \$61	\$0 \$0	\$120	\$966	ə ۱ \$1
	irc.Water System Foundations	\$207 \$0	\$200 \$1,873	\$205 \$3,111	\$0 \$0	\$0 \$0	\$700 \$4,984	\$421	\$0 \$0	\$1,081	\$6,485	\$8
9.9 01	SUBTOTAL 9.	\$5,718	\$6,310	\$5,832	\$0 \$0	\$0 \$0	\$17,859	\$1,436	\$0 \$0	\$1,001 \$2,826		₄₀ \$27
10 40	SH/SPENT SORBENT HANDLING SYS	\$5,710	\$0,310	\$ 5,652	φU	φU	\$17,009	φ1,430	φU	\$2,020	<i>φΖΖ</i> , 1 <i>Ζ</i> 1	φ 2 1
TU AS	SH/SPENT SORBENT HANDLING STS SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11 10	CCESSORY ELECTRIC PLANT	φU	φU	4 0	φU	φU	φU	4 0	φU	φU	\$U	φU
	enerator Equipment	\$6,246	\$0	\$3,694	\$0	\$0	\$9,940	\$816	\$0	\$807	\$11,563	\$14
	tation Service Equipment	\$0,240	\$0 \$0	\$3,094 \$175	\$0 \$0	\$0 \$0	\$9,940 \$2,208	\$182	\$0 \$0	\$179		\$3
	witchgear & Motor Control	\$2,033 \$2,502	\$0 \$0	\$175 \$435	\$0 \$0	\$0 \$0	\$2,200 \$2,936	\$102	\$0 \$0	\$179		აა \$4
	onduit & Cable Tray	\$∠,50∠ \$0	۵۵ \$1,307	\$435 \$3.767	\$0 \$0	\$0 \$0	\$2,936 \$5,074	\$243 \$423	\$0 \$0	\$318	\$3,498 \$6,321	54 \$8
	/ire & Cable	\$0 \$0	\$1,307 \$4,201	\$3,767 \$2,389	\$0 \$0	\$0 \$0	\$5,074 \$6,590	\$423 \$396	\$0 \$0	۵ ۵24 \$1,048		ەھ \$10
	rotective Equipment	\$0 \$0	\$4,201 \$930	\$2,369 \$3,226	\$0 \$0	\$0 \$0	\$0,590 \$4,155	\$390 \$357	\$0 \$0	\$1,048 \$451	\$4,964	۵۱۵ \$6
	tandby Equipment	پ 0 \$146	\$930 \$0	\$3,220	\$0 \$0	\$0 \$0	\$282	\$357	\$0 \$0	\$31	\$337	\$0 \$0
	ain Power Transformers	\$140	\$0 \$0	\$130	\$0 \$0	\$0 \$0	₉₂₀₂ \$12,794	\$869	\$0 \$0	\$1,366		پ 0 \$18
	lectrical Foundations	\$12,001 \$0	\$198	\$505	\$0 \$0	\$0 \$0	\$703	\$60 \$60	\$0 \$0	\$1,500	\$916	\$10
	SUBTOTAL 11.	\$23,528	\$6,637	\$14,519	\$0 \$0	\$0 \$0	\$44,683	\$3,370	\$0 \$0	\$5,177	\$53,231	\$65

Exhibit 4-10 Case 2a - "H" frame turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 2a - H-f	frame									
	Plant Size:	820.5	MW,net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	r cost
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,034	\$0	\$659	\$0	\$0	\$1,693	\$142	\$0	\$275	\$2,110	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$309	\$0	\$189	\$0	\$0	\$498	\$42	\$0	\$81	\$621	\$1
	Computer & Accessories	\$4,947	\$0	\$151	\$0	\$0	\$5,098	\$419	\$0	\$552	\$6,068	\$7
12.8	Instrument Wiring & Tubing	\$0	\$920	\$1,628	\$0	\$0	\$2,549	\$183	\$0	\$410	\$3,142	\$4
12.9	Other I & C Equipment	\$1,844	\$0	\$4,270	\$0	\$0	\$6,114	\$523	\$0	\$664	\$7,301	\$9
	SUBTOTAL 12.	\$8,134	\$920	\$6,897	\$0	\$0	\$15,951	\$1,309	\$0	\$1,981	\$19,242	\$23
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$126	\$2,680	\$0	\$0	\$2,806	\$245	\$0	\$610	\$3,661	\$4
13.2	Site Improvements	\$0	\$1,156	\$1,528	\$0	\$0	\$2,684	\$239	\$0	\$585	\$3,508	\$4
13.3	Site Facilities	\$2,361	\$0	\$2,477	\$0	\$0	\$4,838	\$431	\$0	\$1,054	\$6,324	\$8
	SUBTOTAL 13.	\$2,361	\$1,283	\$6,685	\$0	\$0	\$10,329	\$915	\$0	\$2,249	\$13,493	\$16
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$351	\$185	\$0	\$0	\$536	\$41	\$0	\$87	\$664	\$1
14.2	Steam Turbine Building	\$0	\$2,929	\$3,898	\$0	\$0	\$6,827	\$549	\$0	\$1,106	\$8,483	\$10
14.3	Administration Building	\$0	\$625	\$423	\$0	\$0	\$1,048	\$82	\$0	\$169	\$1,299	\$2
14.4	Circulation Water Pumphouse	\$0	\$220	\$109	\$0	\$0	\$328	\$25	\$0	\$53	\$407	\$0
14.5	Water Treatment Buildings	\$0	\$467	\$426	\$0	\$0	\$892	\$70	\$0	\$144	\$1,107	\$1
14.6	Machine Shop	\$0	\$542	\$346	\$0	\$0	\$889	\$69	\$0	\$144	\$1,101	\$1
14.7	Warehouse	\$0	\$350	\$211	\$0	\$0	\$561	\$43	\$0	\$91	\$695	\$1
14.8	Other Buildings & Structures	\$0	\$105	\$76	\$0	\$0	\$181	\$14	\$0	\$29	\$225	\$0
14.9	Waste Treating Building & Str.	\$0	\$410	\$732	\$0	\$0	\$1,142	\$93	\$0	\$185	\$1,421	\$2
	SUBTOTAL 14.	\$0	\$5,999	\$6,406	\$0	\$0	\$12,405	\$987	\$0	\$2,009	\$15,402	\$19
	TOTAL COST	\$304,709	\$31,622	\$82,540	\$0	\$0	\$418,872	\$33,845	\$0	\$53,429	\$506,146	\$617

Exhibit 4-10 Case 2a - "H" frame turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 2a - H-	frame								
	Plant Size:	820.5	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLANT	COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$304,709	\$31,622	\$82,540	\$0	\$418,872	\$33,845	\$0	\$53,429	\$506,146	\$617
	Owner's Costs										
	Preproduction Costs 6 Months All Labor									\$4,045	¢E
	1 Month Maintenance Materials									\$4,045 \$619	\$5 \$1
	1 Month Non-fuel Consumables									\$335	\$0
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$5,833	\$7
	2% of TPC									\$10,123	\$12
	Total									\$20,956	\$26
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$438	\$1
	0.5% of TPC (spare parts)									\$2,531	\$3
	Total									\$2,969	\$4
	Initial Cost for Catalyst and Chemicals									\$0	\$0
	Land									\$300	\$0 \$0
	Other Owner's Costs									\$75,922	\$93
	Financing Costs									\$13,666	\$17
	Total Overnight Costs (TOC)									\$619,958	\$756
	TASC Multiplier							(IOU, low-r	isk, 33 year)	1.075	
	Total As-Spent Cost (TASC)							、	, j ,	\$666,455	\$812

Exhibit 4-10 Case 2a - "H" frame turbine without CO₂ capture capital cost estimate detail (continued)

	NNUAL 08	MEXPENS	ES		Cost Base (Jun)	2011
Case 2a - H-frame				Heat Rate	e-net (Btu/kWh):	6,355
					MWe-net:	820
				Сара	acity Factor (%):	85
OPERATING & M	AINTENANCE	LABOR				
Operating Labor	20.70	ћ (I				
Operating Labor Rate(base):	39.70					
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	2.0		2.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	5.0		5.0			
					Annual Cost	Annual Unit Cos
					<u>\$</u>	<u>\$/kW-net</u>
Annual Operating Labor Cost					\$2,260,518	\$2.755
Maintenance Labor Cost					\$4,211,649	\$5.133
Administrative & Support Labor					\$1,618,042	\$1.972
Property Taxes and Insurance					\$10,122,912	\$12.338
TOTAL FIXED OPERATING COST	S				\$18,213,121	\$22.198
ARIABLE OPERATING COSTS						
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$6,317,474	\$0.00103
Consumables	Consur	notion	Unit	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	2,282.40	1.67	\$0	\$1,185,380	\$0.00019
Chemicals	0.00	_,		* •	<i>•</i> • • • • • • • • • • • • • • • • • •	+
MU & WT Chem.(lbs)	0.00	13,597.88	0.27	\$0	\$1,129,944	\$0.00018
	0.00			\$0 \$0		\$0.00018
MEA Solvent (ton) Activated Carbon (lb)	0.00	0.00	3,481.91 1.63	\$0 \$0	\$0 \$0	\$0.00000
Corrosion Inhibitor	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000
		0.00				
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0 ©0	\$268,713	\$0.00004 \$0.00014
Ammonia (19% NH3) (ton) Subtotal Chemicals	0.00	8.15	330.00	\$0 \$0	\$834,338 \$2,232,995	\$0.00014
				φU	\$ 2,232,995	\$0.00037
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal			_	\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products			-	\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING C	OSTS			\$0	\$9,735,849	\$0.00159
				, -		

Exhibit 4-11 Case 2a - "H" frame turbine without CO₂ capture operating cost estimate

4.2 Case 2b – NGCC with CO₂ Capture Modeling Results

The block flow diagram of the combined cycle with CO_2 capture is shown in Exhibit 4-12. This case also uses the same "H" frame gas turbine model as that of Case 2a with the addition of CO_2 capture at the back end. Exhibit 4-13 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4).

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,487°C (2,709°F). The flue gas exits the turbine at 619°C (1,146°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 109°C (229°F) and passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance is not impacted due to the CO_2 capture addition. However, the Rankine cycle performance and the overall plant output and efficiency are reduced due to heat integration requirements and increased auxiliary loads for the CO_2 capture process.

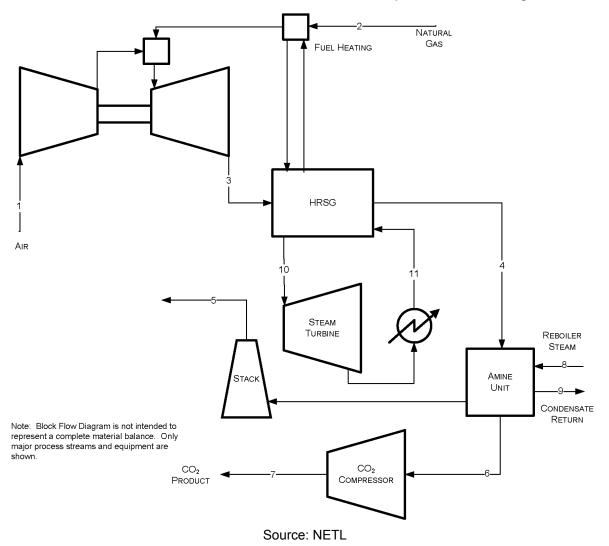


Exhibit 4-12 Case 2b – "H" frame turbine with CO₂ capture block flow diagram

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0092	0.0000	0.0089	0.0089	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0416	0.0045	0.9674	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0893	0.0555	0.0326	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7420	0.8025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1182	0.1279	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	146,844	6.069	153,011	153,065	141,536	5,925	5,733	16,896	17,887	28,661	22,044
V-L Flowrate (kg/hr)	4,237,460	.,		4,342,457		255,717	252,288	304,379	304,379	516,333	397,129
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	38	619	109	35	35	38	152	151	579	32
Pressure (MPa, abs)	0.10	2.84	0.10	0.10	0.10	0.17	15.27	0.51	0.49	16.65	0.00
Enthalpy (kJ/kg) ^A	30.98	52,530.38	830.38	257.49	106.86	91.58	-164.90	2,746.79	635.72	3,513.89	2,387.64
Density (kg/m ³)	1.2	22.2	0.4	0.8	0.9	2.9	653.5	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.370	28.160	43.160	44.010	18.015	18.015	18.015	18.015
	000 705	40.000	007 000	007 454	040.004	40.000	10.000	07.040	00.405	00.400	40.500
V-L Flowrate (lb _{mol} /hr)	323,735	13,380	337,332	337,451	312,034	13,062	12,638	37,248	39,435	63,186	48,599
V-L Flowrate (lb/hr)	9,342,000	231,840	, ,	9,573,480	, ,	563,760	556,200	671,040	671,040	1,138,320	875,520
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	100	1,146	229	95	95	101	306	304	1,075	90
Pressure (psia)	14.6	411.5	1,140	14.7	14.7	25.0	2,214.7	73.5	71.0	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	357.0	110.7	45.9	39.4	-70.9	1,180.9	273.3	1,510.7	1,026.5
Density (lb/ft ³)	0.076	1.384	0.025	0.052	0.056	0.183	40.800	0.169	57.172	2.977	61.982
		nce conditio				000		000	J		300-

Exhibit 4-13 Case 2b – "H" frame turbine with CO₂ capture stream table

A - Reference conditions are 32.02 F & 0.089 PSIA

Note: Total flow rates shown equal the sum for all process trains

4.2.1 Performance Results

The performance results are summarized in Exhibit 4-14 and when compared with Case 2a show that adding carbon capture reduces the efficiency by approximately 7 percentage points (similar results as determined for Case 1). This is based on using an assumed advanced solvent (amine) process that has a lower steam requirement for the reboiler of 2,960 kJ/kg CO₂ (1,272 Btu/lb CO_2) or 17 percent lower when compared with earlier NETL/DOE system studies (i.e., 3,560 kJ/kg CO_2 (1,530 Btu/lb CO_2)).

Additional tables below provide overall energy balance (Exhibit 4-15), water balance (Exhibit 4-16), carbon balance (Exhibit 4-17), and an emissions summary (Exhibit 4-18).

Plant (Dutput	
Gas Turbine Power	551,220	kW _e
Steam Turbine Power	235,081	kW _e
Total	786,301	kW _e
Auxilia	ry Load	
Condensate Pumps	3	kW _e
Boiler Feedwater Pumps	6,157	kW _e
Amine CO ₂ Capture System Auxiliaries	18,745	kW _e
CO ₂ Compression	23,702	kW _e
Circulating Water Pump	4,910	kW _e
Ground Water Pumps	420	kW _e
Cooling Tower Fans	3,284	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,097	kW _e
Steam Turbine Auxiliaries	500	kW _e
Miscellaneous Balance of Plant ²	2,981	kW _e
Transformer Losses	3,932	kW _e
Total	65,741	kWe
Plant Per	formance	
Net Plant Power	720,560	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	47.2%	
Net Plant Efficiency (LHV) ¹	52.2%	
Net Plant Heat Rate (HHV) ¹	7,635 (7,236)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	6,891 (6,532)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	105,161 (231,840)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,528,164	kWt
Thermal Input (LHV) ¹	1,379,364	kWt
Condenser Duty	897 (850)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	17.4 (4,604)	m ³ /min (gpm)
Raw Water Consumption	14.2 (3,759)	m ³ /min (gpm)
Net Plant Heat Rate (LHV) ¹ Natural Gas Feed Flow Thermal Input (HHV) ¹ Thermal Input (LHV) ¹ Condenser Duty Raw Water Withdrawal	105,161 (231,840) 1,528,164 1,379,364 897 (850) 17.4 (4,604)	kg/hr (lb/hr) kW _t kW _t GJ/hr (MMBtu/hr) m ³ /min (gpm)

Exhibit 4-14 Case 2b – "H" frame turbine with CO_2 capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total				
Energy In, GJ/hr (MMBtu/hr)								
Natural Gas	5,501 (5,214)	3.7 (3.5)	0 (0)	5,505 (5,218)				
GT Air	0 (0)	131.3 (124.4)	0 (0)	131 (124)				
Raw Water Withdrawal	0 (0)	65.5 (62.1)	0 (0)	66 (62)				
Auxiliary Power	0 (0)	0.0 (0.0)	237 (224)	237 (224)				
TOTAL	5,501 (5,214)	206.4 (195.6)	237 (224)	5,939 (5,629)				
Energy Out, GJ/hr (MMBtu/hr)								
Cooling Tower Blowdown	0 (0)	31.9 (30.3)	0 (0)	32 (30)				
Stack Gas	0 (0)	426 (404)	0 (0)	426 (404)				
Condenser	0 (0)	896 (849)	0 (0)	896 (849)				
CO ₂ Product	0 (0)	-41.6 (-39.4)	0 (0)	-42 (-39)				
CO ₂ Intercoolers	0 (0)	117.2 (111.0)	0 (0)	117 (111)				
Amine System Losses	0 (0)	949.9 (900.3)	0 (0)	950 (900)				
Process Losses*	0 (0)	729 (691)	0 (0)	97 (92)				
Power	0 (0)	0.0 (0.0)	2,831 (2,683)	2,831 (2,683)				
TOTAL	0 (0)	3,108 (2,946)	2,831 (2,683)	5,939 (5,629)				

Exhibit 4-15 Case 2b – "H" frame turbine with CO_2 capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.06 (16)	0.06 (16)	0.00 (0)	0.0 (0)	0.06 (16)
Condenser Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.06 (16)
BFW Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.0 (0)
Cooling Tower	19.11 (5,048)	1.81 (477)	17.3 (4,571)	3.2 (845)	14.1 (3,726)
BFW Blowdown	0.00 (0)	0.06 (16)	-0.06 (-16)	0.00 (0)	0.00 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	1.7 (461)	-1.74 (-461)	0.00 (0)	0.00 (0)
Total	19.2 (5,081)	1.81 (477)	17.4 (4,604)	3.2 (845)	14.2 (3,759)

Carbon In, kg	/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)			
Natural Gas	75,956 (167,455)	Stack Gas	7,647 (16,858)		
Air (CO ₂)	Air (CO ₂) 576 (1,270)		68,854 (151,796)		
		Convergence Tolerance*	33 (72)		
Total 76,533 (168,726)		Total	76,533 (168,726)		

Exhibit 4-17 Case 2b – "H" frame turbine with CO₂ capture carbon balance

*by difference

Emissions are estimated based on user input specifications to models.

Exhibit 4-18 Case 2b – "H" frame turbine with CO₂ capture air emissions

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.003 (0.008)	133 (146)	0.023 (0.050)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	208,622 (229,966)	36 (79)
CO ₂ ¹			39 (86)

¹ CO₂ emissions based on net power instead of gross power

4.2.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the Siemens "H" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 4-19. The summary and detailed capital cost estimates are shown in Exhibit 4-20 and Exhibit 4-21, respectively. The annual operating cost estimates are shown in Exhibit 4-22.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	2b
Total Plant Cost (2011\$/kW)	1,229
Total Overnight Cost (2011\$/kW)	1,499
Total As-spent Capital (2011\$/kW)	1,616
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	22.35
Fixed O&M	5.47
Variable O&M	2.85
Fuel	44.36
CO ₂ T&S total	3.50
COE ¹ Total	78.53
LCOE ¹ , total (including T&S)	99.55
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	80.45 (72.99)
Cost ^{1,2} of CO ₂ captured, \$/tonne of CO ₂ (\$/ton of CO ₂)	59.53 (54.00)

	(1) I'll farmen famle han stille OO search and search and	
Exhibit 4-19 Case 2b	 "H" frame turbine with CO₂ capture cost est 	imation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 2a – "H" frame without capture

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp			2							
	-		-	L PLAN	I COSI	SOMM	ARY					
	Case: Plant Size:	Case 2b - H-1	frame CCS MW,net	Ectin	ato Typo:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct	Fiant Gize.	Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$30,981	\$7,042	\$11,105	\$0	\$0	\$49,129	\$4,034	\$0	\$8,615	\$61,777	\$86
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION	\$181,838	\$0	\$57,324	\$0	\$0	\$239,162	\$19,964	\$41,090	\$60,043	\$360,259	\$500
6	COMBUSTION TURBINE/ACCESSORIES			. ,			. ,	. ,	. ,	. ,		
-	Combustion Turbine Generator	\$132,918	\$0	\$7,053	\$0	\$0	\$139,971	\$11,561	\$0	\$15,153	,	\$231
6.2-6.9	Combustion Turbine Other SUBTOTAL 6	\$0 \$132,918	\$1,007 \$1,007	\$1,089 \$8,142	\$0 \$0	\$0 \$0	\$2,097 \$142,068	\$175 \$11,736	\$0 \$0	\$454 \$15.608	. ,	\$4 \$235
7	HRSG. DUCTING & STACK	φ13 2 ,310	φ1,007	φ0,1 4 2	ψŪ	φU	φ142,000	φ11,730	φυ	φ1 5,000	\$105,411	φ200
-	Heat Recovery Steam Generator	\$40,289	\$0	\$7,088	\$0	\$0	\$47,377	\$3.934	\$0	\$5,131	\$56,443	\$78
	SCR System, Ductwork and Stack	\$2,581	\$1,658	\$2,050	\$0	\$0	\$6,288	\$526	\$0	\$1,082	. ,	\$11
	SUBTOTAL 7	\$42,870	\$1,658	\$9,138	\$0	\$0	\$53,666	\$4,460	\$0	\$6,214	\$64,339	\$89
-	STEAM TURBINE GENERATOR											
-	Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping	\$36,755 \$14,164	\$0 \$1.020	\$5,981 \$8.263	\$0 \$0	\$0 \$0	\$42,737 \$23,446	\$3,374 \$1,710	\$0 ©0	\$4,611 \$3.694	. ,	\$70 \$40
0.2-0.9	SUBTOTAL 8	\$14,164 \$50,919	\$1,020 \$1,020	\$8,203 \$14,244	\$0 \$0	\$0 \$0	\$23,446 \$66,183	\$1,710 \$5,083	\$0 \$0	\$3,694 \$8,305		\$40 \$110
9	COOLING WATER SYSTEM	\$7,838	\$8,324	\$7,739	\$0	\$0	\$23,901	\$1,922	\$0	\$3,763		\$41
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$29,502	\$9,551	\$19,337	\$0	\$0	\$58,390	\$4,403	\$0	\$6,855	\$69,648	\$97
12	INSTRUMENTATION & CONTROL	\$8,951	\$1,013	\$7,589	\$0	\$0	\$17,553	\$1,440	\$878	\$2,281	\$22,152	\$31
13	IMPROVEMENTS TO SITE	\$2,407	\$1,308	\$6,815	\$0	\$0	\$10,530	\$933	\$0	\$2,293	\$13,756	\$19
14	BUILDINGS & STRUCTURES	\$0	\$5,836	\$6,116	\$0	\$0	\$11,952	\$950	\$0	\$1,935	\$14,837	\$21
	TOTAL COST	\$488,224	\$36,759	\$147,550	\$0	\$0	\$672,533	\$54,926	\$41,967	\$115,911	\$885,337	\$1,229

Exhibit 4-20 Case 2b - "H" frame turbine with CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGCO	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	г созт	SUMM	ARY					
	Case:	Case 2b - H-f	frame CCS									
	Plant Size:		MW.net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM		igencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
_	COAL & SORBENT HANDLING			2							Ŧ	*
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED		• -	• -	• •	• -		• •	• •	•		• •
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$3,561	\$3,687	\$3,011	\$0	\$0	\$10,258	\$826	\$0	\$1,663	\$12,747	\$18
3.2	Water Makeup & Pretreating	\$2,868	\$296	\$1,472	\$0	\$0		\$383	\$0	\$1,004	\$6,023	\$8
3.3	Other Feedwater Subsystems	\$1,668	\$551	\$461	\$0	\$0		\$207	\$0	\$433	\$3,320	\$5
	Service Water Systems	\$346	\$691	\$2,225	\$0	\$0	. ,	\$277	\$0	\$708	, , -	\$6
	Other Boiler Plant Systems	\$2,334	\$872	\$2,006	\$0	\$0	. ,	\$424	\$0	\$845	. ,	\$9
	Natural Gas, incl. pipeline	\$17,763	\$753	\$652	\$0	\$0	· · · · · ·	\$1,581	\$0	\$3,112		\$33
3.7	Waste Treatment Equipment	\$1,002	\$0	\$580	\$0	\$0	\$1,582	\$136	\$0	\$344	\$2,062	\$3
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,439	\$192	\$699	\$0	\$0	. ,	\$199	\$0	\$506		\$4
	SUBTOTAL 3.	\$30,981	\$7,042	\$11,105	\$0	\$0	\$49,129	\$4,034	\$0	\$8,615	\$61,777	\$86
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION											
5B.1	CO2 Removal System	\$157,874	\$0	\$47,574	\$0	\$0	\$205,448	\$17,142	\$41,090	\$52,736	\$316,415	\$439
5B.2	CO2 Compression & Drying	\$23,964	\$0	\$9,750	\$0	\$0	\$33,714	\$2,823	\$0	\$7,307	\$43,844	\$61
	SUBTOTAL 5.	\$181,838	\$0	\$57,324	\$0	\$0	\$239,162	\$19,964	\$41,090	\$60,043	\$360,259	\$500
6	COMBUSTION TURBINE/ACCESSORIES											
6.1	Combustion Turbine Generator	\$132,918	\$0	\$7,053	\$0	\$0	\$139,971	\$11,561	\$0	\$15,153	\$166,685	\$231
6.2	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0		\$0
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0			\$0	\$0		\$0
6.9	Combustion Turbine Foundations	\$0	\$1,007	\$1,089	\$0	\$0	. ,		\$0	\$454		\$4
	SUBTOTAL 6.	\$132,918	\$1,007	\$8,142	\$0	\$0	\$142,068	\$11,736	\$0	\$15,608	\$169,411	\$235

Exhibit 4-21 Case 2b - "H" frame turbine with CO₂ capture capital cost estimate detail

	Client:	USDOE/NET	l							Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ		T COST	SUMM	ARY					
	Case:	Case 2b - H-	-	/		•••						
	Plant Size:		MW.net	Fetin	ato Typo:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
	Fiant Size.		,		,,				. ,		. ,	T 0 0 0 T
Acct		Equipment		Lab	-	Sales		Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
-	HRSG, DUCTING & STACK	A / A A A A		A- AA		•	A / = A = =		•••	A- (A)		
	Heat Recovery Steam Generator	\$40,289	\$0	\$7,088	\$0	• -	\$47,377	\$3,934	\$0	\$5,131	, , .	\$78
	HRSG Accessories	\$2,581	\$1,084	\$1,512	\$0	• -	\$5,176	\$433	\$0	\$841	+ - ,	\$9
	Ductwork	\$0	\$0	\$0	\$0	+ -	\$0	\$0	\$0	\$0	· ·	\$0
	Stack	\$0	\$0	\$0	\$0	• -	\$0	+ -	\$0	\$0		\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$574	\$538	\$0		\$1,112	\$93	\$0	\$241	, , -	\$2
	SUBTOTAL 7.	\$42,870	\$1,658	\$9,138	\$0	\$0	\$53,666	\$4,460	\$0	\$6,214	\$64,339	\$89
-	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$36,755	\$0	\$5,981	\$0	+ -	\$42,737	\$3,374	\$0	\$4,611	1)	\$70
_	Turbine Plant Auxiliaries	\$238	\$0	\$529	\$0		\$767	\$66	\$0	\$83		\$1
	Condenser & Auxiliaries	\$2,131	\$0	\$1,270	\$0	, -	\$3,401	\$286	\$0	\$369	. ,	\$6
	Steam Piping	\$11,795	\$0	\$4,780	\$0	, -	\$16,575		\$0	\$2,656	. ,	\$28
8.9	TG Foundations	\$0	\$1,020	\$1,683	\$0	, -	\$2,703		\$0	\$586	. ,	\$5
	SUBTOTAL 8.	\$50,919	\$1,020	\$14,244	\$0	\$0	\$66,183	\$5,083	\$0	\$8,305	\$79,571	\$110
-	COOLING WATER SYSTEM											
	Cooling Towers	\$4,641	\$0	\$1,410	\$0	\$0	\$6,051	\$505	\$0	\$656	• ,	\$10
9.2	Circulating Water Pumps	\$2,248	\$0	\$144	\$0	, -	\$2,392	\$182	\$0	\$257	t)	\$4
9.3	Circ.Water System Auxiliaries	\$176	\$0	\$23	\$0	\$0	\$200	\$17	\$0	\$22	\$238	\$0
9.4	Circ.Water Piping	\$0	\$5,473	\$1,239	\$0		\$6,713		\$0	\$1,082		\$12
9.5	Make-up Water System	\$420	\$0	\$540	\$0	\$0	\$961	\$79	\$0	\$156	\$1,196	\$2
	Component Cooling Water Sys	\$352	\$375	\$270	\$0		\$997	\$80	\$0	\$161		\$2
9.9	Circ.Water System Foundations	\$0	\$2,476	\$4,112	\$0	\$0	\$6,588	\$556	\$0	\$1,429	\$8,573	\$12
	SUBTOTAL 9.	\$7,838	\$8,324	\$7,739	\$0	\$0	\$23,901	\$1,922	\$0	\$3,763	\$29,586	\$41
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$8,407	\$0	\$4,973	\$0	\$0	\$13,380	\$1,099	\$0	\$1,086	\$15,565	\$22
11.2	Station Service Equipment	\$3,114	\$0	\$268	\$0	\$0	\$3,382	\$279	\$0	\$275	\$3,935	\$5
11.3	Switchgear & Motor Control	\$3,832	\$0	\$666	\$0	\$0	\$4,498	\$373	\$0	\$487	\$5,358	\$7
11.4	Conduit & Cable Tray	\$0	\$2,003	\$5,770	\$0	\$0	\$7,772	\$647	\$0	\$1,263	\$9,683	\$13
11.5	Wire & Cable	\$0	\$6,436	\$3,659	\$0	\$0	\$10,095	\$607	\$0	\$1,605	\$12,307	\$17
11.6	Protective Equipment	\$0	\$924	\$3,205	\$0	\$0	\$4,128	\$355	\$0	\$448	\$4,932	\$7
	Standby Equipment	\$142	\$0	\$132	\$0	\$0	\$273	\$23	\$0	\$30	\$326	\$0
	Main Power Transformers	\$14,007	\$0	\$183	\$0	\$0	\$14,190	\$963	\$0	\$1,515	\$16,669	\$23
11.9	Electrical Foundations	\$0	\$189	\$482	\$0	\$0	\$671	\$57	\$0	\$146		\$1
	SUBTOTAL 11.	\$29,502	\$9,551	\$19,337	\$0	\$0	\$58,390	\$4,403	\$0	\$6,855	\$69,648	\$97

Exhibit 4-21 Case 2b - "H" frame turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	Ľ							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGCO	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 2b - H-f	frame CCS									
	Plant Size:	720.6	MW,net	Estin	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,138	\$0	\$725	\$0	\$0	\$1,863	\$156	\$93	\$317	\$2,429	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$340	\$0	\$208	\$0	\$0	\$548	\$46	\$27	\$93	\$715	\$1
12.7	Computer & Accessories	\$5,444	\$0	\$166	\$0	\$0	\$5,610	\$461	\$280	\$635	\$6,986	\$10
12.8	Instrument Wiring & Tubing	\$0	\$1,013	\$1,792	\$0	\$0	\$2,805	\$202	\$140	\$472	\$3,618	\$5
12.9	Other I & C Equipment	\$2,029	\$0	\$4,698	\$0	\$0	\$6,728	\$576	\$336	\$764	\$8,404	\$12
	SUBTOTAL 12.	\$8,951	\$1,013	\$7,589	\$0	\$0	\$17,553	\$1,440	\$878	\$2,281	\$22,152	\$31
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$129	\$2,732	\$0	\$0	\$2,861	\$250	\$0	\$622	\$3,733	\$5
13.2	Site Improvements	\$0	\$1,179	\$1,558	\$0	\$0	\$2,737	\$243	\$0	\$596	\$3,576	\$5
13.3	Site Facilities	\$2,407	\$0	\$2,525	\$0	\$0	\$4,933	\$440	\$0	\$1,074	\$6,447	\$9
	SUBTOTAL 13.	\$2,407	\$1,308	\$6,815	\$0	\$0	\$10,530	\$933	\$0	\$2,293	\$13,756	\$19
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$351	\$185	\$0	\$0	\$536	\$41	\$0	\$87	\$664	\$1
14.2	Steam Turbine Building	\$0	\$2,584	\$3,438	\$0	\$0	\$6,022	\$484	\$0	\$976	\$7,483	\$10
14.3	Administration Building	\$0	\$643	\$435	\$0	\$0	\$1,078	\$84	\$0	\$174	\$1,336	\$2
14.4	Circulation Water Pumphouse	\$0	\$209	\$103	\$0	\$0	\$313	\$24	\$0	\$50	\$387	\$1
14.5	Water Treatment Buildings	\$0	\$601	\$548	\$0	\$0	\$1,149	\$91	\$0	\$186	\$1,426	\$2
14.6	Machine Shop	\$0	\$558	\$356	\$0	\$0	\$914	\$71	\$0	\$148	\$1,133	\$2
14.7	Warehouse	\$0	\$360	\$217	\$0	\$0	\$577	\$45	\$0	\$93	\$715	\$1
14.8	Other Buildings & Structures	\$0	\$108	\$78	\$0	\$0	\$186	\$15	\$0	\$30	\$231	\$0
14.9	Waste Treating Building & Str.	\$0	\$422	\$753	\$0	\$0	\$1,175	\$96	\$0	\$191	\$1,461	\$2
	SUBTOTAL 14.	\$0	\$5,836	\$6,116	\$0	\$0	\$11,952	\$950	\$0	\$1,935	\$14,837	\$21
	TOTAL COST	\$488,224	\$36,759	\$147,550	\$0	\$0	\$672,533	\$54,926	\$41,967	\$115,911	\$885,337	\$1,229

Exhibit 4-21 Case 2b - "H" frame turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	OST SU	MMARY					
	Case:	Case 2b - H-f	rame CCS								
	Plant Size:	720.6	MW,net	Estin	nate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$488,224	\$36,759	\$147,550	\$0	\$672,533	\$54,926	\$41,967	\$115,911	\$885,337	\$1,229
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$5,831	\$8
	1 Month Maintenance Materials									\$951	\$1
	1 Month Non-fuel Consumables									\$549	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$5,833	\$8
	2% of TPC									\$17,707	\$25
	Total									\$30,871	\$43
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$760	\$1
	0.5% of TPC (spare parts)									\$4,427	\$6
	Total									\$5,187	\$7
	Initial Cost for Catalyst and Chemicals									\$1,727	\$2
	Land									\$300	\$0
	Other Owner's Costs									\$132,801	\$184
	Financing Costs									\$23,904	\$33
	Total Overnight Costs (TOC)									\$1,080,126	\$1,499
	TASC Multiplier							(IOLI high	-risk, 33 year)	1.078	ψι,-τσο
	Total As-Spent Cost (TASC)							(iOO, nigh	-113K, 55 year)	\$1,164,376	\$1,616

Exhibit 4-21 Case 2b - "H" frame turbine with CO₂ capture capital cost estimate detail (continued)

	ANNUAL O&	M EXPENS	ES		Cost Base (Jun)	2011
Case 2b - H-frame CCS				Heat Rate	e-net (Btu/kWh):	7,236
				_	MWe-net:	721
000000000000000000000000000000000000000				Capa	acity Factor (%):	85
<u>OPERATING & N</u>	IAINTENANCE	LABOR				
Operating Labor	20.70	1/hour				
Operating Labor Rate(base):	39.70					
Operating Labor Burden: Labor O-H Charge Rate:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cost
					<u>\$</u>	<u>\$/kW-net</u>
Annual Operating Labor Cost					\$2, <mark>8</mark> 61,816	\$3.972
Maintenance Labor Cost					\$6,468,022	\$8.976
Administrative & Support Labor					\$2,332,459	\$3.237
Property Taxes and Insurance					\$17,706,735	\$24.574
TOTAL FIXED OPERATING COS	TS				\$29,369,032	\$40.759
ARIABLE OPERATING COSTS						
						\$/kWh-net
Maintenance Material Cost					\$9,702,033	\$0.00181
Consumables	Consun	notion	Unit	Initial Fill		
<u></u>	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	3,314.88	1.67	\$0	\$1,721,605	\$0.00032
Chemicals						
MU & WT Chem.(lbs)	0.00	19,749.09	0.27	\$0	\$1,641,092	\$0.00031
MEA Solvent (ton)	477.31	0.67	3,481.91	\$1,661,935	\$724,096	\$0.00013
Activated Carbon (lb)	0.00	800.70	1.63	\$0	\$403,737	\$0.00008
Corrosion Inhibitor	0.00	0.00	0.00	\$65,390	\$3,114	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$00,000	\$268,713	\$0.00005
Ammonia (19% NH3) (ton)	0.00	8.15	330.00	\$0	\$834,338	\$0.00016
Subtotal Chemicals	0.00	0.10	000.00	\$1,727,326	\$3,875,089	\$0.00072
				ψ1,121,020	<i>\\</i> 0,070,000	<i>Q</i> 0.000 <i>1</i> 2
Other Supplemental Eucl (MPtu)	0.00	0.00	0.00	ድኅ	ድሳ	¢0,0000
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products	0.00	0.00	0.00	<u>\$0</u>	\$0	\$0.00000
,				֥	20	,
TOTAL VARIABLE OPERATING	COSTS			\$1,727,326	\$15,298,727	\$0.00285
Fuel (MMBtu)	0	125,135	6.13	\$0	\$237,986,582	\$0.04433

Exhibit 4-22 Case 2b - "H" frame turbine with CO_2 capture operating cost estimate

4.3 Case 2c – NGCC with CO₂ Capture and EGR Modeling Results

The block flow diagram of the combined cycle with CO_2 capture and EGR is shown in Exhibit 4-23. This case also uses the same H gas turbine model as that of Case 2a with the addition of EGR and CO_2 capture at the back end. Exhibit 4-23 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4) similar to case 1b.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,487°C (2,709°F). The flue gas exits the turbine at 619°C (1,146°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 106°C (223°F). A portion of the stream (stream 6) is recycled back to the air inlet and the remainder (stream 4) passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance and exhaust characteristics are impacted due to addition of the EGR. Of particular interest is that the CO₂ composition at the gas turbine exhaust increases from 4.2 percent in the capture only case (Case 2b) to 6.5 percent in this capture with EGR case. The O₂ composition concurrently decreases from 11.8 percent in the capture only case (Case 2b) to 7.5 percent in this capture with EGR. The higher concentration of the CO₂ in the exhaust gas stream reduces the energy consumption of the CO₂ capture system. Because of this, the EGR case provides a better output and efficiency compared to the capture case without EGR (Case 2b). However, the overall plant output and efficiency are reduced compared to the no CO₂ capture case (Case 2a) due to heat integration requirements and increased auxiliary loads for the EGR and CO₂ capture process

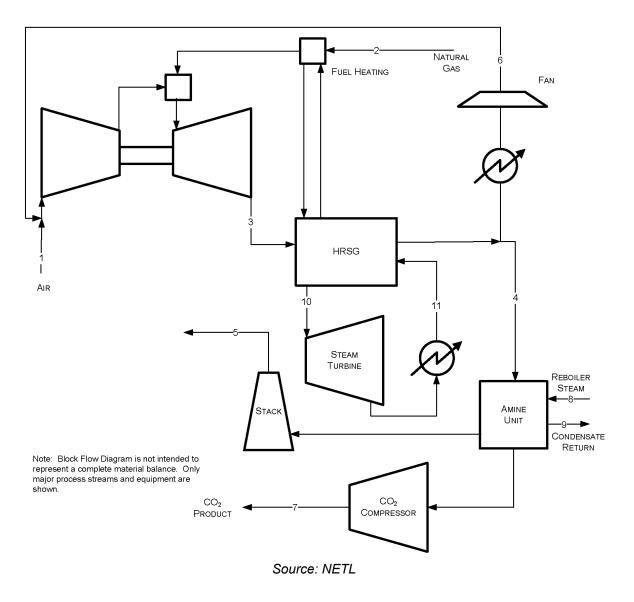


Exhibit 4-23 Case 2c – "H" frame turbine with CO₂ capture and EGR block flow diagram

	1	2	3	4	5	•	7	0	•	10	11
	1	2	3	4	5	6	1	8	9	10	11
V-L Mole Fraction	0.0000	0.0000	0.0000	0.0000	0.0404	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0093	0.0000	0.0090	0.0090	0.0101	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0646	0.0646	0.0073	0.0685	1.0000	0.0000	0.0000	0.0000	0.0000
H₂O	0.0101	0.0000	0.1026	0.1026	0.0555	0.0480	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7729	0.0160	0.7487	0.7487	0.8427	0.7943	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.0750	0.0750	0.0845	0.0796	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	96,188	6,136	152,966	99,429	88,364	50,471	5,781	16,694	16,694	30,057	23,893
V-L Flowrate (kg/hr)	2,775,985	106,337	4,348,826	2,826,770	2,476,832	1,466,700	254,411	300,754	300,754	541,480	430,441
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
	-										
Temperature (°C)	15	38	627	106	35	33	38	236	137	579	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	0.10	0.10	15.17	0.33	0.33	16.65	0.00
Enthalpy (kJ/kg) ^A	0.90	47,245.71	309.82	402.63	40.26	108.41	362.39	2,938.67	577.55	3,513.89	2,389.27
Density (kg/m ³)	1.2	27.7	0.4	0.9	1.1	1.2	796.1	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.860	17.330	28.430	28.430	28.030	29.060	44.010	18.015	18.015	18.015	18.015
V-L Flowrate (Ib _{mol} /hr)	212,058	13,528	337,233	219,204	194,808	111,270	12,744	36,805	36,805	66,264	52,675
V-L Flowrate (lb/hr)	6,120,000				5,460,480		560,880	663,048	663,048	1,193,760	948,960
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	100	1,160	223	95	92	101	457	279	1,075	90
Pressure (psia)	14.7	600.0	15.2	14.7	14.7	14.7	2,200.0	48.5	48.5	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.0	19.9	291.6	37.1	4.5	3.6	-97.1	1,263.4	248.3	1,510.7	1,027.2
Density (lb/ft3)	0.076	1.731	0.025	0.057	0.069	0.072	49.700	0.169	57.172	2.977	61.982

Exhibit 4-24 Case 2c – "H" frame turbine with CO₂ capture and EGR stream table

Note: Total flow rates shown equal the sum for all process trains

4.3.1 Performance Results

The performance results are summarized in Exhibit 4-25 and when compared with Case 2b show that adding exhaust gas recycle increases the efficiency by approximately 0.6 percentage points. This is due to lowering the steam requirement for the reboiler slightly (to 2,790 kJ/kg CO_2 (1,200 Btu/lb CO_2) from the 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) used in Case 2b) and based on the CO_2 concentration increasing and the oxygen concentration decreasing for the exhaust gas entering the solvent recovery section. An additional improvement would be expected if the exhaust gas recycle was increased from the 35 percent used to 50 percent. This was not explored in the current study since it was determined based on information from GE that 35 percent was a limit above which the gas turbine's combustor would need major redesign.

Additional tables below provide overall energy balance (Exhibit 4-26), water balance (Exhibit 4-27), carbon balance (Exhibit 4-28), and an emissions summary (Exhibit 4-29).

Plant	Output	
Gas Turbine Power	553,926	kW _e
Steam Turbine Power	247,554	kW _e
Total	801,480	kW _e
Auxilia	ry Load	
Condensate Pumps	262	kW _e
Boiler Feedwater Pumps	6,400	kW _e
Exhaust Gas Recycle Fan	440	kW _e
Amine CO ₂ Capture System Auxiliaries	15,104	kW _e
CO ₂ Compression	23,575	kW _e
EGR Coolant Pump	374	kW _e
Circulating Water Pump	5,409	kW _e
Ground Water Pumps	450	kW _e
Cooling Tower Fans	3,491	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,097	kW _e
Steam Turbine Auxiliaries	656	kW _e
Miscellaneous Balance of Plant ²	3,626	kW _e
Transformer Losses	3,000	kW _e
Total	63,894	kW _e
Plant Per	formance	
Net Plant Power	737,586	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	47.7%	
Net Plant Efficiency (LHV) ¹	52.9%	
Net Plant Heat Rate (HHV) ¹	7,541 (7,148)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	6,807 (6,452)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	106,337 (234,432)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,545,122	kWt
Thermal Input (LHV) ¹	1,394,650	kWt
Condenser Duty	971 (920)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	18.7 (4,940)	m ³ /min (gpm)
Raw Water Consumption	13.7 (3,626)	m ³ /min (gpm)
1		

Exhibit 4-25 Case 2c – "H" frame turbine with CO₂ capture and EGR plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	нну	Sensible + Latent	Power	Total			
	Energy I	n, GJ/hr (MMBtu/hr)					
Natural Gas	5,562 (5,272)	3.7 (3.5)	0 (0)	5,566 (5,276)			
GT Air	0 (0)	83.9 (79.5)	0 (0)	84 (80)			
Raw Water Withdrawal	0 (0)	70.3 (66.6)	0 (0)	70 (67)			
Auxiliary Power	0 (0)	0.0 (0.0)	230 (218)	230 (218)			
TOTAL	5,562 (5,272)	157.9 (149.7)	230 (218)	5,950 (5,640)			
Energy Out, GJ/hr (MMBtu/hr)							
Cooling Tower Blowdown	0 (0)	35.3 (33.5)	0 (0)	35 (33)			
Stack Gas	0 (0)	26 (25)	0 (0)	26 (25)			
Condenser	0 (0)	970 (920)	0 (0)	970 (920)			
CO ₂ Product	0 (0)	-57.4 (-54.4)	0 (0)	-57 (-54)			
CO ₂ Intercoolers	0 (0)	147.4 (139.7)	0 (0)	147 (140)			
EGR Cooling	0 (0)	257.1 (243.7)	0 (0)	257 (244)			
Amine System Losses	0 (0)	993.4 (941.6)	0 (0)	993 (942)			
Process Losses*	0 (0)	693 (657)	0 (0)	693 (657)			
Power	0 (0)	0.0 (0.0)	2,885 (2,735)	2,885 (2,735)			
TOTAL	0 (0)	3,065 (2,905)	2,885 (2,735)	5,950 (5,640)			

Exhibit 4-26 Case 2c – "H" frame turbine with CO₂ capture and EGR overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 4-27	Case 2c - "H" fr	ame turbine with CO	2 capture and EGR water balance
--------------	------------------	---------------------	---------------------------------

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.06 (17)	0.0 (0)	0.06 (17)	0.0 (0)	0.06 (17)
Condenser Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.06 (16)
BFW Makeup	0.06 (16)	0.0 (0)	0.06 (16)	0.0 (0)	0.0 (0)
Cooling Tower	21.16 (5,589)	2.6 (681)	18.6 (4,907)	5.0 (1,314)	13.6 (3,593)
BFW Blowdown	0.00 (0)	0.06 (16)	-0.06 (-16)	0.0 (0)	0.0 (0)
EGR Condensate	0.00 (0)	0.93 (245)	-0.93 (-245)	0.0 (0)	0.0 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	1.59 (421)	-1.59 (-421)	0.0 (0)	0.0 (0)
Total	21.3 (5,621)	2.58 (681)	18.7 (4,904)	5.0 (1,314)	13.6 (3,626)

Carbon In, k	g/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)				
Natural Gas	76,795 (169,303)	Stack Gas	7,716 (17,011)			
Air (CO ₂) 347 (764)		CO ₂ Product	69,433 (153,073)			
		Convergence Tolerance*	-7 (-16)			
Total	77,141 (170,067)	Total	77,141 (170,067)			

Exhibit 4-28 Case 2c - "H" f	rame turbine with CO ₂ captur	re and EGR carbon balance
------------------------------	--	---------------------------

*by difference

Emissions are estimated based on user input specifications to models.

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.002 (0.005)	83 (91)	0.014 (0.031)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	210,514 (232,052)	35 (78)
CO ₂ ¹			38 (85)

¹ CO₂ emissions based on net power instead of gross power

4.3.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the Siemens "H" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 4-30. The summary and detailed capital cost estimates are shown in Exhibit 4-31 and Exhibit 4-32, respectively. The annual operating cost estimates are shown in Exhibit 4-33.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	2c						
Total Plant Cost (2011\$/kW)	1,143						
Total Overnight Cost (2011\$/kW)	1,396						
Total As-spent Capital (2011\$/kW) 1,5							
COE ¹ Component Details (mills/kWh or \$/MWh)							
Capital	20.80						
Fixed O&M	5.22						
Variable O&M	2.87						
Fuel	43.82						
CO ₂ T&S total	3.45						
COE ¹ Total	76.16						
LCOE ¹ , total (including T&S)	96.54						
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	72.48 (65.75)						
$Cost^{1,2}$ of CO_2 captured, \$/tonne of CO_2 (\$/ton of CO_2)	53.70 (48.71)						

Exhibit 4-30 Case 2c – "H" frame turbine with CO₂ capture and EGR cost estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 2a – "H" frame without capture

	Client:	USDOE/NET	—							Report Date:	2012-Apr-04	
	Project:	Costing Supp			,							
				L PLAN	T COST	SUMM	ARY					
	Case:	Case 2c - H-f			- 4 - T	Ormerster		. .		0044	(\$	
A = = 4	Plant Size:		MW,net			Conceptual			Base (Jun)	2011	(\$x1000)	T 000T
Acct No.	Item/Description	Equipment Cost	Material Cost	Lab Direct	or Indirect	Sales Tax	Bare Erected Cost	Eng'g CM H.O.& Fee		ngencies Project	S	\$/kW
	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0		
	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	¢0 \$0	¢0 \$0	\$0		\$0	¢0 \$0		• -
3	FEEDWATER & MISC, BOP SYSTEMS	\$31.614	\$7,372	\$11.627	\$0	\$0	\$50.614	\$4.155	\$0	\$8.883		• -
-	GASIFIER & ACCESSORIES	\$01,011	ψ1,01 2	ψ11,0 <u>2</u> 1	ψŪ	ψũ	¢00,014	ψ1,100	ψũ	<i>40,000</i>	+00,002	ţ
-	SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$9,734	\$6,149	\$0	\$0	\$15,883	\$1,238	\$0	\$3,424	\$20,546	\$28
5B	CO2 REMOVAL & COMPRESSION	\$141,292	\$0	\$45,180	\$0	\$0	\$186,472	\$15,568	\$30,531	\$46,514	\$279,085	\$378
-	COMBUSTION TURBINE/ACCESSORIES											
-	Combustion Turbine Generator	\$139,564	\$0	\$7,001	\$0	\$0	\$146,565	. ,	\$0	\$16,382	. ,	
6.2-6.9	Combustion Turbine Other SUBTOTAL 6	\$0 \$139.564	\$1,011 \$1.011	\$1,094 \$8.095	\$0 \$0	\$0 \$0	\$2,105 \$148,670		\$0 \$0	\$456 \$16,839	. ,	
_		\$139,564	\$1,011	\$8,095	\$ 0	\$ 0	\$148,670	\$12,675	φU	\$10,839	\$178,183	\$ 242
	HRSG, DUCTING & STACK Heat Recovery Steam Generator	\$41.288	\$0	\$7,263	\$0	\$0	\$48,551	\$4,032	\$0	\$5,258	\$57,841	\$78
	SCR System, Ductwork and Stack	\$2.574	پ و \$1.676	\$2.066	\$0 \$0	\$0 \$0	\$6,316	. ,	\$0 \$0	\$1,089	. ,	
	SUBTOTAL 7	\$43,862	\$1,676	\$9,329	\$0	\$0	\$54,867	\$4,560	\$0	\$6,347	. ,	
8	STEAM TURBINE GENERATOR											
-	Steam TG & Accessories	\$38,355	\$0	\$6,238	\$0	\$0	\$44,593		\$0	\$4,811	\$52,924	
8.2-8.9	Turbine Plant Auxiliaries and Steam Piping	\$14,653	\$1,059	\$8,674	\$0	\$0	\$24,386		\$0	\$3,832		
	SUBTOTAL 8	\$53,008	\$1,059	\$14,911	\$0	\$0	\$68,978		\$0	\$8,644		
9	COOLING WATER SYSTEM	\$8,408	\$8,858	\$8,252	\$0	\$0	\$25,518	\$2,052	\$0	\$4,013	\$31,583	\$43
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$29,954	\$9,427	\$19,235	\$0	\$0	\$58,615	\$4,418	\$0	\$6,863	\$69,896	\$95
12	INSTRUMENTATION & CONTROL	\$8,982	\$1,016	\$7,616	\$0	\$0	\$17,614	\$1,445	\$881	\$2,289	\$22,230	\$30
13	IMPROVEMENTS TO SITE	\$2,421	\$1,315	\$6,854	\$0	\$0	\$10,591	\$938	\$0	\$2,306	\$13,835	\$19
14	BUILDINGS & STRUCTURES	\$0	\$5,962	\$6,264	\$0	\$0	\$12,226	\$972	\$0	\$1,980	\$15,178	\$21
	TOTAL COST	\$459,104	\$47,431	\$143,512	\$0	\$0	\$650,047	\$53,323	\$31,412	\$108,102	\$842,883	\$1,143

Exhibit 4-31 Case 2c – "H" frame turbine with CO₂ capture and EGR capital cost estimate summary

	Client:	USDOE/NET	l							Report Date:	2012-Apr-04	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 2c - H-	frame CCS E	GR								
	Plant Size:		MW,net		nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING								I	•		
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
3	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$3,749	\$3,882	\$3,170	\$0	\$0	\$10,801	\$870	\$0	\$1,751	\$13,422	\$1
	Water Makeup & Pretreating	\$3,016	\$312	\$1,548	\$0	\$0	\$4,876		\$0	\$1,056		\$
	Other Feedwater Subsystems	\$1,756	\$580	\$485	\$0	\$0	\$2,822	\$218	\$0	\$456		\$
	Service Water Systems	\$364	\$726	\$2,340	\$0	\$0	\$3,431	\$292	\$0	\$745		5
	Other Boiler Plant Systems	\$2,454	\$917	\$2,109	\$0	\$0	\$5,481	\$446	\$0	\$889		:
	Natural Gas, incl. pipeline	\$17,767	\$760	\$658	\$0	\$0	\$19,186	\$1,582	\$0	\$3,115		\$3
3.7	Waste Treatment Equipment	\$1,053	\$0	\$610	\$0	\$0	\$1,663	\$143	\$0	\$361	\$2,168	5
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,453	\$194	\$706	\$0	\$0	\$2,353	\$201	\$0	\$511	\$3,065	5
	SUBTOTAL 3.	\$31,614	\$7,372	\$11,627	\$0	\$0	\$50,614	\$4,155	\$0	\$8,883	\$63,652	\$
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$9,734	\$6,149	\$0	\$0	\$15,883	\$1,238	\$0	\$3,424	\$20,546	\$
	SUBTOTAL 5.	\$0	\$9,734	\$6,149	\$0	\$0	\$15,883	\$1,238	\$0	\$3,424	\$20,546	\$
5B	CO2 REMOVAL & COMPRESSION	-										
5B.1	CO2 Removal System	\$117,306	\$0	\$35,349	\$0	\$0	\$152,655	\$12,737	\$30,531	\$39,185	\$235,108	\$3
	CO2 Compression & Drying	\$23,985	\$0	\$9,831	\$0	\$0	\$33,816	\$2,831	\$0	\$7,330	\$43,977	\$
	SUBTOTAL 5.	\$141,292	\$0	\$45,180	\$0	\$0	\$186,472	\$15,568	\$30,531	\$46,514	\$279,085	\$3
6	COMBUSTION TURBINE/ACCESSORIES											
6.1	Combustion Turbine Generator	\$139,564	\$0	\$7,001	\$0	\$0	\$146,565	\$12,499	\$0	\$16,382	\$175,446	\$2
6.2	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0	
	Combustion Turbine Foundations	\$0	\$1,011	\$1,094	\$0	\$0		\$176	\$0	\$456	\$2,737	
	SUBTOTAL 6.		\$1,011	\$8,095	\$0	\$0	. ,	\$12,675	\$0	\$16,839		\$2

Exhibit 4-32 Case 2c – "H" frame turbine with CO₂ capture and EGR capital cost estimate detail

	Client:	USDOE/NET								Report Date:	2012-Apr-04	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 2c - H-f	-			•••	,					
	Plant Size:		MW.net		ato Tyno:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
	Fiant Size.		,								(. ,	
Acct		Equipment		Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
-	HRSG, DUCTING & STACK						• · • • • • •					
	Heat Recovery Steam Generator	\$41,288	\$0	\$7,263	\$0		\$48,551	\$4,032	\$0	\$5,258	+ -) -	\$78
	HRSG Accessories	\$2,574	\$1,081	\$1,508	\$0		\$5,163		\$0	\$839		\$9
	Ductwork	\$0	\$0	\$0	\$0	+ -	\$0	· -	\$0	\$0	1 -	\$0
	Stack	\$0	\$0	\$0	\$0		\$0	+ -	\$0	\$0	· ·	\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$595	\$558	\$0		\$1,153	\$96	\$0	\$250		\$2
	SUBTOTAL 7.	\$43,862	\$1,676	\$9,329	\$0	\$0	\$54,867	\$4,560	\$0	\$6,347	\$65,774	\$89
-	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$38,355	\$0	\$6,238	\$0	+ -	\$44,593	\$3,520	\$0	\$4,811		\$72
_	Turbine Plant Auxiliaries	\$247	\$0	\$550	\$0		\$797	\$68	\$0	\$87		
	Condenser & Auxiliaries	\$2,267	\$0	\$1,455	\$0	, -	\$3,722	\$313	\$0	\$404		\$6
	Steam Piping	\$12,138	\$0	\$4,920	\$0	, -	\$17,058		\$0	\$2,733		\$28
8.9	TG Foundations	\$0	\$1,059	\$1,749	\$0	+ -	\$2,809		\$0	\$609		\$5
	SUBTOTAL 8.	\$53,008	\$1,059	\$14,911	\$0	\$0	\$68,978	\$5,301	\$0	\$8,644	\$82,923	\$112
-	COOLING WATER SYSTEM											
	Cooling Towers	\$4,990	\$0	\$1,521	\$0	+ -	\$6,510		\$0	\$705	, ,	\$11
	Circulating Water Pumps	\$2,416	\$0	\$160	\$0	\$0	\$2,576	\$196	\$0	\$277		
	Circ.Water System Auxiliaries	\$188	\$0	\$25	\$0	\$0	\$212	\$18	\$0	\$23		
	Circ.Water Piping	\$0	\$5,823	\$1,318	\$0	1 -	\$7,141	\$535	\$0	\$1,151		\$12
	Make-up Water System	\$440	\$0	\$565	\$0	1 -	\$1,005		\$0	\$163		\$2
	Component Cooling Water Sys	\$374	\$399	\$287	\$0		\$1,061	\$85	\$0	\$172		
9.9	Circ.Water System Foundations	\$0	\$2,636	\$4,377	\$0	, -	\$7,012		\$0	\$1,521	. ,	•
	SUBTOTAL 9.	\$8,408	\$8,858	\$8,252	\$0	\$0	\$25,518	\$2,052	\$0	\$4,013	\$31,583	\$43
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$8,497	\$0	\$5,026	\$0	\$0	\$13,524	\$1,111	\$0	\$1,098	\$\$15,732	\$21
11.2	Station Service Equipment	\$3,069	\$0	\$264	\$0	\$0	\$3,333	\$274	\$0	\$271	\$3,878	\$5
11.3	Switchgear & Motor Control	\$3,776	\$0	\$656	\$0	\$0	\$4,432	\$367	\$0	\$480	\$5,279	\$7
11.4	Conduit & Cable Tray	\$0	\$1,973	\$5,685	\$0	\$0	\$7,659	\$638	\$0	\$1,245	\$9,541	\$13
11.5	Wire & Cable	\$0	\$6,342	\$3,606	\$0	\$0	\$9,948	\$598	\$0	\$1,582	\$12,128	\$16
11.6	Protective Equipment	\$0	\$920	\$3,192	\$0	\$0	\$4,112	\$354	\$0	\$447	\$4,912	\$7
	Standby Equipment	\$143	\$0	\$133	\$0	\$0	\$276	\$23	\$0	\$30	\$329	\$0
	Main Power Transformers	\$14,468	\$0	\$185	\$0	\$0	\$14,653	\$995	\$0	\$1,565	\$17,213	\$23
11.9	Electrical Foundations	\$0	\$192	\$488	\$0	\$0	\$680	\$58	\$0	\$147	\$885	\$1
	SUBTOTAL 11.	\$29,954	\$9,427	\$19,235	\$0	\$0	\$58,615	\$4,418	\$0	\$6,863	\$69,896	\$95

Exhibit 4-32 Case 2c – "H" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	т соѕт	SUMM	ARY					
	Case:	Case 2c - H-f	rame CCS E	GR								
	Plant Size:	737.6	MW,net	Estin	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,142	\$0	\$727	\$0	\$0	\$1,869	\$157	\$93	\$318	\$2,438	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
12.6	Control Boards, Panels & Racks	\$341	\$0	\$209	\$0	\$0	\$550	\$46	\$27	\$94	\$717	\$
12.7	Computer & Accessories	\$5,463	\$0	\$167	\$0	\$0	\$5,629	\$462	\$281	\$637	\$7,010	\$10
12.8	Instrument Wiring & Tubing	\$0	\$1,016	\$1,798	\$0	\$0	\$2,814	\$202	\$141	\$474	\$3,631	\$
12.9	Other I & C Equipment	\$2,036	\$0	\$4,715	\$0	\$0	\$6,751	\$578	\$338	\$767	\$8,433	\$1 [.]
	SUBTOTAL 12.	\$8,982	\$1,016	\$7,616	\$0	\$0	\$17,614	\$1,445	\$881	\$2,289	\$22,230	\$30
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$129	\$2,748	\$0	\$0	\$2,877	\$251	\$0	\$626	\$3,754	\$
13.2	Site Improvements	\$0	\$1,186	\$1,567	\$0	\$0	\$2,752	\$245	\$0	\$599	\$3,597	\$
13.3	Site Facilities	\$2,421	\$0	\$2,540	\$0	\$0	\$4,961	\$442	\$0	\$1,081	\$6,484	\$9
	SUBTOTAL 13.	\$2,421	\$1,315	\$6,854	\$0	\$0	\$10,591	\$938	\$0	\$2,306	\$13,835	\$19
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$352	\$186	\$0	\$0	\$539	\$41	\$0	\$87	\$667	\$
14.2	Steam Turbine Building	\$0	\$2,667	\$3,548	\$0	\$0	\$6,215	\$500	\$0	\$1,007	\$7,722	\$10
14.3	Administration Building	\$0	\$645	\$437	\$0	\$0	\$1,082	\$84	\$0	\$175	\$1,342	\$
14.4	Circulation Water Pumphouse	\$0	\$210	\$104	\$0	\$0	\$314	\$24	\$0	\$51	\$388	\$
14.5	Water Treatment Buildings	\$0	\$634	\$578	\$0	\$0	\$1,212	\$96	\$0	\$196	\$1,504	\$2
14.6	Machine Shop	\$0	\$560	\$358	\$0	\$0	\$918	\$71	\$0	\$148	\$1,137	\$2
14.7	Warehouse	\$0	\$362	\$218	\$0	\$0	\$580	\$45	\$0	\$94	\$718	\$
14.8	Other Buildings & Structures	\$0	\$108	\$79	\$0	\$0	\$187	\$15	\$0	\$30	\$232	\$
14.9	Waste Treating Building & Str.	\$0	\$424	\$756	\$0	\$0	\$1,180	\$96	\$0	\$191	\$1,467	\$2
	SUBTOTAL 14.	\$0	\$5,962	\$6,264	\$0	\$0	\$12,226	\$972	\$0	\$1,980	\$15,178	\$2
	TOTAL COST	\$459,104	\$47,431	\$143,512	\$0	\$0	\$650,047	\$53,323	\$31,412	\$108,102	\$842,883	\$1,14

Exhibit 4-32 Case 2c – "H" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 2c - H-f	rame CCS E	EGR							
	Plant Size:	737.6	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$459,104	\$47,431	\$143,512	\$0	\$650,047	\$53,323	\$31,412	\$108,102	\$842,883	\$1,143
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$5,907	\$8
	1 Month Maintenance Materials									\$969	\$1
	1 Month Non-fuel Consumables									\$574	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$5,898	\$8
	2% of TPC									\$16,858	\$23
	Total									\$30,206	\$41
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$785	\$1
	0.5% of TPC (spare parts)									\$4,214	\$6
	Total									\$5,000	\$7
	Initial Cost for Catalyst and Chemicals									\$1,742	\$2
	Land									\$300	\$0
	Other Owner's Costs									\$126,433	\$171
	Financing Costs									\$22,758	\$31
	Total Overnight Costs (TOC)									\$1,029,322	\$1,396
	TASC Multiplier							(IOLL bich	risk, 33 year)	\$1,029,322 1.078	ψ1,590
	Total As-Spent Cost (TASC)							(IOU, TIIGH-	tisk, 55 yedi)	\$1,109,609	\$1,504

Exhibit 4-32 Case 2c – "H" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

INITIAL Case 2c - H-frame CCS EGR	. & ANNUAL O&	MEXPENSES		Heat Ra	Cost Base (Jun) ite-net (Btu/kWh):	2011 7,148
				Cor	MWe-net: acity Factor (%):	738 85
OPERATING	MAINTENANCE L	ABOR		Cap		00
Operating Labor						
Operating Labor Rate(base):	39.70 \$/ho	our				
Operating Labor Burden:	30.00 % c	fbase				
Labor O-H Charge Rate:	25.00 % c	flabor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	1.0		1.0			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cost
					\$	\$/kW-net
Annual Operating Labor Cost					\$2,861,816	\$3.880
Maintenance Labor Cost					\$6,590,143	\$8.935
Administrative & Support Labor					\$2,362,990	\$3.204
Property Taxes and Insurance					\$16,857,668	\$22.855
TOTAL FIXED OPERATING COSTS	5				\$28,672,617	\$38.874
VARIABLE OPERATING COSTS						
Maintenance Material Cost					\$9,885,214	\$0.00180
Consumables	Consun	nption	Unit	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	3,556.70	1.67	\$0	\$1,847,194	\$0.00034
Chemicals						
MU & WT Chem.(lbs)	0.00	21,189.76	0.27	\$0	\$1,760,807	\$0.00032
MEA Solvent (ton)	481.32	0.68	3,481.91	\$1,675,919	\$730,188	\$0.00013
Activated Carbon (lb)	0.00	807.44	1.63	\$0	\$407,134	\$0.00007
Corrosion Inhibitor	0.00	0.00	0.00	\$65,941	\$3,140	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0	\$269,097	\$0.00005
Ammonia (19% NH3) (ton)	0.00	8.16	330.00	\$0	\$835,530	\$0.00015
Subtotal Chemicals				\$1,741,860	\$4,005,897	\$0.00073
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other			_	\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal			-	\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING CO	OSTS			\$1,741,860	\$15,738,305	\$0.00286
	0	106 504	6 1 2	\$0		
Fuel (MMBtu)	U	126,534	6.13	ቅሀ	\$240,647,221	\$0.04379

Exhibit 4-33 Case 2c – "H" frame turbine with CO₂ capture and EGR operating cost estimate

5 Case 3 – Advanced Gas Turbine – ("J" frame)

These cases are based on the previous cases but use a more advanced turbine design based on a proposed "J" machine configuration. The current "J" frame is MHI's latest addition in their advanced frame design that has an ISO output of 312 MW and lower heating value (LHV) heat rate of 8,700 kJ/kWh (8,245 Btu/kWh) (Brayton cycle) on natural gas fuel. The output is approximately 48 percent more and the heat rate is approximately 7 percent better than the 7FA.05 model considered in Case 1a. This gas turbine model also has approximately 19 percent more exhaust flow and approximately 33°C (60°F) higher exhaust temperature than the 7FA.05 model. This model uses air cooling of blades but steam cooling for the combustors. The design also includes fast start capability.

This turbine in a NGCC has an estimated efficiency of 60 - 61 percent [12, 13] and was modified based on anticipated improvements to increase the efficiency to greater than 62 percent for this case. The current "J" turbine uses a small amount of steam cooling which was not included in the process level model developed for this case.

The performance summaries, block flow diagrams, stream tables, carbon balances, water balances, and overall energy balances for each of these three cases are presented in this section. Detailed process flow diagrams from the Thermoflow software are provided in the appendix.

The turbine cost for each of the cases was estimated by WorleyParsons based on simulation results and vendor quotes/discussions. The remaining capital and operating cost estimation results were based on scaling from the previous Case 1 results and are included at the end of each case section. All costs are in June 2011 dollars.

5.1 Case 3a – NGCC without CO₂ Capture Modeling Results

The block flow diagram of the combined cycle is shown in Exhibit 5-1. This includes two MHI advanced "J" frame turbines, two triple pressure level single reheat type HRSGs, and one condensing steam turbine with evaporative cooling tower. Exhibit 5-2 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. A fuel gas heating system is integrated in this design for the gas turbine and overall plant heat rate improvement.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,620°C (2,949°F). The flue gas exits the turbine at 636°C (1,177°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine. Flue gas exits the HRSG (stream 4) at 88°C (190°F) and passes to the plant stack. Cooling is supplied to the condenser via water from the cooling tower.

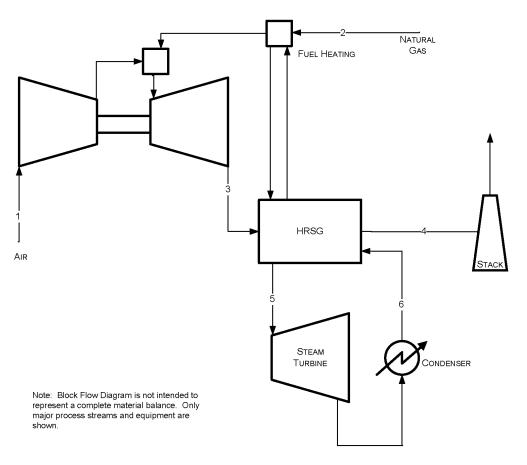


Exhibit 5-1 Case 3a – "J" frame turbine without CO₂ capture block flow diagram

Source: NETL

	1	2	3	4	5	6
V-L Mole Fraction		<u> </u>	5	4	5	0
Ar	0.0092	0.0000	0.0089	0.0089	0.0000	0.0000
CH ₄	0.0002	0.9310	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0462	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0981	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7386	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1083	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0001	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	149,503	6,898	156,222	156,608	31,444	39,755
V-L Flowrate (kg/hr)	4,314,208	119,531	4,433,738	-	566,464	716,204
Solids Flowrate (kg/hr)	0	0	0	0	0	0
	-				-	
Temperature (°C)	15	38	636	88	593	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	16.65	0.00
Enthalpy (kJ/kg) ^A	30.96	52,530.38	868.99	249.11	3,547.62	2,381.59
Density (kg/m ³)	1.2	22.2	0.4	0.9	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.310	18.015	18.015
V-L Flowrate (Ib _{mol} /hr)	329,598	15,208	344,410	345,262	69,321	87,646
V-L Flowrate (lb/hr)	9,511,200	263,520	9,774,720	9,774,360	1,248,840	1,578,960
Solids Flowrate (lb/hr)	0	0	0	0	0	0
Temperature (°F)	59	100	1,177	190	1,100	90
Pressure (psia)	14.6	600.0	15.2	14.7	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	373.6	107.1	1,525.2	1,023.9
Density (lb/ft ³)	0.076	1.384	0.025	0.057	2.977	61.982
				02 F & Liqu		002

Exhibit 5-2 Case 3a – "J" frame turbine without CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water Note: Total flow rates shown equal the sum for all process trains

5.1.1 Performance Results

The performance results are summarized in Exhibit 5-3 and represent both increases in power production and efficiency based on assumptions made when compared with the current commercial system based on the MHI "J" gas turbine. The overall efficiency of 62.6 percent represents an increase in the overall process efficiency of approximately 2.1 percentage points and approximately 10.5 percent gas turbine power increase when compared with the current commercial "J" system. Compared to Case 1a based on the 7FA.05 gas turbine, the overall efficiency increases by approximately 5.2 percentage points and the gas turbine power increases by approximately 64 percent. Additional tables below provide overall energy balance

(Exhibit 5-4), water balance (Exhibit 5-5), carbon balance (Exhibit 5-6), and an emissions summary (Exhibit 5-7).

Plant OutputGas Turbine Power689,832kWeSteam Turbine Power314,517kWeTotal1,004,349kWeCondensate Pumps0kWeBoiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCOC2 Compression0kWeCooling Tower Fans2,941kWeGas Turbine Auxiliaries1,004,349kWeCocoling Tower Fans2,180kWeCooling Tower Fans2,180kWeGas Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTotal22,381kWePlant Capacity Factor85.01Net Plant Efficiency (LHV) ¹ 56.5%1Net Plant Efficiency (LHV) ¹ 6,368 (6,036)kJ/kWh (Btu/kWh)
Steam Turbine Power314,517kWeTotal1,004,349kWeAuxiliary LoadCondensate Pumps0kWeBoiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries6,72kWeMiscellaneous Balance of Plant ² 3,434kWeTotal22,381kWePlant Performance85.0Net Plant Power981,968kWeNet Plant Efficiency (LHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Total1,004,349kWeAuxiliary LoadCondensate Pumps0kWeBoiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeTotal22,381kWeTotal22,381kWePlant Power981,968kWeNet Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Auxiliary LoadCondensate Pumps0kWeBoiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant23,434kWeTotal22,381kWePlant Performance85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Condensate Pumps0kWeBoiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeTotal22,381kWePlant Performance981,968kWeNet Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Boiler Feedwater Pumps6,725kWeAmine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeCooling Tower Fans2,180kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant²3,434kWeTotal22,381kWePlant Pertormance981,968kWePlant Capacity Factor85.0Net Plant Efficiency (LHV)162.6%Net Plant Efficiency (LHV)162.6%
Amine CO2 Capture System Auxiliaries0kWeCO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTotal22,381kWePlant Performance85.0Plant Capacity Factor85.0Net Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
CO2 Compression0kWeCirculating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeCooling Tower Fans2,180kWeGas Turbine Auxiliaries1,097kWeGas Turbine Auxiliaries672kWeMiscellaneous Balance of Plant23,434kWeTransformer Losses5,022kWeTotal22,381kWePlant Performance81,968kWePlant Capacity Factor85.085.0Net Plant Efficiency (HHV)156.5%1000Net Plant Efficiency (LHV)162.6%1000
Circulating Water Pump2,941kWeGround Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTransformer Losses5,022kWeTotal22,381kWePlant Performance981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Ground Water Pumps300kWeCooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformancePlant Capacity Factor85.0Net Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Cooling Tower Fans2,180kWeSCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformancePlant Power981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
SCR10kWeGas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant ² 3,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformancePlant Performance981,968Plant Capacity Factor85.0Net Plant Efficiency (HHV) ¹ 56.5%Net Plant Efficiency (LHV) ¹ 62.6%
Gas Turbine Auxiliaries1,097kWeSteam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant23,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformanceNet Plant Power981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Steam Turbine Auxiliaries672kWeMiscellaneous Balance of Plant²3,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformancePlant Power981,968kWePlant Capacity Factor85.01000000000000000000000000000000000000
Miscellaneous Balance of Plant23,434kWeTransformer Losses5,022kWeTotal22,381kWePlant PerformanceNet Plant Power981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Transformer Losses5,022kWeTotal22,381kWePlant PerformanceNet Plant Power981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Total22,381kWePlant PerformanceNet Plant Power981,968kWePlant Capacity Factor85.01000000000000000000000000000000000000
Plant Performance Net Plant Power 981,968 kWe Plant Capacity Factor 85.0 Net Plant Efficiency (HHV) ¹ 56.5% Net Plant Efficiency (LHV) ¹ 62.6%
Net Plant Power981,968kWePlant Capacity Factor85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Plant Capacity Factor85.0Net Plant Efficiency (HHV)156.5%Net Plant Efficiency (LHV)162.6%
Net Plant Efficiency (HHV) ¹ 56.5% Net Plant Efficiency (LHV) ¹ 62.6%
Net Plant Efficiency (LHV) ¹ 62.6%
Net Plant Heat Rate $(HHV)^1$ 6 368 (6 036) k l/kWb (Btu/kWb)
Net Plant Heat Rate (LHV) ¹ 5,748 (5,448) kJ/kWh (Btu/kWh)
Natural Gas Feed Flow 119,531 (263,520) kg/hr (lb/hr)
Thermal Input (HHV) ¹ 1,736,982 kW _t
Thermal Input (LHV) ¹ 1,567,848 kW _t
Condenser Duty 1,614 (1,530) GJ/hr (MMBtu/hr)
Condenser Duty 1,614 (1,530) GJ/hr (MMBtu/hr) Raw Water Withdrawal 12.5 (3,309) m ³ /min (gpm) Raw Water Consumption 10.5 (2,744) m ³ /min (gpm)

Exhibit 5-3 Case 3a – "J" frame turbine without CO₂ capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb)² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total						
	Energy l	In, GJ/hr (MMBtu/hr)								
Natural Gas	6,253 (5,927)	4.2 (4.0)	0 (0)	6,257 (5,931)						
GT Air	0 (0)	133.6 (126.6)	0 (0)	134 (127)						
Raw Water Withdrawal	0 (0)	47.4 (45.0)	0 (0)	47 (45)						
Auxiliary Power	0 (0)	0.0 (0.0)	81 (76)	81 (76)						
TOTAL	6,253 (5,927)	184.8 (175.2)	81 (76)	6,519 (6,178)						
Energy Out, GJ/hr (MMBtu/hr)										
Cooling Tower Blowdown	0 (0)	20.9 (19.8)	0 (0)	21 (20)						
Stack Gas	0 (0)	1,104 (1,047)	0 (0)	1,104 (1,047)						
Condenser	0 (0)	1,609 (1,525)	0 (0)	1,609 (1,525)						
Process Losses*	0 (0)	169 (160)	0 (0)	169 (160)						
Power	0 (0)	0.0 (0.0)	3,616 (3,427)	3,616 (3,427)						
TOTAL	0 (0)	2,903 (2,751)	3,616 (3,427)	6,519 (6,178)						

Exhibit 5-4 Case 3a – "J" frame turbine without CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 5-5 Case 3a – "J" frame turbine without CO₂ capture water balance

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.1 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.00 (0)	0.00 (0)
Cooling Tower	12.52 (3,309)	0.06 (15)	12.47 (3,294)	2.1 (565)	10.3 (2,729)
BFW Blowdown	0.00 (0)	0.1 (15)	-0.06 (-15)	0.00 (0)	0.00 (0)
Flue Gas Condensate	0.00 (0)	0.0 (0)	0.00 (0)	0.00 (0)	0.00 (0)
Total	12.6 (3,323)	0.06 (15)	12.5 (3,309)	2.1 (565)	10.4 (2,744)

Exhibit 5-6 Case 3a – "J" frame turbine without CO₂ capture carbon balance

Carbon In,	kg/hr (lb/hr)	Carbon Out, kg	/hr (lb/hr)
Natural Gas	86,336 (190,337)	Stack Gas	86,884 (191,547)
Air (CO ₂)	587 (1,293)		
		Convergence Tolerance*	38 (84)
Total	86,922 (191,631)	Total	86,922 (191,631)
*b. , diffe ve			

*by difference

	Kg/GJ (Ib/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)		
SO ₂	negligible	negligible	negligible		
NO _x	0.004 (0.009)	181 (200)	0.024 (0.053)		
Particulates	negligible	negligible negligible			
Hg	negligible	negligible	negligible		
CO ₂	50.9 (118.5)	(118.5) 2,370,471 (2,612,997) 317 (699)			
			324 (715)		

Emissions are estimated based on user input specifications to models.

Exhibit 5-7 Case 3a – "J" frame turbine without CO₂ capture air emissions

¹ CO₂ emissions based on net power instead of gross power

5.1.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the Mitsubishi Heavy Industries (MHI) "J" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 5-8. The summary and detailed capital cost estimates are shown in Exhibit 5-9 and Exhibit 5-10, respectively. The annual operating cost estimates are shown in Exhibit 5-11.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	3a
Total Plant Cost (2011\$/kW)	558
Total Overnight Cost (2011\$/kW)	684
Total As-spent Capital (2011\$/kW)	735
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	9.64
Fixed O&M	2.67
Variable O&M	1.42
Fuel	37.00
CO ₂ T&S total	0.00
COE ¹ Total	50.73
LCOE ¹ , total (including T&S)	64.30

Exhibit 5-8 Case 3a - "J" frame turbine without CO_2 capture cost estimation summary

¹ Capacity factor assumed to be 85 percent

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp			,							
	_		-	L PLAN	I COSI	SOMM	ARY					
	Case: Plant Size:	Case 3a - J-f	rame MW,net	Ectin	ato Typo:	Conceptual		Cost P	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	· ,	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$30,078	\$7,032	\$10,143	\$0	\$0	\$47,254	\$3,875	\$0	\$8,211	\$59,340	\$60
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$152,231 \$0 \$152,231	\$0 \$1,126 \$1,126	\$8,078 \$1,218 \$9,296	\$0 \$0 \$0	\$0 \$0 \$0	\$160,309 \$2,344 \$162,653	\$13,240 \$196 \$13,437	\$0 \$0 \$0	\$17,355 \$508 \$17,863	\$3,049	\$194 \$3 \$198
7	HRSG. DUCTING & STACK	\$152,231	φ1,120	\$9,290	φU	φU	\$102,055	\$13,43 <i>1</i>	φU	\$17,00 3	\$193,952	\$190
7.1	Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$43,206 \$2,789 \$45,994	\$0 \$1,785 \$1,785	\$7,600 \$2,209 \$9,809	\$0 \$0 \$0	\$0 \$0 \$0	\$50,805 \$6,783 \$57,588	\$4,219 \$567 \$4,786	\$0 \$0 \$0	\$5,502 \$1,167 \$6,669	\$8,517	\$62 \$9 \$70
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$46,376 \$16,006 \$62,382	\$0 \$1,261 \$1,261	\$6,565 \$9,464 \$16,029	\$0 \$0 \$0	\$0 \$0 \$0	\$52,941 \$26,731 \$79,672	\$4,171 \$1,973 \$6,144	\$0 \$0 \$0	\$5,711 \$4,160 \$9,871		\$64 \$33 \$97
9	COOLING WATER SYSTEM	\$5,891	\$6,466	\$5,992	\$0	\$0	\$18,349	\$1,475	\$0	\$2,902	\$22,726	\$23
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$24,508	\$7,107	\$15,771	\$0	\$0	\$47,385	\$3,586	\$0	\$5,485	\$56,455	\$57
12	INSTRUMENTATION & CONTROL	\$8,590	\$972	\$7,283	\$0	\$0	\$16,845	\$1,382	\$0	\$2,092	\$20,320	\$21
13	IMPROVEMENTS TO SITE	\$2,515	\$1,366	\$7,120	\$0	\$0	\$11,001	\$975	\$0	\$2,395	\$14,370	\$15
14	BUILDINGS & STRUCTURES	\$0	\$6,305	\$6,724	\$0	\$0	\$13,029	\$1,037	\$0	\$2,110	\$16,176	\$16
	TOTAL COST	\$332,189	\$33,421	\$88,165	\$0	\$0	\$453,775	\$36,697	\$0	\$57,598	\$548,069	\$558

Exhibit 5-9 Case 3a – "J" frame turbine without CO₂ capture capital cost estimate summary

2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	Project: Case: Plant Size: Item/Description DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS edwater System	Costing Supp Case 3a - J-fi 982.0 Equipment Cost \$0 \$0	ΤΟΤΑ	L PLAN Estim Lab	T COST		Bare Erected	Eng'g CM		2011	(\$×1000)	I COST
No. 1 CO/ 2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	Plant Size: Item/Description DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	982.0 Equipment Cost \$0	rame MW,net Material Cost	Estim Lab Direct	ate Type:	Conceptual Sales	Bare Erected	Eng'g CM	Contin	-	. ,	I COST
No. 1 CO/ 2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	Plant Size: Item/Description DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	982.0 Equipment Cost \$0	MW,net Material Cost	Lab Direct	or	Sales		Eng'g CM	Contin	-	. ,	COST
No. 1 CO/ 2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	Item/Description DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	Equipment Cost \$0	Material Cost	Lab Direct	or	Sales		Eng'g CM	Contin	-	. ,	LCOST
No. 1 CO/ 2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	Cost \$0	Cost	Direct						gencies	TOTAL PLANT	COST
1 CO/ 2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	DAL & SORBENT HANDLING SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	\$0			Cost Direct Indirect							
2 CO/ 3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	SUBTOTAL 1. DAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS		\$0			Tux	Cost	H.O.& Fee	Process	Project	\$	\$/kW
3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	OAL & SORBENT PREP & FEED SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS		\$0									
3 FEE 3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	SUBTOTAL 2. EDWATER & MISC. BOP SYSTEMS	\$0		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	EDWATER & MISC. BOP SYSTEMS	\$0										
3.1 Fee 3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3.2 Wat 3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	edwater System											
3.3 Othe 3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was		\$3,776	\$3,910	\$3,193	\$0	\$0	\$10,880	\$876	\$0	\$1,763	\$13,519	\$14
3.4 Sen 3.5 Othe 3.6 Natu 3.7 Was	ater Makeup & Pretreating	\$2,269	\$234	\$1,164	\$0	\$0	\$3,668	\$303	\$0	\$794	\$4,764	\$5
3.5 Othe 3.6 Natu 3.7 Was	ner Feedwater Subsystems	\$1,769	\$585	\$488	\$0	\$0	\$2,842	\$220	\$0	\$459	\$3,521	\$4
3.6 Natu 3.7 Was	rvice Water Systems	\$274	\$546	\$1,760	\$0	\$0	\$2,580	\$219	\$0	\$560	\$3,360	\$3
3.7 Was	ner Boiler Plant Systems	\$1,846	\$690	\$1,586	\$0	\$0	\$4,122	\$336	\$0	\$669	\$5,126	\$5
	tural Gas, incl. pipeline	\$17,819	\$862	\$746	\$0	\$0	\$19,428	\$1,602	\$0	\$3,155	\$24,185	\$25
	aste Treatment Equipment	\$792	\$0	\$459	\$0	\$0	\$1,251	\$108	\$0	\$272	\$1,631	\$2
3.8 Mise	sc. Equip.(cranes,AirComp.,Comm.)	\$1,533	\$205	\$745	\$0	\$0	\$2,483	\$212	\$0	\$539	\$3,234	\$3
	SUBTOTAL 3.	\$30,078	\$7,032	\$10,143	\$0	\$0	\$47,254	\$3,875	\$0	\$8,211	\$59,340	\$60
4 GAS	SIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A GAS	S CLEANUP & PIPING											
5A.6 Exh	haust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B CO2	2 REMOVAL & COMPRESSION		,-		,-					+-	, , , , , , , , , , , , , , , , , , ,	,
	02 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	D2 Compression & Drying	\$0	\$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$0 \$0	\$0	\$0	\$0	\$0
02.2 00.	SUBTOTAL 5.	\$0	\$0	\$0	\$0 \$0	\$0	\$0 \$0	\$0	\$0	\$0		\$0
6 COI	MBUSTION TURBINE/ACCESSORIES		<i>*•</i>	* •		••	֥			45	, , , , , , , , , , , , , , , , , , ,	
	mbustion Turbine Generator	\$152,231	\$0	\$8,078	\$0	\$0	\$160,309	\$13,240	\$0	\$17,355	\$190,904	\$194
	mbustion Turbine Accessories	\$0	\$0 \$0	\$0	\$0 \$0	\$0	¢100,000 \$0	\$0 \$0	\$0	\$0 \$0	\$0	\$0
	impressed Air Piping	\$0 \$0	\$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$0 \$0	\$0
	mbustion Turbine Foundations	\$0 \$0	\$1,126	\$1,218	\$0 \$0	\$0 \$0	\$2,344	\$196	\$0 \$0	\$508	+ -	\$3
0.0 001		\$152,231	\$1,126	\$9,296	\$0 \$0	\$0	\$162,653	\$13,437	\$0 \$0	\$17,863	\$193,952	\$198

Exhibit 5-10 Case 3a – "J" frame turbine without CO₂ capture capital cost estimate detail

		USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 3a - J-f	-			001111	/					
	Plant Size:		MW.net	Ectim	ato Typo:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
	Fiant Size.		,								(,,	
Acct		Equipment	Material	Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$43,206	\$0	\$7,600	\$0	\$0	\$50,805	\$4,219	\$0	\$5,502	4 , -	\$62
=	HRSG Accessories	\$2,789	\$1,171	\$1,633	\$0	\$0	\$5,593	\$468	\$0	\$909	1 - 7 -	\$7
-	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	• -	\$0	\$0	4 -	
	Stack	\$0	\$0	\$0	\$0	\$0	\$0		\$0	\$0		
7.9	HRSG,Duct & Stack Foundations	\$0	\$614	\$576	\$0	\$0	\$1,189		\$0	\$258		\$2
	SUBTOTAL 7.	\$45,994	\$1,785	\$9,809	\$0	\$0	\$57,588	\$4,786	\$0	\$6,669	\$69,044	\$70
-	STEAM TURBINE GENERATOR											
.	Steam TG & Accessories	\$46,376	\$0	\$6,565	\$0	\$0	\$52,941	\$4,171	\$0	\$5,711	\$62,823	\$64
-	Turbine Plant Auxiliaries	\$268	\$0	\$609	\$0	\$0	\$877	\$75	\$0	\$95	+)-	\$1
	Condenser & Auxiliaries	\$3,388	\$0	\$1,767	\$0	\$0	\$5,155	\$433	\$0	\$559		
	Steam Piping	\$12,350	\$0	\$5,006	\$0	\$0	\$17,356	. ,	\$0	\$2,781		
8.9	TG Foundations	\$0	\$1,261	\$2,082	\$0	\$0	\$3,343		\$0	\$725		
	SUBTOTAL 8.	\$62,382	\$1,261	\$16,029	\$0	\$0	\$79,672	\$6,144	\$0	\$9,871	\$95,686	\$97
-	COOLING WATER SYSTEM											
	Cooling Towers	\$3,455	\$0	\$1,055	\$0	\$0	\$4,511	\$376	\$0	\$489	<i>t</i> - <i>j</i>	• -
	Circulating Water Pumps	\$1,676	\$0	\$105	\$0	\$0	\$1,781	\$136	\$0	\$192	2 \$2,109	
	Circ.Water System Auxiliaries	\$137	\$0	\$18	\$0	\$0	\$155	\$13	\$0	\$17		• -
	Circ.Water Piping	\$0	\$4,256	\$964	\$0	\$0	\$5,220		\$0	\$842		
	Make-up Water System	\$348	\$0	\$448	\$0	\$0	\$796		\$0	\$129		\$1
	Component Cooling Water Sys	\$274	\$288	\$210	\$0	\$0	\$772	\$62	\$0	\$125		
9.9	Circ.Water System Foundations	\$0	\$1,922	\$3,192	\$0	\$0	\$5,114		\$0	\$1,109		
	SUBTOTAL 9.	\$5,891	\$6,466	\$5,992	\$0	\$0	\$18,349	\$1,475	\$0	\$2,902	\$22,726	\$23
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$6,929	\$0	\$4,099	\$0	\$0	\$11,028		\$0	\$895	\$12,829	
11.2	Station Service Equipment	\$2,160	\$0	\$186	\$0	\$0	\$2,346	\$193	\$0	\$190	\$2,729	\$3
11.3	Switchgear & Motor Control	\$2,658	\$0	\$462	\$0	\$0	\$3,120	\$258	\$0	\$338	\$3,716	\$4
11.4	Conduit & Cable Tray	\$0	\$1,389	\$4,002	\$0	\$0	\$5,391	\$449	\$0	\$876	\$6,716	\$7
11.5	Wire & Cable	\$0	\$4,464	\$2,538	\$0	\$0	\$7,002	\$421	\$0	\$1,113	\$8,536	
11.6	Protective Equipment	\$0	\$1,029	\$3,572	\$0	\$0	\$4,601	\$396	\$0	\$500	\$5,497	\$6
11.7	Standby Equipment	\$159	\$0	\$148	\$0	\$0	\$307	\$26	\$0	\$33	\$366	\$0
11.8	Main Power Transformers	\$12,601	\$0	\$192	\$0	\$0	\$12,794	\$869	\$0	\$1,366	\$\$15,029	\$15
11.9	Electrical Foundations	\$0	\$225	\$572	\$0	\$0	\$797	\$67	\$0	\$173	\$1,037	\$1
	SUBTOTAL 11.	\$24,508	\$7,107	\$15,771	\$0	\$0	\$47,385	\$3,586	\$0	\$5,485	\$56,455	\$57

Exhibit 5-10 Case 3a – "J" frame turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 3a - J-f	rame									
	Plant Size:	982.0	MW,net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,092	\$0	\$696	\$0	\$0	\$1,788	\$150	\$0	\$291	\$2,229	\$2
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$326	\$0	\$200	\$0	\$0	\$526	\$44	\$0	\$86	\$656	\$1
	Computer & Accessories	\$5,224	\$0	\$159	\$0	\$0	\$5,384	\$442	\$0	\$583	\$6,408	\$7
12.8	Instrument Wiring & Tubing	\$0	\$972	\$1,720	\$0	\$0	\$2,692	\$193	\$0	\$433	\$3,318	\$3
12.9	Other I & C Equipment	\$1,948	\$0	\$4,509	\$0	\$0	\$6,457	\$553		\$701	\$7,710	\$8
	SUBTOTAL 12.	\$8,590	\$972	\$7,283	\$0	\$0	\$16,845	\$1,382	\$0	\$2,092	\$20,320	\$21
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$134	\$2,854	\$0	\$0	\$2,989	\$261	\$0	\$650	\$3,900	\$4
13.2	Site Improvements	\$0	\$1,232	\$1,627	\$0	\$0	\$2,859	\$254	\$0	\$623	\$3,736	\$4
13.3	Site Facilities	\$2,515	\$0	\$2,638	\$0	\$0	\$5,153	\$459	\$0	\$1,123	\$6,735	\$7
	SUBTOTAL 13.	\$2,515	\$1,366	\$7,120	\$0	\$0	\$11,001	\$975	\$0	\$2,395	\$14,370	\$15
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$396	\$209	\$0	\$0	\$605	\$47	\$0	\$98	\$749	\$1
14.2	Steam Turbine Building	\$0	\$3,077	\$4,094	\$0	\$0	\$7,172	\$577	\$0	\$1,162	\$8,911	\$9
14.3	Administration Building	\$0	\$653	\$442	\$0	\$0	\$1,095	\$85	\$0	\$177	\$1,357	\$1
14.4	Circulation Water Pumphouse	\$0	\$228	\$113	\$0	\$0	\$340	\$26	\$0	\$55	\$421	\$0
14.5	Water Treatment Buildings	\$0	\$481	\$439	\$0	\$0	\$920	\$73	\$0	\$149	\$1,142	\$1
14.6	Machine Shop	\$0	\$566	\$362	\$0	\$0	\$928	\$72	\$0	\$150	\$1,150	\$1
14.7	Warehouse	\$0	\$366	\$221	\$0	\$0	\$586	\$45		\$95	\$726	\$1
14.8	Other Buildings & Structures	\$0	\$110	\$80	\$0	\$0	\$189	\$15	\$0	\$31	\$235	\$C
14.9	Waste Treating Building & Str.	\$0	\$428	\$765	\$0	\$0	\$1,193	\$97	\$0	\$194	\$1,484	\$2
	SUBTOTAL 14.	\$0	\$6,305	\$6,724	\$0	\$0	\$13,029	\$1,037	\$0	\$2,110	\$16,176	\$16
	TOTAL COST	\$332,189	\$33,421	\$88,165	\$0	\$0	\$453,775	\$36,697	\$0	\$57,598	\$548,069	\$558

Exhibit 5-10 Case 3a – "J" frame turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 3a - J-f	rame								
	Plant Size:	982.0	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLANT	COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$332,189	\$33,421	\$88,165	\$0	\$453,775	\$36,697	\$0	\$57,598	\$548,069	\$558
	• • • • •										
	Owner's Costs										
	Preproduction Costs 6 Months All Labor									\$4,263	¢ /
	1 Month Maintenance Materials									\$4,263 \$671	\$4 \$1
	1 Month Non-fuel Consumables									\$347	\$C
	1 Month Waste Disposal									\$0 \$0	\$0 \$0
	25% of 1 Months Fuel Cost at 100% CF									\$6,631	\$7
	2% of TPC									\$10,961	\$11
	Total									\$22,873	\$23
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$452	\$0
	0.5% of TPC (spare parts)									\$2,740	\$3
	Total									\$3,192	\$3
	Initial Cost for Catalyst and Chemicals									\$0	\$0
	Land									\$300	\$0 \$0
	Other Owner's Costs									\$82,210	\$84
	Financing Costs									\$14,798	\$15
	Total Overnight Costs (TOC)									\$671,444	\$684
	TASC Multiplier							(IOU low-ri	isk, 33 year)	1.075	400
	Total As-Spent Cost (TASC)							1.00,100 11		\$721,802	\$735

Exhibit 5-10 Case 3a – "J" frame turbine without CO₂ capture capital cost estimate detail (continued)

	NNUAL 0&	M EXPENS	ES	(2011	
Case 3a - J-frame				Heat Rate	e-net (Btu/kWh):	6,036
					MWe-net:	982
				Сара	acity Factor (%):	85
<u>OPERATING & M</u> Operating Labor	AINTENANCE	LABOR				
Operating Labor Rate(base):	39.70	\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:		% of labor				
	20100		Total			
Skilled Operator	1.0		1.0			
Skilled Operator Operator	1.0 2.0		2.0			
Foreman	2.0 1.0		2.0 1.0			
Lab Tech's, etc.	1.0 <u>1.0</u>		1.0 <u>1.0</u>			
TOTAL-O.J.'s	<u>1.0</u> 5.0		<u>1.0</u> 5.0			
101AL-0.3.3	0.0		5.0		Annual Cost	Annual Unit Cost
					<u>Annual Cost</u> \$	<u>\$/kW-net</u>
Annual Operating Labor Cost					$\frac{\Psi}{2,260,518}$	\$2.302
Maintenance Labor Cost					\$4,560,499	\$4.644
Administrative & Support Labor					\$1,705,254	\$1.737
Property Taxes and Insurance					\$10,961,389	\$11.163
TOTAL FIXED OPERATING COST	rs				\$19,487,660	\$19.846
VARIABLE OPERATING COSTS	_				, , , , , , , , , , , , , , , , , , , ,	,
						\$/kWh-net
Maintenance Material Cost					\$6,840,748	\$0.00094
Consumables	Consun	notion	Unit	Initial Fill		
<u></u>	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	2,382.48	1.67	<u> </u>	\$1,237,357	\$0.00017
	0.00	2,002.40	1.07	ψŪ	ψ1,201,001	φ 0.000 17
	0.00	4440440	0.07	¢ 0	¢4 470 400	¢0.00040
MU & WT Chem.(lbs)	0.00	14,194.13	0.27	\$0 ©0	\$1,179,490	\$0.00016
MEA Solvent (ton)	0.00	0.00	3,481.91	\$0 ©0	\$0 \$0	\$0.00000
Activated Carbon (lb)	0.00	0.00	1.63	\$0 \$0	\$0 \$0	\$0.00000
Corrosion Inhibitor	0.00	0.00 0.10	0.00	\$0 \$0	\$0 \$274.251	\$0.00000 \$0.00004
SCR Catalyst (m3)	w/equip. 0.00		8,938.80	\$0 \$0	\$274,351	
Ammonia (19% NH3) (ton) Subtotal Chemicals	0.00	8.32	330.00	\$0 \$0	\$851,844 \$2,305,686	\$0.00012 \$0.00032
				40	φ 2 ,303,000	φ0.0003z
Other				•••		
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0 \$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0 ©0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0 \$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING O	COSTS			\$0	\$10,383,791	\$0.00142
Fuel (MMBtu)	0	142,252	6.13	\$0	\$270,539,092	\$0.03698

Exhibit 5-11 Case 3a - "J" frame turbine without CO_2 capture operating cost estimate

5.2 Case 3b – NGCC with CO₂ Capture Modeling Results

The block flow diagram of the combined cycle with CO_2 capture is shown in Exhibit 5-12. This case also uses the same "J" frame gas turbine model as that of Case 3a with the addition of CO_2 capture at the back end. Exhibit 5-13 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4).

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,620°C (2,949°F). The flue gas exits the turbine at 636°C (1,177°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 110°C (231°F) and passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance is not impacted due to the CO_2 capture addition. However, the Rankine cycle performance and the overall plant output and efficiency are reduced due to heat integration requirements and increased auxiliary loads for the CO_2 capture process.

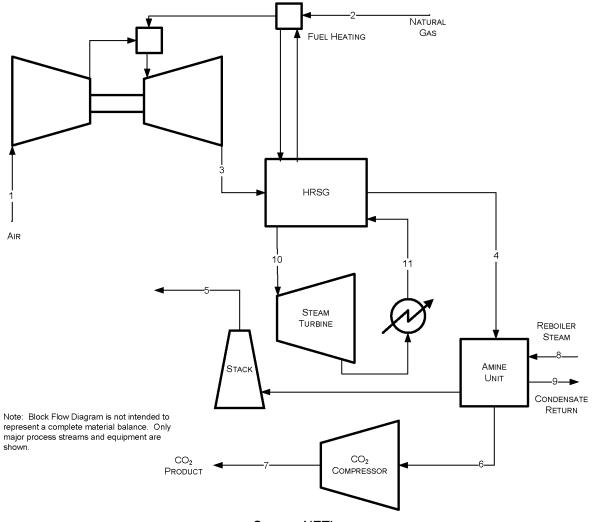


Exhibit 5-12 Case 3b – "J" frame turbine with CO₂ capture block flow diagram

Source: NETL

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0092	0.0000	0.0089	0.0089	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C_4H_{10}	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0462	0.0051	0.9674	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.0981	0.0555	0.0326	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7386	0.8108	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1083	0.1189	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0001	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
										1	
V-L Flowrate (kg _{mol} /hr)	149,503	6,898	156,222	156,608	142,821	6,731	6,512	19,035	17,887	31,498	21,781
V-L Flowrate (kg/hr)	4,314,208			4,433,575		290,499	286,580	342,916	342,916	567,444	392,394
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
- (0.0)											
Temperature (°C)	15	25	636	110	35	35	38	152	151	593	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	0.10	0.17	15.27	0.51	0.49	16.65	0.00
Enthalpy (kJ/kg) ^A	30.96	52,504.80	868.99	273.31	112.50	91.58	-164.90	2,746.79	635.72	3,547.62	2,383.68
Density (kg/m ³)	1.2	22.2	0.4	0.8	0.9	2.9	653.5	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.310	28.100	43.160	44.010	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	329,598	15,208	344,410	345,262	314,865	14,839	14,356	41,964	39,435	69,441	48,019
V-L Flowrate (lb/hr)	9,511,200	263,520	9,774,720	9,774,360	8.847.720	640,440	631,800	756,000	756,000	1,251,000	865,080
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	77	1,177	231	95	95	101	306	304	1,100	90
Pressure (psia)	14.6	600.0	15.2	14.7	14.7	25.0	2,214.7	73.5	71.0	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.3	22,573.0	373.6	117.5	48.4	39.4	-70.9	1,180.9	273.3	1,525.2	1,024.8
Density (lb/ft ³)	0.076	1.384	0.025	0.052	0.056	0.183	40.800	0.169	57.172	2.977	61.982

Exhibit 5-13 Case 3b – "J" frame turbine with CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water

Note: Total flow rates shown equal the sum for all process trains

5.2.1 Performance Results

The performance results are summarized in Exhibit 5-14 and when compared with Case 3a show that adding carbon capture reduces the efficiency by approximately 7 percentage points (similar results as determined for Case 1). This is based on using an assumed advanced solvent process that has a lower steam requirement for the reboiler of 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) or 17 percent lower when compared with previous NETL/DOE system studies (i.e., 3,560 kJ/kg CO_2 (1,530 Btu/lb CO_2)). Additional tables below provide overall energy balance (Exhibit 5-15), water balance (Exhibit 5-16), carbon balance (Exhibit 5-17), and an emissions summary (Exhibit 5-18).

Plant Output						
Gas Turbine Power	689,832	kW _e				
Steam Turbine Power	252,117	kW _e				
Total	941,949	kW _e				
Auxilia	ry Load					
Condensate Pumps	7	kW _e				
Boiler Feedwater Pumps	6,790	kW _e				
Amine CO ₂ Capture System Auxiliaries	19,206	kW _e				
CO ₂ Compression	26,921	kW _e				
Circulating Water Pump	5,290	kW _e				
Ground Water Pumps	440	kW _e				
Cooling Tower Fans	3,539	kW _e				
SCR	10	kW _e				
Gas Turbine Auxiliaries	1,097	kW _e				
Steam Turbine Auxiliaries	538	kW _e				
Miscellaneous Balance of Plant ²	3,106	kW _e				
Transformer Losses	4,710	kW _e				
Total	71,654	kW _e				
Plant Per	formance					
Net Plant Power	870,294	kW _e				
Plant Capacity Factor	85.0					
Net Plant Efficiency (HHV) ¹	50.1%					
Net Plant Efficiency (LHV) ¹	55.5%					
Net Plant Heat Rate (HHV) ¹	7,185 (6,810)	kJ/kWh (Btu/kWh)				
Net Plant Heat Rate (LHV) ¹	6,485 (6,417)	kJ/kWh (Btu/kWh)				
Natural Gas Feed Flow	119,531 (263,520)	kg/hr (lb/hr)				
Thermal Input (HHV) ¹	1,736,982	kWt				
Thermal Input (LHV) ¹	1,567,848	kWt				
Condenser Duty	886 (840)	GJ/hr (MMBtu/hr)				
Raw Water Withdrawal	18.5 (4,876)	m ³ /min (gpm)				
Raw Water Consumption	15.0 (3,967)	m³/min (gpm)				

Exhibit 5-14 Case 3b – "J" frame turbine with CO_2 capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total
	Energy	n, GJ/hr (MMBtu/hr)		
Natural Gas	6,253 (5,927)	4.2 (4.0)	0 (0)	6,257 (5,931)
GT Air	0 (0)	133.6 (126.6)	0 (0)	134 (127)
Raw Water Withdrawal	0 (0)	69.4 (65.8)	0 (0)	69 (66)
Auxiliary Power	0 (0)	0.0 (0.0)	258 (244)	258 (244)
TOTAL	6,253 (5,927)	207.2 (196.3)	258 (244)	6,718 (6,368)
	Energy C	out, GJ/hr (MMBtu/hr)	
Cooling Tower Blowdown	0 (0)	34.5 (32.7)	0 (0)	34 (33)
Stack Gas	0 (0)	451 (428)	0 (0)	451 (428)
Condenser	0 (0)	883 (837)	0 (0)	883 (837)
CO ₂ Product	0 (0)	-47.3 (-44.8)	0 (0)	-47 (-45)
CO ₂ Intercoolers	0 (0)	133.2 (126.2)	0 (0)	133 (126)
Amine System Losses	0 (0)	1,111.3 (1,053.3)	0 (0)	1,111 (1,053)
Process Losses*	0 (0)	761 (722)	0 (0)	761 (722)
Power	0 (0)	0.0 (0.0)	3,391 (3,214)	3,391 (3,214)
TOTAL	0 (0)	3,327 (3,154)	3,391 (3,214)	6,718 (6,368)

Exhibit 5-15 Case 3b – "J" frame turbine with CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 5-16	Case 3b – "J" fr	ame turbine with	CO ₂ capture water	balance
--------------	------------------	------------------	-------------------------------	---------

Water Use	Water Demand, m³/min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.07 (19)	0.00 (0)	0.07 (19)	0.0 (0)	0.07 (19)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.1 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	20.62 (5,447)	2.3 (605)	18.33 (4,842)	3.4 (909)	14.9 (3,934)
BFW Blowdown	0.00 (0)	0.1 (15)	-0.06 (-15)	0.00 (0)	0.00 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	2.2 (590)	-2.23 (-590)	0.00 (0)	0.00 (0)
Total	20.7 (5,481)	2.29 (605)	18.5 (4,876)	3.4 (909)	15 (3,967)

g/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)			
86,336 (190,337)	Stack Gas	8,700 (19,180)		
587 (1,293)	CO ₂ Product	78,212 (172,429)		
	Convergence Tolerance*	10 (23)		
Total 86,922 (191,631)		86,922 (191,631)		
	587 (1,293)	86,336 (190,337) Stack Gas 587 (1,293) CO ₂ Product Convergence Tolerance*		

Exhibit 5-17 Case 3b – "J" frame turbine with CO₂ capture carbon balance

*by difference

Emissions are estimated based on user input specifications to models.

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.003 (0.007)	134 (148)	0.019 (0.042)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.9)	237,355 (261,639)	34 (75)
			37 (81)

¹ CO₂ emissions based on net power instead of gross power

5.2.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the MHI "J" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 5-19. The summary and detailed capital cost estimates are shown in Exhibit 5-20 and Exhibit 5-21, respectively. The annual operating cost estimates are shown in Exhibit 5-22.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	3b			
Total Plant Cost (2011\$/kW)	1,101			
Total Overnight Cost (2011\$/kW)	1,343			
Total As-spent Capital (2011\$/kW)	1,448			
COE ¹ Component Details (mills/kWh or \$/MWh)				
Capital	20.03			
Fixed O&M	4.86			
Variable O&M	2.54			
Fuel	41.75			
CO ₂ T&S total	3.29			
COE ¹ Total	72.47			
LCOE ¹ , total (including T&S)	91.86			
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	75.60 (68.58)			
$Cost^{1,2}$ of CO_2 captured, \$/tonne of CO_2 (\$/ton of CO_2)	56.02 (50.82)			

Exhibit 5-19 Case 3b -	- ".I" frame turbine with	CO, canture cost	estimation summary
	- J manie turbine with	1 CO ₂ capture cost	estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 3a – "J" frame without capture

	Client:	USDOE/NET	_							Report Date:	2011-Dec-15	
	Project:	Costing Supp										
				L PLAN	T COST	SUMM	ARY					
	Case: Plant Size:	Case 3b - J-f		Fatim		Concentual			- /· `	2011	(\$):(1000)	
Acat	Plant Size:		MW,net Material	Lab		Conceptual Sales	Bare Erected	-	Base (Jun)	ngencies	(\$x1000)	TCOST
Acct No.	Item/Description	Equipment Cost	Cost	Direct	or Indirect	Tax	Cost	Eng'g CM H.O.& Fee		Project	S	\$/kW
-	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0				\$0		\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$31,795	\$7,505	\$11,741	\$0	\$0	\$51,041	\$4,190	\$0	\$8,959	\$64,191	\$74
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION	\$197,138	\$0	\$62,174	\$0	\$0	\$259,311	\$21,646	\$44,417	\$65,075	\$390,450	\$449
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$152,231 \$0 \$152,231	\$0 \$1,126 \$1,126	\$8,078 \$1,218 \$9,296	\$0 \$0 \$0	\$0 \$0 \$0		\$196	\$0 \$0 \$0	\$17,355 \$508 \$17,863	\$3,049	\$219 \$4 \$223
7.1	HRSG, DUCTING & STACK Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$42,011 \$2,803 \$44,814	\$0 \$1,756 \$1,756	\$7,391 \$2,185 \$9,576	\$0 \$0 \$0	\$0 \$0 \$0	\$49,401 \$6,744	\$4,102 \$564	\$0	\$5,350 \$1,157 \$6,507		\$68 \$10 \$77
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$38,879 \$14,820 \$53,699	\$0 \$1,073 \$1,073	\$6,326 \$8,642 \$14,968	\$0 \$0 \$0	\$0 \$0 \$0	. ,	\$1,788	\$0	\$4,877 \$3,872 \$8,749	. ,	\$62 \$35 \$96
9	COOLING WATER SYSTEM	\$8,257	\$8,693	\$8,112	\$0	\$0	\$25,062	\$2,016	\$0	\$3,942	\$31,020	\$36
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$30,828	\$10,129	\$20,861	\$0	\$0	\$61,818	\$4,675	\$0	\$7,241	\$73,734	\$85
12	INSTRUMENTATION & CONTROL	\$9,450	\$1,069	\$8,012	\$0	\$0	\$18,531	\$1,521	\$927	\$2,408	\$23,386	\$27
13	IMPROVEMENTS TO SITE	\$2,578	\$1,400	\$7,299	\$0	\$0	\$11,277	\$999	\$0	\$2,455	\$14,732	\$17
14	BUILDINGS & STRUCTURES	\$0	\$6,132	\$6,407	\$0	\$0	\$12,539	\$997	\$0	\$2,030	\$15,566	\$18
	TOTAL COST	\$530,789	\$38,884	\$158,445	\$0	\$0	\$728,117	\$59,503	\$45,344	\$125,231	\$958,195	\$1,101

Exhibit 5-20 Case 3b – "J" frame turbine with CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	Ľ							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 3b - J-fi	rame CCS									
	Plant Size:	870.3	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	igencies	TOTAL PLAN	т соѕт
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING											
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
-	FEEDWATER & MISC. BOP SYSTEMS											
	Feedwater System	\$3,802	\$3,937	\$3,215	\$0	\$0	\$10,954	\$882	\$0	\$1,775	. ,	\$16
	Water Makeup & Pretreating	\$2,987	\$309	\$1,533	\$0	\$0	\$4,829	\$399	\$0	\$1,046	. ,	\$7
	Other Feedwater Subsystems	\$1,781	\$589	\$492	\$0	\$0	\$2,862	\$221	\$0	\$462	. ,	\$4
	Service Water Systems	\$361	\$719	\$2,318	\$0	\$0	\$3,398	\$289	\$0	\$737	. ,	\$5
3.5	Other Boiler Plant Systems	\$2,431	\$908	\$2,089	\$0	\$0	\$5,428	\$442	\$0	\$880	\$6,750	\$8
3.6	Natural Gas, incl. pipeline	\$17,803	\$831	\$719	\$0	\$0	\$19,352	\$1,596	\$0	\$3,142	\$24,090	\$28
3.7	Waste Treatment Equipment	\$1,043	\$0	\$604	\$0	\$0	\$1,647	\$142	\$0	\$358	\$2,147	\$2
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,588	\$212	\$771	\$0	\$0	\$2,571	\$220	\$0	\$558	\$3,349	\$4
	SUBTOTAL 3.	\$31,795	\$7,505	\$11,741	\$0	\$0	\$51,041	\$4,190	\$0	\$8,959	\$64,191	\$74
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5B	CO2 REMOVAL & COMPRESSION											
5B.1	CO2 Removal System	\$170,660	\$0	\$51,427	\$0	\$0	\$222,087	\$18,530	\$44,417	\$57,007	\$342,041	\$393
5B.2	CO2 Compression & Drying	\$26,477	\$0	\$10,747	\$0	\$0	\$37,224	\$3,116	\$0	\$8,068	\$48,409	\$56
1	SUBTOTAL 5.	\$197,138	\$0	\$62,174	\$0	\$0	\$259,311	\$21,646	\$44,417	\$65,075	\$390,450	\$449
6	COMBUSTION TURBINE/ACCESSORIES	. ,			• •	• -						
6.1	Combustion Turbine Generator	\$152,231	\$0	\$8,078	\$0	\$0	\$160,309	\$13,240	\$0	\$17,355	\$190,904	\$219
6.2	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	. ,	\$0
-	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0 \$0		\$0
	Combustion Turbine Foundations	\$0	\$1,126	\$1,218	\$0	\$0		\$196	\$0	\$508	, -	\$4
0.0	SUBTOTAL 6.	7 -	\$1,126	\$9,296	\$0	\$0		\$13,437	\$0	\$17,863	. ,	\$223

Exhibit 5-21 Case 3b – "J" frame turbine with CO₂ capture capital cost estimate detail

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			τοτα		T COST	SUMM	ΔRY					
	Case:	Case 3b - J-fi				001111	/					
	Plant Size:		MW.net	Eatim	oto Tunos	Conceptual		0	Da.a. (1	2011	(\$x1000)	
	Flant Size.		,		,,				Base (Jun)		(. ,	
Acct		Equipment	Material	Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$42,011	\$0	\$7,391	\$0	\$0	\$49,401	\$4,102	\$0	\$5,350		\$68
	HRSG Accessories	\$2,803	\$1,177	\$1,642	\$0	\$0	\$5,623	\$471	\$0	\$914	, ,	\$8
-	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0
	Stack	\$0	\$0	\$0	\$0	\$0	\$0	+ -	\$0	\$0	· -	\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$579	\$543	\$0	\$0	\$1,121	\$94	\$0	\$243	, ,	\$2
	SUBTOTAL 7.	\$44,814	\$1,756	\$9,576	\$0	\$0	\$56,146	\$4,667	\$0	\$6,507	\$67,319	\$77
-	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$38,879	\$0	\$6,326	\$0	\$0	\$45,205	\$3,568	\$0	\$4,877	\$53,651	\$62
8.2	Turbine Plant Auxiliaries	\$250	\$0	\$557	\$0	\$0	\$808	\$69	\$0	\$88		\$1
	Condenser & Auxiliaries	\$2,167	\$0	\$1,287	\$0	\$0	\$3,454	\$291	\$0	\$374	\$4,119	\$5
8.4	Steam Piping	\$12,402	\$0	\$5,027	\$0	\$0	\$17,429	\$1,188	\$0	\$2,792	\$21,409	\$25
8.9	TG Foundations	\$0	\$1,073	\$1,772	\$0	\$0	\$2,845	\$240	\$0	\$617	\$3,702	\$4
	SUBTOTAL 8.	\$53,699	\$1,073	\$14,968	\$0	\$0	\$69,739	\$5,356	\$0	\$8,749	\$83,844	\$96
9	COOLING WATER SYSTEM											
9.1	Cooling Towers	\$4,897	\$0	\$1,487	\$0	\$0	\$6,384	\$533	\$0	\$692	\$7,608	\$9
9.2	Circulating Water Pumps	\$2,370	\$0	\$155	\$0	\$0	\$2,525	\$192	\$0	\$272	\$2,989	\$3
9.3	Circ.Water System Auxiliaries	\$184	\$0	\$24	\$0	\$0	\$209	\$17	\$0	\$23	\$\$249	\$C
9.4	Circ.Water Piping	\$0	\$5,727	\$1,297	\$0	\$0	\$7,023	\$526	\$0	\$1,132	\$8,682	\$10
9.5	Make-up Water System	\$437	\$0	\$562	\$0	\$0	\$999	\$83	\$0	\$162	\$1,244	\$1
9.6	Component Cooling Water Sys	\$368	\$375	\$283	\$0	\$0	\$1,026	\$82	\$0	\$166	\$1,274	\$1
9.9	Circ.Water System Foundations	\$0	\$2,592	\$4,304	\$0	\$0	\$6,896	\$582	\$0	\$1,496	\$8,973	\$10
	SUBTOTAL 9.	\$8,257	\$8,693	\$8,112	\$0	\$0	\$25,062	\$2,016	\$0	\$3,942	\$31,020	\$36
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$9,344	\$0	\$5,527	\$0	\$0	\$14,871	\$1,221	\$0	\$1,207	\$17,299	\$20
11.2	Station Service Equipment	\$3,283	\$0	\$282	\$0	\$0	\$3,565	\$294	\$0	\$289		\$5
11.3	Switchgear & Motor Control	\$4,040	\$0	\$702	\$0	\$0	\$4,742	\$393	\$0	\$513	\$5,648	\$6
	Conduit & Cable Tray	\$0	\$2,111	\$6,082	\$0	\$0			\$0	\$1,331		\$12
	Wire & Cable	\$0	\$6,784	\$3,858	\$0	\$0			\$0	\$1,692		\$15
11.6	Protective Equipment	\$0	\$1,019	\$3,536	\$0	\$0	. ,			\$495	. ,	\$6
	Standby Equipment	\$154	\$0	\$144	\$0	\$0	\$298	\$25	\$0	\$32	. ,	\$0
	Main Power Transformers	\$14,007	\$0	\$183	\$0	\$0	\$14,190		\$0	\$1,515		\$19
-	Electrical Foundations	\$0	\$215	\$547	\$0	\$0	\$762	\$65	\$0	\$165		\$1
	SUBTOTAL 11.	\$30,828	\$10,129	\$20.861	\$0	\$0	\$61,818		\$0	\$7,241		\$85

Exhibit 5-21 Case 3b – "J" frame turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 3b - J-fi	rame CCS									
	Plant Size:	870.3	MW,net	Estin	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.4	Other Major Component Control	\$1,202	\$0	\$765	\$0	\$0	\$1,967	\$165	\$98	\$335	\$2,565	\$
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
12.6	Control Boards, Panels & Racks	\$359	\$0	\$220	\$0	\$0	\$579	\$49	\$29	\$98	\$754	\$
12.7	Computer & Accessories	\$5,747	\$0	\$175	\$0	\$0	\$5,922	\$486	\$296	\$670	\$7,375	\$
12.8	Instrument Wiring & Tubing	\$0	\$1,069	\$1,892	\$0	\$0	\$2,961	\$213	\$148	\$498	\$3,820	\$
12.9	Other I & C Equipment	\$2,142	\$0	\$4,960	\$0	\$0	\$7,103	\$608	\$355	\$807	\$8,872	\$1
	SUBTOTAL 12.	\$9,450	\$1,069	\$8,012	\$0	\$0	\$18,531	\$1,521	\$927	\$2,408	\$23,386	\$2
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$138	\$2,926	\$0	\$0	\$3,064	\$268	\$0	\$666	\$3,998	\$
13.2	Site Improvements	\$0	\$1,263	\$1,668	\$0	\$0	\$2,931	\$261	\$0	\$638	\$3,830	\$
13.3	Site Facilities	\$2,578	\$0	\$2,705	\$0	\$0	\$5,283	\$471	\$0	\$1,151	\$6,904	\$
	SUBTOTAL 13.	\$2,578	\$1,400	\$7,299	\$0	\$0	\$11,277	\$999	\$0	\$2,455	\$14,732	\$1
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$396	\$209	\$0	\$0	\$605	\$47	\$0	\$98	\$749	\$
14.2	Steam Turbine Building	\$0	\$2,695	\$3,586	\$0	\$0	\$6,281	\$505	\$0	\$1,018	\$7,804	\$
14.3	Administration Building	\$0	\$674	\$457	\$0	\$0	\$1,131	\$88	\$0	\$183	\$1,402	\$
14.4	Circulation Water Pumphouse	\$0	\$219	\$108	\$0	\$0	\$327	\$25	\$0	\$53	\$405	\$
	Water Treatment Buildings	\$0	\$630	\$574	\$0	\$0	\$1,204	\$95	\$0	\$195	\$1,494	\$
14.6	Machine Shop	\$0	\$585	\$374	\$0	\$0	\$959	\$74	\$0	\$155	\$1,188	\$
14.7	Warehouse	\$0	\$378	\$228	\$0	\$0	\$605	\$47	\$0	\$98	\$750	\$
14.8	Other Buildings & Structures	\$0	\$113	\$82	\$0	\$0	\$195	\$15	\$0	\$32	\$242	\$
14.9	Waste Treating Building & Str.	\$0	\$442	\$790	\$0	\$0	\$1,232	\$100	\$0	\$200	\$1,533	\$
	SUBTOTAL 14.	\$0	\$6,132	\$6,407	\$0	\$0	\$12,539	\$997	\$0	\$2,030	\$15,566	\$1
	TOTAL COST	\$530,789	\$38,884	\$158,445	\$0	\$0	\$728,117	\$59,503	\$45,344	\$125,231	\$958,195	\$1,10

Exhibit 5-21 Case 3b – "J" frame turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	Ľ						Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 3b - J-f	rame CCS								
	Plant Size:	870.3	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$530,789	\$38,884	\$158,445	\$0	\$728,117	\$59,503	\$45,344	\$125,231	\$958,195	\$1,101
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$6,164	\$7
	1 Month Maintenance Materials									\$1,029	\$1
	1 Month Non-fuel Consumables									\$585	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$6,630	\$8
	2% of TPC									\$19,164	\$22
	Total									\$33,573	\$39
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$813	\$1
	0.5% of TPC (spare parts)									\$4,791	\$6
	Total									\$5,604	\$6
	Initial Cost for Catalyst and Chemicals									\$1,962	ድጋ
	-									. ,	\$2
	Land									\$300	\$0
	Other Owner's Costs									\$143,729	\$165
	Financing Costs									\$25,871	\$30
	Total Overnight Costs (TOC)									\$1,169,235	\$1,343
	TASC Multiplier							(IOU, high-	risk, 33 year)	1.078	
	Total As-Spent Cost (TASC)									\$1,260,435	\$1,448

Exhibit 5-21 Case 3b – "J" frame turbine with CO₂ capture capital cost estimate detail (continued)

	ANNUAL O8	M EXPENS	ES		Cost Base (Jun)	2011
Case 3b - J-frame CCS				Heat Rate	e-net (Btu/kWh):	6,810
				0	MWe-net:	870
				Capa	acity Factor (%):	85
<u>OPERATING & M</u>	AINTENANCE	LABOR				
<u>Operating Labor</u> Operating Labor Rate(base):	39.70	¢/bour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:		% of labor				
Labor of Fondige Rate.	20.00		Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cos
					<u>\$</u>	<u>\$/kW-net</u>
Annual Operating Labor Cost					\$2,861,816	\$3.288
Maintenance Labor Cost					\$7,000,304	\$8.044
Administrative & Support Labor					\$2,465,530	\$2.833
Property Taxes and Insurance					\$19,163,900	\$22.020
	5				\$31,491,551	\$36.185
ARIABLE OPERATING COSTS						
Naintanan an Matarial Coat					¢10 500 457	\$/kWh-net
Maintenance Material Cost	_				\$10,500,457	\$0.00162
<u>Consumables</u>	Consur		Unit	Initial Fill		
	Initial Fill	/Day	Cost	<u>Cost</u>		
Water (/1000 gallons)	0.00	3,510.43	1.67	\$0	\$1,823,167	\$0.00028
Chemicals						
MU & WT Chem.(lbs)	0.00	20,914.14	0.27	\$0	\$1,737,904	\$0.00027
MEA Solvent (ton)	542.18	0.76	3,481.91	\$1,887,829	\$822,516	\$0.00013
Activated Carbon (lb)	0.00	909.53	1.63	\$0	\$458,613	\$0.00007
Corrosion Inhibitor	0.00	0.00	0.00	\$74,278	\$3,537	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0	\$274,351	\$0.00004
Ammonia (19% NH3) (ton)	0.00	8.32	330.00	\$0	\$851,844	\$0.00013
Subtotal Chemicals			-	\$1,962,108	\$4,148,766	\$0.00064
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0 \$0	\$0	\$0.00000
Subtotal Other	0.00	0.00	0.00	\$0	\$0	\$0.00000
				ţu	40	÷
Waste Disposal	0.00	0.00	0.00	ድሳ	ድሳ	¢0,0000
Flyash (ton)	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Bottom Ash (ton) Subtotal Waste Disposal	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
•				ΨU	φU	ψυ.υυυυ
By-products	0.00	0.00	0.00	**	<i>*</i> ~	#0 00000
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING (COSTS			\$1,962,108	\$16,472,389	\$0.00254
Fuel (MMBtu)	0	142,241	6.13	\$0	\$270,518,341	\$0.04172

Exhibit 5-22 Case 3b - "J" frame turbine with CO_2 capture operating cost estimate

5.3 Case 3c – NGCC with CO₂ Capture and EGR Modeling Results

The block flow diagram of the combined cycle with CO_2 capture and EGR is shown in Exhibit 5-23. This case also uses the same "J" frame gas turbine model as that of Case 3a with the addition of EGR and CO_2 capture at the back end. Exhibit 5-24 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4) similar to Case 3b.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,617°C (2,944°F). The flue gas exits the turbine at 644°C (1,191°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 107°C (224°F). A portion of the stream (stream 6) is recycled back to the air inlet and the remainder (stream 4) passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance and exhaust characteristics are impacted due to addition of the EGR. Of particular interest is that the CO₂ composition at gas turbine exhaust increases from 4.6 percent in the capture only case (Case 3b) to 7.2 percent in this capture with EGR case. The O₂ composition concurrently decreases from 10.8 percent in the capture only case (Case 3b) to 6.0 percent in this capture with EGR. The higher concentration of the CO₂ in the exhaust gas stream reduces the energy consumption of the CO₂ capture system. Because of this, the EGR case provides a better output and efficiency compared to the capture case without EGR (Case 3b). However, the overall plant output and efficiency are reduced compared to the no CO₂ capture case (Case 3a) due to heat integration requirements and increased auxiliary loads for the EGR and CO₂ capture process

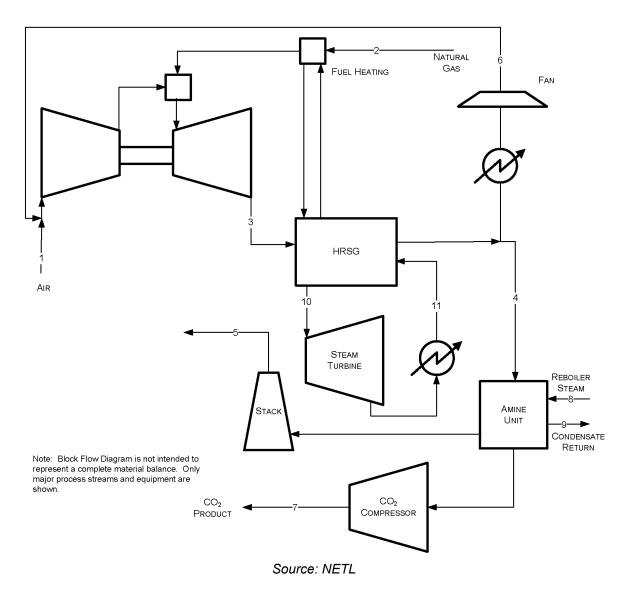


Exhibit 5-23 Case 3c – "J" frame turbine with CO₂ capture and EGR block flow diagram

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction		-				•				10	
Ar	0.0093	0.0000	0.0090	0.0090	0.0103	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0719	0.0719	0.0082	0.0770	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0000	0.1116	0.1116	0.0555	0.0480	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7729	0.0160	0.7472	0.7472	0.8568	0.8007	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.0604	0.0604	0.0692	0.0647	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	97,931	6,971	156,072	101,449	88,484	50,983	6,564	18,068	18,068	32,839	23,766
V-L Flowrate (kg/hr)	2,826,280	120,804	4,432,432	2,881,146	2,476,669	1,485,642	288,866	325,509	325,509	591,611	428,155
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	38	644	107	35	33	38	292	137	593	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	0.10	0.10	15.17	0.33	0.33	16.65	0.00
Enthalpy (kJ/kg) ^A	0.92	47,245.71	351.69	457.29	45.73	123.12	411.47	3,052.18	574.75	3,547.62	2,393.22
Density (kg/m ³)	1.2	27.7	0.4	0.9	1.1	1.2	796.4	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.860	17.330	28.400	28.400	27.990	29.140	44.010	18.015	18.015	18.015	18.015
			1								
V-L Flowrate (lb _{mol} /hr)	215,900	15,368	344,079	223,656	195,074	112,398	14,470	39,834	39,834	72,399	52,396
V-L Flowrate (lb/hr)	6,230,880	266,328	9,771,840	6,351,840	5,460,120	3,275,280	636,840	717,624	717,624	1,304,280	943,920
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
			1								
Temperature (°F)	59	100	1,191	224	95	92	101	557	278	1,100	90
Pressure (psia)	14.7	600.0	15.2	14.7	14.7	14.7	2,200.0	47.6	47.6	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.0	19.9	302.2	37.6	4.5	3.6	-97.1	1,312.2	247.1	1,525.2	1,028.9
Density (lb/ft ³)	0.076	1.731	0.024	0.057	0.069	0.072	49.720	0.169	57.172	2.977	61.982

Exhibit 5-24 Case 3c – "J" frame turbine with CO₂ capture and EGR stream table

Note: Total flow rates shown equal the sum for all process trains

5.3.1 Performance Results

The performance results are summarized in Exhibit 5-25 and when compared with Case 3b show that adding exhaust gas recycle increases the efficiency by approximately 0.6 percentage points. This is due to lowering the steam requirement for the reboiler slightly (to 2,790 kJ/kg CO_2 (1,200 Btu/lb CO_2) from the 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) used in Case 3b), based on the CO_2 concentration increasing and the oxygen concentration decreasing for the exhaust gas entering the solvent recovery section. An additional improvement would be expected if the exhaust gas recycle was increased from the 35 percent used to 50 percent. This was not explored in the current study since it was determined based on information from GE that 35 percent was a limit above which the gas turbine's combustor would need major redesign. Additional tables below provide overall energy balance (Exhibit 5-26), water balance (Exhibit 5-27), carbon balance (Exhibit 5-28), and an emissions summary (Exhibit 5-29).

tput	
694,394	kW _e
263,964	kW _e
958,358	kW _e
Load	
255	kW _e
6,872	kW _e
444	kW _e
15,684	kW _e
26,766	kW _e
414	kW _e
5,857	kW _e
480	kW _e
3,751	kW _e
10	kW _e
1,097	kW _e
669	kW _e
4,523	kW _e
3,000	kW _e
69,822	kW _e
rmance	
888,536	kW _e
85.0	
50.6%	
56.1%	
7,112 (6,741)	kJ/kWh (Btu/kWh)
6,420 (6,085)	kJ/kWh (Btu/kWh)
120,804 (266,328)	kg/hr (lb/hr)
1,755,410	kWt
1,584,459	kWt
971 (920)	GJ/hr (MMBtu/hr)
19.9 (5,268)	m³/min (gpm)
14.7 (3,889)	m³/min (gpm)
	694,394 263,964 958,358 Load 255 6,872 444 15,684 26,766 414 5,857 480 3,751 10 1,097 669 4,523 3,000 69,822 mance 888,536 85.0 50.6% 56.1% 7,112 (6,741) 6,420 (6,085) 20,804 (266,328) 1,755,410 1,584,459 971 (920) 19.9 (5,268)

Exhibit 5-25 Case 3c – "J" frame turbine with CO_2 capture and EGR plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	нну	Sensible + Latent	Power	Total							
	Energy l	n, GJ/hr (MMBtu/hr)									
Natural Gas	6,319 (5,990)	4.2 (4.0)	0 (0)	6,324 (5,994)							
GT Air	0 (0)	85.4 (81.0)	0 (0)	85 (81)							
Raw Water Withdrawal	0 (0)	75.0 (71.1)	0 (0)	75 (71)							
Auxiliary Power	0 (0)	0.0 (0.0)	251 (238)	251 (238)							
TOTAL	6,319 (5,990)	164.6 (156.1)	251 (238)	6,735 (6,384)							
	Energy Out, GJ/hr (MMBtu/hr)										
Cooling Tower Blowdown	0 (0)	38.2 (36.2)	0 (0)	38 (36)							
Stack Gas	0 (0)	26 (25)	0 (0)	26 (25)							
Condenser	0 (0)	967 (916)	0 (0)	967 (916)							
CO ₂ Product	0 (0)	-65.2 (-61.8)	0 (0)	65 (62)							
CO ₂ Intercoolers	0 (0)	420.5 (398.6)	0 (0)	421 (399)							
EGR Cooling	0 (0)	34.6 (32.8)	0 (0)	35 (33)							
Amine System Losses	0 (0)	1,146.3 (1,086.5)	0 (0)	1,146 (1,086)							
Process Losses*	0 (0)	718 (681)	0 (0)	718 (681)							
Power	0 (0)	0.0 (0.0)	3,450 (3,270)	3,450 (3,270)							
TOTAL	0 (0)	3,285 (3,114)	3,450 (3,270)	6,735 (6,384)							

Exhibit 5-26 Case 3c – "J" frame turbine with CO₂ capture and EGR overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 5-27	Case 3c – "J"	frame turbine with	CO ₂ capture a	Ind EGR water balance
--------------	---------------	--------------------	---------------------------	-----------------------

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m³/min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.07 (19)	0.00 (0)	0.07 (19)	0.0 (0)	0.07 (19)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.06 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	22.9 (6,046)	3.1 (812)	19.8 (5,234)	5.2 (1,380)	14.6 (3,855)
BFW Blowdown	0.00 (0)	0.06 (15)	-0.06 (-15)	0.0 (0)	0.0 (0)
EGR Condensate	0.00 (0)	1.1 (288)	-1.1 (-288)	0.0 (0)	0.0 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	1.9 (509)	-1.9 (-509)	0.0 (0)	0.0 (0)
Total	23.0 (6,079)	3.1 (812)	32.87 (5,268)	5.2 (1,380)	14.7 (3,889)

/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)			
87,243 (192,338)	Stack Gas	8,762 (19,316)		
353 (778)	CO ₂ Product	78,836 (173,803)		
	Convergence Tolerance*	-2 (-3)		
87,596 (193,116)	Total	87,596 (193,116)		
	87,243 (192,338) 353 (778)	87,243 (192,338) Stack Gas 353 (778) CO2 Product Convergence Tolerance* 87,596 (193,116)		

Exhibit 5-28 Case 3c – "J" frame turbine with CO₂ capture and EGR carbon balance

*by difference

Emissions are estimated based on user input specifications to models.

Exhibit 5-29 Case 3c – "J" frame turbine with CO₂ capture and EGR air emissions

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (Ib/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.002 (0.004)	83 (92)	0.012 (0.026)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	239,043 (263,499)	33 (74)
CO ₂ ¹			36 (80)

¹ CO₂ emissions based on net power instead of gross power

5.3.2 Cost Estimate Results

The turbine costs for this case were estimated based on simulation results and vendor quotes/discussions on the MHI "J" machine design. All other costs for this case were scaled from the costs in the previous cases based on simulation results using the methodology described in the initial NETL study of NGCC systems. [2] All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 5-30. The summary and detailed capital cost estimates are shown in Exhibit 5-31 and Exhibit 5-32, respectively. The annual operating cost estimates are shown in Exhibit 5-33.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	3c
Total Plant Cost (2011\$/kW)	1,024
Total Overnight Cost (2011\$/kW)	1,251
Total As-spent Capital (2011\$/kW)	1,349
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	18.65
Fixed O&M	4.64
Variable O&M	2.56
Fuel	41.32
CO ₂ T&S total	3.25
COE ¹ Total	70.42
LCOE ¹ , total (including T&S)	89.26
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	68.35 (62.01)
$Cost^{1,2}$ of CO_2 captured, \$/tonne of CO_2 (\$/ton of CO_2)	50.56 (45.87)

Exhibit 5-30 Case 3c – "J" frame turbine with CO₂ capture and EGR cost estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 3a – "J" frame without capture

	Client:	USDOE/NET								Report Date:	2012-Apr-04	
	Project:	Costing Supp			,							
	0	0	_		1 0051	SUNIN	ARY					
	Case: Plant Size:	Case 3c - J-fi 888 5	MW,net		nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies	TOTAL PLAN	тсоят
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$32,371	\$7,762	\$12,239	\$0	\$0	\$52,372	\$4,299	\$0	\$9,207	\$65,878	\$74
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5A	GAS CLEANUP & PIPING	\$0	\$9,774	\$6,175	\$0	\$0	\$15,949	\$1,244	\$0	\$3,439	\$20,631	\$23
5B	CO2 REMOVAL & COMPRESSION	\$153,130	\$0	\$48,979	\$0	\$0	\$202,108	\$16,874	\$32,962	\$50,389	\$302,333	\$340
-	COMBUSTION TURBINE/ACCESSORIES								. ,	. , ,		
-	Combustion Turbine Generator Combustion Turbine Other	\$159,842 \$0	\$0 \$1,131	\$8,018 \$1,223	\$0 \$0	\$0 \$0	\$167,861 \$2,353	\$14,315 \$197	\$0 \$0	\$18,763 \$510	. ,	\$226 \$3
0.2-0.3	SUBTOTAL 6	\$159,842	\$1,131	\$9,241	\$0	\$0	\$170,214	\$14,511	\$0 \$0	\$19,273	. ,	\$230
7	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$42,975	\$0	\$7,560	\$0	\$0	\$50,536	. ,	\$0	\$5,473	,	\$68
7.2-7.9	SCR System, Ductwork and Stack	\$2,792	\$1,768	\$2,194	\$0	\$0 \$0	\$6,754	\$565	\$0	\$1,160	. ,	\$10
		\$45,767	\$1,768	\$9,754	\$0	\$0	\$57,290	\$4,762	\$0	\$6,634	\$68,685	\$77
-	STEAM TURBINE GENERATOR Steam TG & Accessories	\$40,339	\$0	\$6,563	\$0	\$0	\$46,902	\$3.702	\$0	\$5,060	\$55,664	\$63
-	Turbine Plant Auxiliaries and Steam Piping	\$15,286	\$1,110	\$9,113	\$0	\$0	\$25,509	\$1,863	\$0	\$4,010		\$35
	SUBTOTAL 8	\$55,625	\$1,110	\$15,676	\$0	\$0	\$72,411	\$5,565	\$0	\$9,071	\$87,046	\$98
9	COOLING WATER SYSTEM	\$8,866	\$9,262	\$8,660	\$0	\$0	\$26,788	\$2,155	\$0	\$4,209	\$33,152	\$37
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$31,306	\$10,034	\$20,798	\$0	\$0	\$62,137	\$4,697	\$0	\$7,262	\$74,096	\$83
12	INSTRUMENTATION & CONTROL	\$9,486	\$1,073	\$8,042	\$0	\$0	\$18,601	\$1,526	\$930	\$2,417	\$23,475	\$26
13	IMPROVEMENTS TO SITE	\$2,589	\$1,406	\$7,329	\$0	\$0	\$11,325	\$1,003	\$0	\$2,466	\$14,794	\$17
14	BUILDINGS & STRUCTURES	\$0	\$6,252	\$6,548	\$0	\$0	\$12,800	\$1,018	\$0	\$2,073	\$15,890	\$18
	TOTAL COST	\$498,982	\$49,572	\$153,441	\$0	\$0	\$701,995	\$57,653	\$33,892	\$116,438	\$909,979	\$1,024

Exhibit 5-31 Case 3c – "J" frame turbine with CO₂ capture and EGR capital cost estimate summary

	Client:	USDOE/NET	TL							Report Date:	2012-Apr-04	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	т созт	SUMM	ARY					
	Case:	Case 3c - J-f	rame CCS F	GR								
	Plant Size:		MW.net		ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	21	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
	COAL & SORBENT HANDLING		0000	Biroot	manoot	Tux			1100000	110,000	¥	ψitter
•	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
2	COAL & SORBENT PREP & FEED	• •	• •	•	• •			• •	• •	• -		
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
3	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$3,918	\$4,057	\$3,313	\$0	\$0	\$11,288	\$909	\$0	\$1,829	\$14,026	\$1
3.2	Water Makeup & Pretreating	\$3,157	\$326	\$1,620	\$0	\$0	\$5,103	\$421	\$0	\$1,105	\$6,629	\$
3.3	Other Feedwater Subsystems	\$1,835	\$607	\$507	\$0	\$0	\$2,949	\$228	\$0	\$476	\$3,653	\$
	Service Water Systems	\$381	\$760	\$2,449	\$0	\$0	\$3,590		\$0	\$779		\$
	Other Boiler Plant Systems	\$2,568	\$960	\$2,207	\$0	\$0	\$5,735	\$467	\$0	\$930		\$
	Natural Gas, incl. pipeline	\$17,807	\$839	\$726	\$0	\$0	\$19,371	\$1,597	\$0	\$3,145	. ,	\$2
	Waste Treatment Equipment	\$1,102	\$0	\$638	\$0	\$0	\$1,741	\$150	\$0	\$378		\$
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,603	\$214	\$779	\$0	\$0	\$2,595	\$222	\$0	\$563		\$
	SUBTOTAL 3.	\$32,371	\$7,762	\$12,239	\$0	\$0	\$52,372	\$4,299	\$0	\$9,207	\$65,878	\$7
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$9,774	\$6,175	\$0	\$0	\$15,949	\$1,244	\$0	\$3,439	\$20,631	\$2
	SUBTOTAL 5.	\$0	\$9,774	\$6,175	\$0	\$0	\$15,949	\$1,244	\$0	\$3,439	\$20,631	\$2
5B	CO2 REMOVAL & COMPRESSION											
5B.1	CO2 Removal System	\$126,647	\$0	\$38,164	\$0	\$0	\$164,810	\$13,751	\$32,962	\$42,305	\$253,828	\$28
5B.2	CO2 Compression & Drying	\$26,483	\$0	\$10,815	\$0	\$0	\$37,298	\$3,123	\$0	\$8,084	\$48,505	\$5
	SUBTOTAL 5.	\$153,130	\$0	\$48,979	\$0	\$0	\$202,108	\$16,874	\$32,962	\$50,389	\$302,333	\$34
-	COMBUSTION TURBINE/ACCESSORIES											
6.1	Combustion Turbine Generator	\$159,842	\$0	\$8,018	\$0	\$0	\$167,861	\$14,315	\$0	\$18,763	\$200,938	\$22
	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	+ ·	\$
6.9		\$0	\$1,131	\$1,223	\$0	\$0	. ,		\$0	\$510		\$
	SUBTOTAL 6.	\$159,842	\$1,131	\$9,241	\$0	\$0	\$170,214	\$14,511	\$0	\$19,273	\$203,998	\$23

Exhibit 5-32 Case 3c – "J" frame turbine with CO₂ capture and EGR capital cost estimate detail

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΔ	L PLAN	r cost	SUMM	ΔRY					
	Case:	Case 3c - J-fi	_			001111						
	Plant Size:					Conceptual			- // \	2011	(\$x1000)	
	Plant Size:		MW,net						Base (Jun)		(,,	
Acct		Equipment	Material	Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$42,975	\$0	\$7,560	\$0		\$50,536	, ,	\$0	\$5,473		\$68
	HRSG Accessories	\$2,792	\$1,173	\$1,635	\$0	\$0	\$5,600	\$469	\$0	\$910	1 - 7	\$8
	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	· · ·	\$0
	Stack	\$0	\$0	\$0	\$0	\$0	\$0	+ -	\$0	\$0		\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$596	\$559	\$0	\$0	\$1,155	\$96	\$0	\$250	, ,	\$2
	SUBTOTAL 7.	\$45,767	\$1,768	\$9,754	\$0	\$0	\$57,290	\$4,762	\$0	\$6,634	\$68,685	\$77
-	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$40,339	\$0	\$6,563	\$0		\$46,902	\$3,702	\$0	\$5,060	1 ,	\$63
-	Turbine Plant Auxiliaries	\$259	\$0	\$576	\$0	\$0	\$835	\$72	\$0	\$91		\$1
	Condenser & Auxiliaries	\$2,312	\$0	\$1,552	\$0	\$0	\$3,864	\$325	\$0	\$419	\$4,608	\$5
	Steam Piping	\$12,715	\$0	\$5,153	\$0	\$0	\$17,868	\$1,218	\$0	\$2,863		\$25
8.9	TG Foundations	\$0	\$1,110	\$1,832	\$0	\$0	\$2,942	\$248	\$0	\$638		\$4
	SUBTOTAL 8.	\$55,625	\$1,110	\$15,676	\$0	\$0	\$72,411	\$5,565	\$0	\$9,071	\$87,046	\$98
9	COOLING WATER SYSTEM											
	Cooling Towers	\$5,267	\$0	\$1,606	\$0	\$0	\$6,873	\$574	\$0	\$745	, . , .	\$9
9.2	Circulating Water Pumps	\$2,552	\$0	\$172	\$0	\$0	\$2,724	\$208	\$0	\$293	\$3,225	\$4
9.3	Circ.Water System Auxiliaries	\$197	\$0	\$26	\$0	\$0	\$223	\$18	\$0	\$24	\$265	\$0
9.4	Circ.Water Piping	\$0	\$6,102	\$1,381	\$0	\$0	\$7,483	\$561	\$0	\$1,207		\$10
	Make-up Water System	\$458	\$0	\$589	\$0	\$0	\$1,047	\$87	\$0	\$170		\$1
9.6	Component Cooling Water Sys	\$392	\$399	\$301	\$0	\$0	\$1,093	\$87	\$0	\$177	\$1,357	\$2
9.9	Circ.Water System Foundations	\$0	\$2,761	\$4,584	\$0		\$7,345	\$620	\$0	\$1,593		\$11
	SUBTOTAL 9.	\$8,866	\$9,262	\$8,660	\$0	\$0	\$26,788	\$2,155	\$0	\$4,209	\$33,152	\$37
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$9,437	\$0	\$5,582	\$0		\$15,019		\$0	\$1,219		\$20
11.2	Station Service Equipment	\$3,248	\$0	\$279	\$0	\$0	\$3,527	\$290	\$0	\$286	\$4,104	\$5
11.3	Switchgear & Motor Control	\$3,997	\$0	\$694	\$0	\$0	\$4,691	\$389	\$0	\$508	\$5,588	\$6
11.4	Conduit & Cable Tray	\$0	\$2,089	\$6,017	\$0	\$0	\$8,106	\$675	\$0	\$1,317	\$10,099	\$11
11.5	Wire & Cable	\$0	\$6,712	\$3,816	\$0	\$0	\$10,528	\$633	\$0	\$1,674	\$12,836	\$14
	Protective Equipment	\$0	\$1,016	\$3,525	\$0	\$0	\$4,541	\$390	\$0	\$493	\$5,425	\$6
11.7	Standby Equipment	\$155	\$0	\$145	\$0	\$0	\$300	\$25	\$0	\$33	\$358	\$0
	Main Power Transformers	\$14,468	\$0	\$185	\$0	\$0	\$14,653	\$995	\$0	\$1,565	\$17,213	\$19
11.9	Electrical Foundations	\$0	\$217	\$553	\$0	\$0	\$771	\$65	\$0	\$167	\$1,003	\$1
	SUBTOTAL 11.	\$31,306	\$10,034	\$20,798	\$0	\$0	\$62,137	\$4,697	\$0	\$7,262	\$74,096	\$83

Exhibit 5-32 Case 3c – "J" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 3c - J-fi	rame CCS E	GR								
	Plant Size:	888.5	MW,net	Estin	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0		\$0
12.4	Other Major Component Control	\$1,206	\$0	\$768	\$0	\$0	\$1,974	\$166	\$99	\$336	\$2,575	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$360	\$0	\$220	\$0	\$0	\$581	\$49	\$29	\$99	\$757	\$1
12.7	Computer & Accessories	\$5,769	\$0	\$176	\$0	\$0	\$5,945	\$488	\$297	\$673	\$7,403	\$8
12.8	Instrument Wiring & Tubing	\$0	\$1,073	\$1,899	\$0	\$0	\$2,972	\$214	\$149	\$500	\$3,834	\$4
12.9	Other I & C Equipment	\$2,151	\$0	\$4,979	\$0	\$0	\$7,130	\$610	\$356	\$810	\$8,906	\$10
	SUBTOTAL 12.	\$9,486	\$1,073	\$8,042	\$0	\$0	\$18,601	\$1,526	\$930	\$2,417	\$23,475	\$26
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$138	\$2,938	\$0	\$0	\$3,077	\$269	\$0	\$669	\$4,014	\$5
13.2	Site Improvements	\$0	\$1,268	\$1,675	\$0	\$0	\$2,943	\$262	\$0	\$641	\$3,846	\$4
13.3	Site Facilities	\$2,589	\$0	\$2,716	\$0	\$0	\$5,305	\$473	\$0	\$1,156	\$6,933	\$8
	SUBTOTAL 13.	\$2,589	\$1,406	\$7,329	\$0	\$0	\$11,325	\$1,003	\$0	\$2,466	\$14,794	\$17
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$397	\$210	\$0	\$0	\$607	\$47	\$0	\$98	\$752	\$1
14.2	Steam Turbine Building	\$0	\$2,770	\$3,686	\$0	\$0	\$6,456	\$519	\$0	\$1,046	\$8,022	\$9
	Administration Building	\$0	\$676	\$458	\$0	\$0	\$1,134	\$88	\$0	\$183	\$1,406	\$2
14.4	Circulation Water Pumphouse	\$0	\$220	\$109	\$0	\$0	\$329	\$25	\$0	\$53	\$407	\$0
14.5	Water Treatment Buildings	\$0	\$666	\$607	\$0	\$0	\$1,273	\$101	\$0	\$206	\$1,580	\$2
14.6	Machine Shop	\$0	\$587	\$375	\$0	\$0	\$961	\$75	\$0	\$155	\$1,191	\$1
14.7	Warehouse	\$0	\$379	\$228	\$0	\$0	\$607	\$47	\$0	\$98	\$752	\$`
14.8	Other Buildings & Structures	\$0	\$113	\$82	\$0	\$0	\$196	\$15	\$0	\$32	\$243	\$0
14.9	Waste Treating Building & Str.	\$0	\$444	\$792	\$0	\$0	\$1,236	\$101	\$0	\$200	\$1,537	\$2
	SUBTOTAL 14.	\$0	\$6,252	\$6,548	\$0	\$0	\$12,800	\$1,018	\$0	\$2,073	\$15,890	\$18
	TOTAL COST	\$498,982	\$49,572	\$153,441	\$0	\$0	\$701,995	\$57,653	\$33,892	\$116,438	\$909,979	\$1,024

Exhibit 5-32 Case 3c – "J" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		T	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 3c - J-fi	ame CCS E	GR							
	Plant Size:	888.5	MW,net	Estim	nate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	т соѕт
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee		Project	\$	\$/kW
	TOTAL COST	\$498,982	\$49,572	\$153,441	\$0	\$701,995	\$57,653	\$33,892	\$116,438	\$909,979	\$1,024
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$6,235	\$7
	1 Month Maintenance Materials									\$1,046	\$1
	1 Month Non-fuel Consumables									\$615	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$6,701	\$8
	2% of TPC									\$18,200	\$20
	Total									\$32,797	\$37
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$843	\$1
	0.5% of TPC (spare parts)									\$4,550	\$5
	Total									\$5,393	\$6
	Initial Cost for Catalyst and Chemicals									\$1,978	\$2
	Land									\$300	\$0
	Other Owner's Costs									\$136,497	\$154
	Financing Costs									\$24,569	\$28
	Total Overnight Costs (TOC)									\$1,111,512	
	TASC Multiplier							(IOU high-	risk, 33 year)	1.078	÷.,=•.
	Total As-Spent Cost (TASC)							(100, 11g)	non, co year)	\$1,198,210	\$1,349

Exhibit 5-32 Case 3c – "J" frame turbine with CO₂ capture and EGR capital cost estimate detail (continued)

INITIAL & /	ANNUAL O	&M EXPENS	ES		Cost Base (Jun)	2011
Case 3c - J-frame CCS EGR				Heat Rat	e-net (Btu/kWh):	6,741
					MWe-net:	889
				Capa	acity Factor (%):	85
OPERATING & M	AINTENANCI	<u>E LABOR</u>				
Operating Labor		A <i>H</i>				
Operating Labor Rate(base):		\$/hour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cos
					\$	\$/kW-net
Annual Operating Labor Cost					\$2, 8 61,816	\$3.221
Maintenance Labor Cost					\$7,114,734	\$8.007
Administrative & Support Labor					\$2,494,138	\$2.807
Property Taxes and Insurance					\$18,199,580	\$20.483
TOTAL FIXED OPERATING COS	ГS				\$30,670,268	\$34.518
ARIABLE OPERATING COSTS						·
						\$/kWh-net
Maintenance Material Cost					\$10,672,102	\$0.00161
Consumables	Consu	mption	Unit	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	3,793.08	1.67	<u> </u>	\$1,969,960	\$0.00030
	0.00	5,795.00	1.07	φU	φ1,303,300	φ 0.000 30
Chemicals		~~ ~~ ~~		^	* 4 • • • • • • • •	*******
MU & WT Chem.(lbs)	0.00	22,598.05	0.27	\$0	\$1,877,832	\$0.00028
MEA Solvent (ton)	546.51	0.77	3,481.91	\$1,902,889	\$829,078	\$0.00013
Activated Carbon (lb)	0.00	916.79	1.63	\$0	\$462,272	\$0.00007
Corrosion Inhibitor	0.00	0.00	0.00	\$74,871	\$3,565	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0	\$274,270	\$0.00004
Ammonia (19% NH3) (ton)	0.00	8.32	330.00	\$0	\$851,593	\$0.00013
Subtotal Chemicals				\$1,977,760	\$4,298,611	\$0.00065
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00		0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products	0.00	0.00	0.00	<u>\$0</u>	\$0	\$0.00000
	20STS			\$1,977,760	\$16,940,672	\$0.00256
		440 754	0.45			
Fuel (MMBtu)	0	143,751	6.13	\$0	\$273,390,109	\$0.04130

Exhibit 5-33 Case 3c - "J" frame turbine with CO_2 capture and EGR operating cost estimate

6 Case 4 – Future Gas Turbine – ("X" frame)

These cases are based on the previous cases but use an advanced/future turbine design based on a conceptual advanced future turbine, designated as an "X" machine configuration.

The generic design has an ISO output of 405 MW and LHV heat rate of approximately 8,124 kJ/kWh (7,700 Btu/kWh) (Brayton cycle) on natural gas fuel. The output is approximately 90 percent more and the heat rate is approximately 13 percent better than the 7FA.05 model considered in Case 1a. This gas turbine model also has approximately 20 percent more exhaust flow and approximately 36°C (65°F) higher exhaust temperature than the 7FA.05 model.

The turbine uses a high turbine inlet temperature and a high pressure ratio (turbine inlet temperature [TIT] of 1,704°C (3,100°F), PR of 30), which are higher when compared with current commercial designs (see Case 2). This turbine would require both improvements in materials and cooling technologies to become feasible. The net power for a 2 x 2 x 1 system is 1000 MWe which can be compared with current planned nuclear reactors and with recent orders for NGCC system based on "H" turbines (3 x 3 x 1). [14, 15]

The performance summaries, block flow diagrams, stream tables, carbon balances, water balances, and overall energy balances for each of these three cases are presented in this section. Detailed process flow diagrams from the Thermoflow software are provided in the appendix.

Capital and operating costs for these cases were estimated by WorleyParsons based on simulation results, costing software, and vendor quotes/discussions on the projections of advanced machine designs from multiple vendors. All costs are in June 2011 dollars.

6.1 Case 4a – NGCC without CO₂ Capture Modeling Results

The block flow diagram of the combined cycle is shown in Exhibit 6-1. This includes two generic advanced future frame gas turbines, two triple pressure level single reheat type HRSGs, and one condensing steam turbine with evaporative cooling tower. Exhibit 6-2 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. A fuel gas heating system is integrated in this design for the gas turbine and overall plant heat rate improvement.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,708°C (3,107°F). The flue gas exits the turbine at 638°C (1,182°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine. Flue gas exits the HRSG (stream 4) at 88°C (190°F) and passes to the plant stack. Cooling is supplied to the condenser via water from the cooling tower.

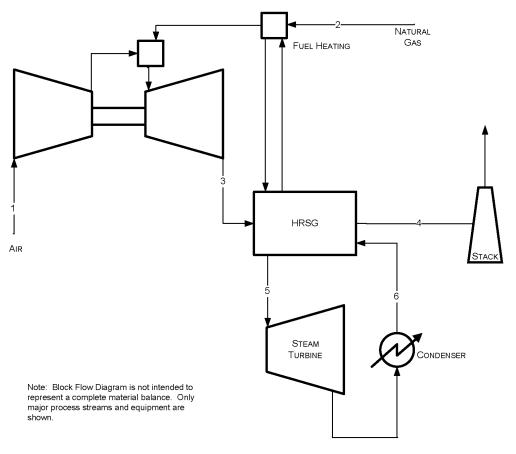


Exhibit 6-1 Case 4a – Advanced/Future turbine without CO₂ capture block flow diagram

Source: NETL

V-L Mole Fraction 0.0092 0.0 Ar 0.0092 0.0 CH4 0.0000 0.5 C2H6 0.0000 0.0 C3H8 0.0000 0.0 C4H10 0.0000 0.0 CO 0.0000 0.0 CO 0.0000 0.0 CO 0.0000 0.0 CO 0.0000 0.0 CQ 0.0000 0.0 CQ 0.0009 0.0 M2 0.7732 0.0 O2 0.2074 0.0 SO2 0.0000 0.0 V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 0 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg)^A 30.96 52.5 Density (kg/m³) 1.2 2 V-L Flowrate (lbmol/hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	2 3 0000 0.008 0310 0.000 0320 0.000 0320 0.000 0040 0.000 0000 0.000 0000 0.000 0000 0.000 0100 0.040 0000 0.086 0160 0.743 0000 0.120 0000 0.000	00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0499 67 0.1052 32 0.7358 09 0.1004	5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Ar 0.0092 0.0 CH ₄ 0.0000 0.5 C ₂ H ₆ 0.0000 0.6 C ₃ H ₈ 0.0000 0.6 C ₄ H ₁₀ 0.0000 0.6 CO 0.0000 0.6 M ₂ 0.7732 0.6 O ₂ 0.2074 0.6 SO ₂ 0.0000 0.6 Total 1.0000 1.6 V-L Flowrate (kg/hr) $4.314.208$ 128 Solids Flowrate (kg/hr) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52.5 Density (kg/m ³) 1.2 2 V-L Flowrate (lb _{mol} /hr) 329.598 16 V-L Flowrate (lb/hr) $9.511.200$ 288	0.000 0.000	00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
$\begin{array}{c cccc} CH_4 & 0.0000 & 0.5\\ C_2H_6 & 0.0000 & 0.6\\ C_3H_8 & 0.0000 & 0.6\\ C_4H_{10} & 0.0000 & 0.6\\ CO & 0.0000 & 0.6\\ CO & 0.0000 & 0.6\\ CO_2 & 0.0003 & 0.6\\ H_2O & 0.0099 & 0.6\\ N_2 & 0.7732 & 0.6\\ O_2 & 0.2074 & 0.6\\ SO_2 & 0.2074 & 0.6\\ SO_2 & 0.0000 & 0.6\\ Total & 1.0000 & 1.6\\ \hline \\ V-L Flowrate (kg/hr) & 149,503 & 7,\\ V-L Flowrate (kg/hr) & 4,314,208 & 128\\ Solids Flowrate (kg/hr) & 0\\ \hline \\ $	0.000 0.000	00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
$\begin{array}{c c} C_2H_6 & 0.0000 & 0.0 \\ \hline C_3H_8 & 0.0000 & 0.0 \\ \hline C_4H_{10} & 0.0000 & 0.0 \\ \hline CO & 0.0000 & 0.0 \\ \hline CO_2 & 0.0003 & 0.0 \\ \hline H_2O & 0.0099 & 0.0 \\ \hline N_2 & 0.7732 & 0.0 \\ \hline O_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline V-L Flowrate (kg/hr) & 149,503 & 7, \\ \hline V-L Flowrate (kg/hr) & 4,314,208 & 129 \\ \hline Solids Flowrate (kg/hr) & 0 \\ \hline \hline Temperature (°C) & 15 & 5 \\ \hline Pressure (MPa, abs) & 0.10 & 4 \\ \hline Enthalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline Density (kg/m^3) & 1.2 & 2 \\ \hline V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline V-L Flowrate (lb/hr) & 9,511,200 & 285 \\ \hline \end{array}$	0320 0.000 0070 0.000 0040 0.000 0000 0.000 0100 0.000 0100 0.040 0100 0.040 0100 0.040 0100 0.040 0100 0.040 0100 0.040 0100 0.040 0000 0.086 0160 0.743 0000 0.120 0000 0.000	00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 04 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
$\begin{array}{c c} C_3H_8 & 0.0000 & 0.0 \\ \hline C_3H_8 & 0.0000 & 0.0 \\ \hline C_4H_{10} & 0.0000 & 0.0 \\ \hline CO & 0.0000 & 0.0 \\ \hline CO_2 & 0.0003 & 0.0 \\ \hline H_2O & 0.0099 & 0.0 \\ \hline N_2 & 0.7732 & 0.0 \\ \hline O_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline \hline V-L Flowrate (kg/hr) & 149,503 & 7, \\ \hline V-L Flowrate (kg/hr) & 4,314,208 & 129 \\ \hline Solids Flowrate (kg/hr) & 0 \\ \hline \hline \hline \hline \hline \hline \hline \\ Temperature (°C) & 15 \\ \hline Pressure (MPa, abs) & 0.10 \\ \hline Hahalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline Density (kg/m^3) & 1.2 & 2 \\ \hline \hline V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline V-L Flowrate (lb/hr) & 9,511,200 & 285 \\ \hline \end{array}$	0070 0.000 0040 0.000 0000 0.000 0100 0.040 0000 0.000 0100 0.040 0000 0.086 0160 0.743 0000 0.120 0000 0.000	00 0.0000 00 0.0000 00 0.0000 04 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 1.0000 0.0000
$\begin{array}{c c} C_4H_{10} & 0.0000 & 0.0 \\ \hline CO & 0.0000 & 0.0 \\ \hline CO_2 & 0.0003 & 0.0 \\ \hline H_2O & 0.0099 & 0.0 \\ \hline N_2 & 0.7732 & 0.0 \\ \hline O_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline \hline V-L Flowrate (kg/hr) & 149,503 & 7, \\ \hline V-L Flowrate (kg/hr) & 4,314,208 & 128 \\ \hline Solids Flowrate (kg/hr) & 0 \\ \hline \hline \hline \hline Temperature (^{\circ}C) & 15 \\ \hline Pressure (MPa, abs) & 0.10 & 4 \\ \hline Enthalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline Density (kg/m^3) & 1.2 & 2 \\ \hline V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline V-L Flowrate (lb_{mol}/hr) & 9,511,200 & 288 \\ \hline \end{array}$	0040 0.000 0000 0.000 0100 0.000 0100 0.040 0000 0.040 0100 0.040 0100 0.040 0100 0.040 0160 0.743 0000 0.120 0000 0.000	00 0.0000 00 0.0000 04 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 1.0000 0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0000 0.000 0100 0.040 0000 0.086 0160 0.743 0000 0.120 0000 0.000	00 0.0000 04 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 1.0000 0.0000
$\begin{array}{c c} CO_2 & 0.0003 & 0.0 \\ H_2O & 0.0099 & 0.0 \\ N_2 & 0.7732 & 0.0 \\ O_2 & 0.2074 & 0.0 \\ SO_2 & 0.2074 & 0.0 \\ SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline V-L Flowrate (kg/hr) & 149,503 & 7, \\ V-L Flowrate (kg/hr) & 4,314,208 & 129 \\ Solids Flowrate (kg/hr) & 0 \\ \hline \hline \\ \hline \\ Temperature (°C) & 15 & 5 \\ \hline \\ Pressure (MPa, abs) & 0.10 & 4 \\ \hline \\ Enthalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline \\ Density (kg/m^3) & 1.2 & 2 \\ \hline \\ V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline \\ V-L Flowrate (lb/hr) & 9,511,200 & 285 \\ \hline \end{array}$	0100 0.040 0000 0.086 0160 0.743 0000 0.120 0000 0.000	04 0.0499 67 0.1052 32 0.7358 09 0.1004	0.0000 1.0000 0.0000 0.0000	0.0000 1.0000 0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0000 0.086 0160 0.743 0000 0.120 0000 0.000	670.1052320.7358090.1004	1.0000 0.0000 0.0000	1.0000 0.0000
$\begin{tabular}{ c c c c c } \hline N_2 & 0.7732 & 0.0 \\ \hline N_2 & 0.2074 & 0.0 \\ \hline O_2 & 0.2074 & 0.0 \\ \hline SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline \hline V-L Flowrate (kg_{mol}/hr) & 149,503 & 7, \\ \hline V-L Flowrate (kg/hr) & 4,314,208 & 129 \\ \hline Solids Flowrate (kg/hr) & 0 \\ \hline \hline \hline Temperature (°C) & 15 & 129 \\ \hline Temperature (°C) & 15 & 129 \\ \hline \hline Temperature (NPa, abs) & 0.10 & 4 \\ \hline Enthalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline Density (kg/m^3) & 1.2 & 2 \\ \hline V-L Flowrate (lb/m^3) & 1.2 & 2 \\ \hline \hline V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline V-L Flowrate (lb/hr) & 9,511,200 & 285 \\ \hline \end{tabular}$	0160 0.743 0000 0.120 0000 0.000	320.7358090.1004	0.0000	0.0000
$\begin{array}{c ccccc} O_2 & 0.2074 & 0.0 \\ SO_2 & 0.0000 & 0.0 \\ \hline SO_2 & 0.0000 & 0.0 \\ \hline Total & 1.0000 & 1.0 \\ \hline V-L Flowrate (kg/hr) & 149,503 & 7, \\ V-L Flowrate (kg/hr) & 4,314,208 & 129 \\ \hline Solids Flowrate (kg/hr) & 0 \\ \hline \hline Temperature (°C) & 15 & 129 \\ \hline Pressure (MPa, abs) & 0.10 & 4 \\ \hline Enthalpy (kJ/kg)^A & 30.96 & 52,5 \\ \hline Density (kg/m^3) & 1.2 & 2 \\ \hline V-L Molecular Weight & 28.857 & 17 \\ \hline \hline V-L Flowrate (lb_{mol}/hr) & 329,598 & 16 \\ \hline V-L Flowrate (lb/hr) & 9,511,200 & 285 \\ \hline \end{array}$	0000 0.120	09 0.1004	0.0000	
SO2 0.0000 0.0 Total 1.0000 1.0 V-L Flowrate (kgmol/hr) 149,503 7, V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 0 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lbmol/hr) 329,598 16 V-L Flowrate (lb/mol/hr) 9,511,200 285	000.0			0.0000
Total 1.0000 1.0 V-L Flowrate (kgmol/hr) 149,503 7, V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 15 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lbmol/hr) 329,598 16 V-L Flowrate (lb/nr) 9,511,200 285			0.0000	
V-L Flowrate (kgmol/hr) 149,503 7, V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 129 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lbmol/hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285		0.0000 00	0.0000	0.0000
V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 0 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lb _{mol} /hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	0000 1.000	00 1.0001	1.0000	1.0000
V-L Flowrate (kg/hr) 4,314,208 129 Solids Flowrate (kg/hr) 0 0 Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lb _{mol} /hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	483 156,5	578 157,188	32,015	40 110
Solids Flowrate (kg/hr) 0 Temperature (°C) 15 Pressure (MPa, abs) 0.10 Enthalpy (kJ/kg) ^A 30.96 Density (kg/m ³) 1.2 V-L Molecular Weight 28.857 V-L Flowrate (lb _{mol} /hr) 329,598 V-L Flowrate (lb/hr) 9,511,200				40,118
Temperature (°C) 15 15 Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (Ib _{mol} /hr) 329,598 16 V-L Flowrate (Ib/hr) 9,511,200 285	9,655 4,443, 0 0	863 4,443,699	9 576,752 0	722,736 0
Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (Ib _{mol} /hr) 329,598 16 V-L Flowrate (Ib/hr) 9,511,200 285	0 0	0	U	U
Pressure (MPa, abs) 0.10 4 Enthalpy (kJ/kg) ^A 30.96 52,5 Density (kg/m ³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (Ib _{mol} /hr) 329,598 16 V-L Flowrate (Ib/hr) 9,511,200 285	38 639	9 88	593	32
Density (kg/m³) 1.2 2 V-L Molecular Weight 28.857 17 V-L Flowrate (lb _{mol} /hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	.14 0.10	0 0.10	16.65	0.00
V-L Molecular Weight 28.857 17 V-L Flowrate (lbmol/hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	30.38 886.9	90 260.98	3,547.62	2,374.85
V-L Flowrate (lb _{mol} /hr) 329,598 16 V-L Flowrate (lb/hr) 9,511,200 285	2.2 0.4	4 0.9	47.7	992.9
V-L Flowrate (lb/hr) 9,511,200 285	.328 28.38	81 28.270	18.015	18.015
V-L Flowrate (lb/hr) 9,511,200 285				
		196 346,540	70,580	88,445
Solids Flowrate (lb/hr) 0	,496 345,1		0 1,271,520	1,593,360
			0	0
	,496 345,1			
	,496 345,1 5,840 9,797, 0 0	040 9,796,680 0		
	,496 345,1 5,840 9,797, 0 0 00 1,18	040 9,796,680 0 32 190	1,100	90
	,496 345,1 5,840 9,797, 0 0 00 1,18 00.0 15.2	040 9,796,680 0 32 190 2 14.7		90 0.7
Density (lb/ft ³) 0.076 1.	,496 345,1 5,840 9,797,1 0 0 00 1,18 00.0 15.2 584.0 381.	040 9,796,680 0 32 190 2 14.7 .3 112.2	1,100	

Exhibit 6-2 Case 4a – Advanced/Future turbine without CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water Note: Total flow rates shown equal the sum for all process trains

6.1.1 Performance Results

The performance results are summarized in Exhibit 6-3 and represent both increases in power production and efficiency based on assumptions made when compared with the current NGCC commercial systems (see Cases 1a, 2a). The overall efficiency of 65.2 percent represents an increase in the overall process efficiency of approximately 5.2 percentage points and approximately 30 percent gas turbine power increase when compared with the current commercial "J" system. Compared to Case 1a based on the 7FA.05 gas turbine, the overall efficiency increases by approximately 7.8 percentage points and the gas turbine power increases by approximately 93 percent. Additional tables below provide overall energy balance

(Exhibit 6-4), water balance (Exhibit 6-5), carbon balance (Exhibit 6-6), and an emissions summary (Exhibit 6-7).

Plant	Output	
Gas Turbine Power	810,862	kW _e
Steam Turbine Power	320,546	kWe
Total	1,131,408	kW _e
Auxilia	ry Load	1
Condensate Pumps	0	kW _e
Boiler Feedwater Pumps	6,848	kW _e
Amine CO ₂ Capture System Auxiliaries	0	kW _e
CO ₂ Compression	0	kW _e
Circulating Water Pump	2,964	kW _e
Ground Water Pumps	300	kW _e
Cooling Tower Fans	2,193	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,098	kW _e
Steam Turbine Auxiliaries	684	kW _e
Miscellaneous Balance of Plant ²	3,508	kW _e
Transformer Losses	5,657	kW _e
Total	23,262	kW _e
Plant Per	formance	
Net Plant Power	1,108,147	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	58.8%	
Net Plant Efficiency (LHV) ¹	65.2%	
Net Plant Heat Rate (HHV) ¹	6,121 (5,801)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	5,525 (5,237)	kJ/kWh (Btu/kWh
Natural Gas Feed Flow	129,655 (285,840)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,884,103	kWt
Thermal Input (LHV) ¹	1,700,644	kWt
Condenser Duty	1,614 (1,530)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	12.6 (3,329)	m ³ /min (gpm)
Raw Water Consumption	10.4 (2,760)	m ³ /min (gpm)

Exhibit 6-3 Case 4a – Advanced/Future turbine without CO ₂ capture plant performance summary
(Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	ННУ	Sensible + Latent	Power	Total
	Energy l	In, GJ/hr (MMBtu/hr)		
Natural Gas	6,783 (6,429)	4.5 (4.3)	0 (0)	6,787 (6,433)
GT Air	0 (0)	133.6 (126.6)	0 (0)	134 (127)
Raw Water Withdrawal	0 (0)	47.4 (44.9)	0 (0)	48 (45)
Auxiliary Power	0 (0)	0.0 (0.0)	84 (79)	84 (79)
TOTAL	6,783 (6,429)	185.5 (175.8)	84 (79)	7,052 (6,684)
	Energy C	out, GJ/hr (MMBtu/hr)	
Cooling Tower Blowdown	0 (0)	21.1 (20.0)	0 (0)	21 (20)
Stack Gas	0 (0)	1,160 (1,099)	0 (0)	1,160 (1,099)
Condenser	0 (0)	1,619 (1,535)	0 (0)	1,619 (1,535)
Process Losses*	0 (0)	179 (170)	0 (0)	179 (170)
Power	0 (0)	0.0 (0.0)	4,073 (3,861)	4,073 (3,861)
TOTAL	0 (0)	2,979 (2,823)	4,073 (3,861)	7,052 (6,684)

Exhibit 6-4 Case 4a – Advanced/Future turbine without CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Exhibit 6-5 Case 4a – Advanced/Future turbine without CO₂ capture water balance

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.06 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	12.60 (3,329)	0.06 (15)	12.54 (3,314)	2.2 (568)	10.4 (2,746)
BFW Blowdown	0.00 (0)	0.06 (15)	-0.06 (-15)	0.00 (0)	0.00 (0)
Flue Gas Condensate	0.00 (0)	0.0 (0)	0.00 (0)	0.00 (0)	0.00 (0)
Total	12.7 (3,343)	0.06 (15)	12.6 (3,329)	2.2 (568)	10.4 (2,760)

Exhibit 6-6 Case 4a – Advanced/Future turbine without CO₂ capture carbon balance

Carbon In, kg/	nr (lb/hr)	Carbon Out, kg/hr (lb/hr)		
Natural Gas	93,648 (206,459)	Stack Gas	94,173 (207,615)	
Air (CO ₂)	587 (1,293)			
		Convergence Tolerance*	62 (137)	
Total	94,235 (207,752)	Total	94,235 (207,752)	
*h., differrenee				

*by difference

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.004 (0.009)	196 (216)	0.023 (0.051)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	50.9 (118.3)	2,569,317 (2,832,187)	305 (672)
CO ₂ ¹			311 (686)

Exhibit 6-7 Case 4a – Advanced/Future turbine without CO_2 capture air emissions

Emissions are estimated based on user input specifications to models.

¹ CO₂ emissions based on net power instead of gross power

6.1.2 Major Equipment List

This section contains the equipment list corresponding to the advanced/future turbine design without CO_2 capture plant configuration for case 4a. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Account 3 - Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	437,105 liters (115,470 gal)	2 (0)
2	Condensate Pumps	Vertical canned	6,662 lpm @ 3 m H ₂ O (1,760 gpm @ 10 ft H ₂ O)	2 (1)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with	HP water: 5,337lpm @ 1,887m H ₂ O (1,410gpm @ 6,190ft H ₂ O)	2 (1)
		interstage bleed for IP and LP feedwater	IP water: 6,965 lpm @ 546m H ₂ O (1,840gpm @ 1,790ft H ₂ O)	
			LP water: 416 lpm @ 0.0 m H ₂ O (110 gpm @ 00 ft H ₂ O)	
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	7,192 lpm @ 18 m H ₂ O (1,900 gpm @ 60 ft H ₂ O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	231 lpm @ 49 m H ₂ O (61 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	219,556 liter (58,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro-deionization unit	492 lpm (130 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	107 m ³ /min @ 4.1 MPa (3,785 acfm @ 600 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		107 m ³ /min (3,785 acfm)	1 (0)

Account 4 - Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Account 6 – Combustion Turbine Generators and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Gas Turbine	Advanced Future w/ dry low-NOx burner	400 MW	2 (0)
2	Gas Turbine Generator	TEWAC	440 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 8.0 m (26 ft) diameter	2 (0)
2	Heat Recovery Steam Generator	Drum, multi- pressure with economizer section and integral deaerator	Main steam - 317,214 kg/h, 16.5 MPa/593°C (699,336 lb/h, 2,400 psig/1,100°F) Reheat steam - 366,610 kg/h, 2.4 MPa/593°C (808,236 lb/h, 345 psig/1,100°F)	2 (0)
3	SCR Reactor	Space for spare layer	2,444,866 kg/h (5,390,000 lb/h)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5	Dilution Air Blowers	Centrifugal	15 m ³ /min @ 107 cm WG (530 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H ₂ O (1 gpm @ 300 ft H ₂ O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	90,851 liter (24,000 gal)	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	337 MW 16.5 MPa/593°C/593°C (2,400 psig/ 1100°F/1100°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	370 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1,782 MMkJ/hr, (1,690 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	325,548 lpm @ 30.5 m (86,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 1,808 MMkJ/hr (1,716 MMBtu/hr) heat load	1 (0)

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Design Condition	Oper. Qty. (Spares)	
1	CTG Transformer	Oil-filled	24 kV/345 kV, 440 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 350 MVA, 3-ph, 60 Hz	1 (0)
3	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 20 MVA, 3-ph, 60 Hz	1 (1)
4	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 3 MVA, 3-ph, 60 Hz	1 (1)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
5	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)
6	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)
7	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
8	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
9	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Account 12 – Instrumentation and Control

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

6.1.3 Cost Estimate Results

Capital and operating costs for Cases 4a using the advanced future turbine design were estimated by WorleyParsons based on simulation results, costing software, and vendor quotes/discussions on the projections of advanced machine designs from multiple vendors. All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 6-8. The summary and detailed capital cost estimates are shown in Exhibit 6-9 and Exhibit 6-10, respectively. The annual operating cost estimates are shown in Exhibit 6-11.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Exhibit 6-8 Case 4a - Advanced/Future turbine without CO₂ capture cost estimation summary

Case	4a							
Total Plant Cost (2011\$/kW)	539							
Total Overnight Cost (2011\$/kW)	661							
Total As-spent Capital (2011\$/kW)	711							
COE ¹ Component Details (mills/kWh or \$/MWh)								
Capital	9.32							
Fixed O&M	2.73							
Variable O&M	1.56							
Fuel	35.56							
CO ₂ T&S total	0.00							
COE ¹ Total	49.17							
LCOE ¹ , total (including T&S)	62.32							

¹ Capacity factor assumed to be 85 percent

	Client: Project:	USDOE/NET Costing Supp			nalvaca					Report Date:	2011-Dec-15	
	Project:	Costing Supp		L PLAN	2		ARY					
	Case:	Case 4a - Ad			1 0001	50141141						
	Plant Size:	1108.1		Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	т созт
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$30,296	\$7,165	\$10,307	\$0	\$0	\$47,767	\$3,919	\$0	\$8,304	\$59,991	\$54
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5 A			• -	• •	• •	-			• •			
	GAS CLEANUP & PIPING	\$0	\$0	\$0	\$0	\$0	• •	+-	\$0	\$0		\$0
5B	CO2 REMOVAL & COMPRESSION	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other SUBTOTAL 6	\$180,000 \$0 \$180,000	\$0 \$1,221 \$1,221	\$10,386 \$1,320 \$11,706	\$0 \$0 \$0	\$0 \$0 \$0		\$15,722 \$213 \$15,934	\$0 \$0 \$0	\$20,611 \$551 \$21,161	\$3,304	\$205 \$3 \$208
7		\$100,000	Ψ1, 22 1	φ11,700	φυ	φU	\$152,521	\$13,33 4	φυ	φ 2 1,101	φ 2 30,023	φ200
	HRSG, DUCTING & STACK Heat Recovery Steam Generator	\$43.570	\$0	\$7.664	\$0	\$0	\$51,234	\$4.254	\$0	\$5.549	\$61.037	\$55
	SCR System, Ductwork and Stack SUBTOTAL 7	\$2,835 \$46,405	\$1,805 \$1,805	\$2,237 \$9,901	\$0 \$0	\$0 \$0	\$6,878	\$575	\$0 \$0	\$1,182 \$6,731	. ,	\$8 \$63
8	STEAM TURBINE GENERATOR											
-	Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$47,080 \$16,236 \$63,316	\$0 \$1,279 \$1,279	\$6,666 \$9,635 \$16,300	\$0 \$0 \$0	\$0 \$0 \$0	\$53,746 \$27,149 \$80,894	\$2,005	\$0 \$0 \$0	\$5,798 \$4,219 \$10,017	\$33,373	\$58 \$30 \$88
9	COOLING WATER SYSTEM	\$5,915	\$6,529	\$6,014	\$0	\$0	\$18,458	\$1,484	\$0	\$2,920	\$22,862	\$21
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT	\$30,710	\$7,327	\$16,565	\$0	\$0	\$54,601	\$4,095	\$0	\$6,259	\$64,956	\$59
12	INSTRUMENTATION & CONTROL	\$8,794	\$995	\$7,456	\$0	\$0	\$17,244	\$1,415	\$0	\$2,142	\$20,801	\$19
13	IMPROVEMENTS TO SITE	\$2,695	\$1,464	\$7,631	\$0	\$0	\$11,790	\$1,045	\$0	\$2,567	\$15,402	\$14
14	BUILDINGS & STRUCTURES	\$0	\$6,484	\$6,884	\$0	\$0	\$13,368	. ,	\$0	\$2,165	. ,	\$15
	TOTAL COST	\$368,131	\$34,268	\$92,764	\$0	\$0	. ,	. ,	\$0	\$62,267		\$539

Exhibit 6-9 Case 4a - Advanced/Future turbine without CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	l							Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	г соѕт	SUMM	ARY					
	Case:	Case 4a - Ac	lvFuture									
	Plant Size:	1108.1	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING											
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
3	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$3,825	\$3,961	\$3,235	\$0	\$0	\$11,022	\$887	\$0	\$1,786	+ - ,	\$1
	Water Makeup & Pretreating	\$2,278	\$235	\$1,169	\$0	\$0	\$3,683	\$304	\$0	\$797	, ,	\$
	Other Feedwater Subsystems	\$1,792	\$592	\$495	\$0	\$0	\$2,879		\$0	\$465	1 -)	\$
	Service Water Systems	\$275	\$549	\$1,768	\$0	\$0	\$2,591	\$220	\$0	\$562	. ,	\$
	Other Boiler Plant Systems	\$1,854	\$693	\$1,593	\$0	\$0	\$4,140	\$337	\$0	\$672		\$
	Natural Gas, incl. pipeline	\$17,845	\$917	\$794	\$0	\$0	\$19,556	\$1,614	\$0	\$3,175	\$24,345	\$2
3.7	Waste Treatment Equipment	\$796	\$0	\$461	\$0	\$0	\$1,256	\$108	\$0	\$273	\$\$1,638	\$
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,630	\$218	\$792	\$0	\$0	\$2,640	\$226	\$0	\$573	\$ \$3,439	\$
	SUBTOTAL 3.	\$30,296	\$7,165	\$10,307	\$0	\$0	\$47,767	\$3,919	\$0	\$8,304	\$59,991	\$5
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5B	CO2 REMOVAL & COMPRESSION							-				
5B.1	CO2 Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	CO2 Compression & Drying	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		\$
6	COMBUSTION TURBINE/ACCESSORIES	• •	• •	• •	• -	• -	, .	• •	• -	• •		
6.1	Combustion Turbine Generator	\$180,000	\$0	\$10,386	\$0	\$0	\$190,386	\$15,722	\$0	\$20,611	\$226,719	\$20
6.2	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$, \$C		\$
	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C		\$
	Combustion Turbine Foundations	\$0	\$1,221	\$1,320	\$0	\$0	\$2,541	\$213	\$0 \$0	\$551		\$
	SUBTOTAL 6.	\$180,000	\$1,221	\$11,706	\$0	\$0	\$192,927	\$15,934	\$0	\$21,161		\$2 0

Exhibit 6-10 Case 4a - Advanced/Future turbine without CO₂ capture capital cost estimate detail

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 4a - Ad	-			001111						
	Plant Size:	1108.1		Ectim	ato Tuno:	Conceptual		Cost	Bass (lum)	2011	(\$x1000)	
	Flant Size.		,						Base (Jun)		(, ,	
Acct		Equipment		Lab	-	Sales	Bare Erected	Eng'g CM		ngencies	TOTAL PLAN	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK											
	Heat Recovery Steam Generator	\$43,570	\$0	\$7,664	\$0		\$51,234	\$4,254	\$0	\$5,549	· · · · · ·	\$55
=	HRSG Accessories	\$2,835	\$1,191	\$1,661	\$0		\$5,686		\$0	\$924	· /	\$6
_	Ductwork	\$0	\$0	\$0	\$0	+ -	\$0		\$0	\$0		\$0
	Stack	\$0	\$0	\$0	\$0		\$0	¥ -	\$0	\$0	1.5	\$0
7.9	HRSG,Duct & Stack Foundations	\$0	\$615	\$577	\$0		\$1,191	\$99	\$0	\$258		\$1
	SUBTOTAL 7.	\$46,405	\$1,805	\$9,901	\$0	\$0	\$58,111	\$4,830	\$0	\$6,731	\$69,673	\$63
-	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$47,080	\$0	\$6,666	\$0	+ -	\$53,746	· / -	\$0	\$5,798		\$58
-	Turbine Plant Auxiliaries	\$271	\$0	\$618	\$0		\$889	\$76	\$0	\$97	1)	
	Condenser & Auxiliaries	\$3,490	\$0	\$1,850	\$0	, -	\$5,340		\$0	\$579	. ,	\$6
	Steam Piping	\$12,474	\$0	\$5,056	\$0	, -	\$17,530		\$0	\$2,809	. ,	\$19
8.9	TG Foundations	\$0	\$1,279	\$2,111	\$0	+ -	\$3,390		\$0	\$735	. ,	\$4
	SUBTOTAL 8.	\$63,316	\$1,279	\$16,300	\$0	\$0	\$80,894	\$6,240	\$0	\$10,017	\$97,151	\$88
-	COOLING WATER SYSTEM											
	Cooling Towers	\$3,470	\$0	\$1,060	\$0	, -	\$4,530		\$0	\$491	+ - ,	• -
	Circulating Water Pumps	\$1,683	\$0	\$106	\$0	+ -	\$1,789		\$0	\$193	+ , -	
	Circ.Water System Auxiliaries	\$138	\$0	\$18	\$0		\$156	· -	\$0	\$17		
	Circ.Water Piping	\$0	\$4,271	\$967	\$0	1 -	\$5,238		\$0	\$845		
	Make-up Water System	\$350	\$0	\$449	\$0	1 -	\$799		\$0	\$130		
	Component Cooling Water Sys	\$275	\$329	\$211	\$0	+ -	\$814	\$65	\$0	\$132		\$1
9.9	Circ.Water System Foundations	\$0	\$1,929	\$3,203	\$0	, -	\$5,132		\$0	\$1,113		\$6
	SUBTOTAL 9.	\$5,915	\$6,529	\$6,014	\$0	\$0	\$18,458	\$1,484	\$0	\$2,920	\$22,862	\$21
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	ACCESSORY ELECTRIC PLANT											
	Generator Equipment	\$7,429	\$0	\$4,395	\$0		\$11,824		\$0	\$960	\$13,755	
	Station Service Equipment	\$2,217	\$0	\$191	\$0	• -	\$2,408		\$0	\$195	· /· ·	\$3
	Switchgear & Motor Control	\$2,728	\$0	\$474	\$0	• -	\$3,202		\$0	\$347	v - y -	• -
	Conduit & Cable Tray	\$0	\$1,426	\$4,107	\$0	÷ •	\$5,533	\$461	\$0	\$899		
_	Wire & Cable	\$0	\$4,581	\$2,605	\$0	• -	\$7,186		\$0	\$1,143		\$8
	Protective Equipment	\$0	\$1,075	\$3,732	\$0	• -	\$4,807	\$413	\$0	\$522	. ,	
	Standby Equipment	\$168	\$0	\$157	\$0	· -	\$325	\$27	\$0	\$35		\$0
	Main Power Transformers	\$18,167	\$0	\$284	\$0		\$18,451	\$1,253	\$0	\$1,970		\$20
11.9	Electrical Foundations	\$0	\$244	\$622	\$0		\$866	• -	\$0	\$188	• ,	\$1
	SUBTOTAL 11.	\$30,710	\$7,327	\$16,565	\$0	\$0	\$54,601	\$4,095	\$0	\$6,259	\$64,956	\$59

Exhibit 6-10 Case 4a - Advanced/Future turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ		T COST	SUMM	ARY					
	Case:	Case 4a - Ad	lvFuture									
	Plant Size:	1108.1	MW,net	Estin	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contir	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$C
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,118	\$0	\$712	\$0	\$0	\$1,830	\$154	\$0	\$298	\$2,281	\$2
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$334	\$0	\$204	\$0	\$0	\$538	\$45	\$0	\$88	\$671	\$1
12.7	Computer & Accessories	\$5,348	\$0	\$163	\$0	\$0	\$5,511	\$452	\$0	\$596	\$6,560	\$6
12.8	Instrument Wiring & Tubing	\$0	\$995	\$1,760	\$0	\$0	\$2,755	\$198	\$0	\$443	\$3,396	\$3
12.9	Other I & C Equipment	\$1,994	\$0	\$4,616	\$0	\$0	\$6,609	\$566	\$0	\$718	\$7,893	\$7
	SUBTOTAL 12.	\$8,794	\$995	\$7,456	\$0	\$0	\$17,244	\$1,415	\$0	\$2,142	\$20,801	\$19
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$144	\$3,059	\$0	\$0	\$3,203	\$280	\$0	\$697	\$4,179	\$4
13.2	Site Improvements	\$0	\$1,320	\$1,744	\$0	\$0	\$3,064	\$272	\$0	\$667	\$4,004	\$4
13.3	Site Facilities	\$2,695	\$0	\$2,828	\$0	\$0	\$5,523	\$492	\$0	\$1,203	\$7,218	\$7
	SUBTOTAL 13.	\$2,695	\$1,464	\$7,631	\$0	\$0	\$11,790	\$1,045	\$0	\$2,567	\$15,402	\$14
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$431	\$228	\$0	\$0	\$659	\$51	\$0	\$106	\$816	\$1
14.2	Steam Turbine Building	\$0	\$3,113	\$4,141	\$0	\$0	\$7,254	\$583	\$0	\$1,176	\$9,013	\$8
14.3	Administration Building	\$0	\$685	\$464	\$0	\$0	\$1,149	\$89	\$0	\$186	\$1,424	\$
14.4	Circulation Water Pumphouse	\$0	\$229	\$113	\$0	\$0	\$342	\$26	\$0	\$55	\$423	\$0
14.5	Water Treatment Buildings	\$0	\$484	\$441	\$0	\$0	\$924	\$73	\$0	\$150	\$1,147	\$1
14.6	Machine Shop	\$0	\$594	\$380	\$0	\$0	\$974	\$76	\$0	\$157	\$1,207	\$
14.7	Warehouse	\$0	\$384	\$231	\$0	\$0	\$615	\$48	\$0	\$99	\$762	\$1
14.8	Other Buildings & Structures	\$0	\$115	\$84	\$0	\$0	\$199	\$16	\$0	\$32	\$246	\$0
14.9	Waste Treating Building & Str.	\$0	\$450	\$803	\$0	\$0	\$1,252	\$102	\$0	\$203	\$1,557	\$
	SUBTOTAL 14.	\$0	\$6,484	\$6,884	\$0	\$0	\$13,368	\$1,064	\$0	\$2,165	\$16,596	\$15
	TOTAL COST	\$368,131	\$34,268	\$92,764	\$0	\$0	\$495,163	\$40,026	\$0	\$62,267	\$597,455	\$539

Exhibit 6-10 Case 4a - Advanced/Future turbine without CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	DST SU	MMARY					
	Case:	Case 4a - Ad	lvFuture								
	Plant Size:	1108.1	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLANT	COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	TOTAL COST	\$368,131	\$34,268	\$92,764	\$0	\$495,163	\$40,026	\$0	\$62,267	\$597,455	\$539
	Owner's Costs										
	Preproduction Costs									AE 077	.
	6 Months All Labor 1 Month Maintenance Materials									\$5,277 \$909	\$5 ¢1
	1 Month Maintenance Materials										\$1
										\$349	\$0 ©
	1 Month Waste Disposal 25% of 1 Months Fuel Cost at 100% CF									\$0	\$0 ¢0
	25% of T Months Fuel Cost at 100% CF 2% of TPC									\$7,192 \$11,949	\$6 \$11
	Total									\$25,676	\$23
	Inventory Capital									<i>4</i> 20,010	4 20
	60 day supply of consumables at 100% CF									\$454	\$0
	0.5% of TPC (spare parts)									\$2,987	\$3
	Total									\$3,441	\$3
	Initial Cost for Catalyst and Chemicals									\$0	\$0
	Land									\$300	\$0
	Other Owner's Costs									\$89,618	\$81
	Financing Costs									\$16,131	\$15
	Total Overnight Costs (TOC)									\$732,622	\$661
	TASC Multiplier							(IOU, low-ri	sk, 33 year)	1.075	
	Total As-Spent Cost (TASC)								- /	\$787,568	\$711

Exhibit 6-10 Case 4a - Advanced/Future turbine without CO₂ capture capital cost estimate detail (continued)

	ANNUAL O&	MEXPENS	ES		Cost Base (Jun)	2011
Case 4a - AdvFuture				Heat Rate	e-net (Btu/kWh):	5,801
					MWe-net:	1108
				Сара	acity Factor (%):	85
<u>OPERATING & M</u> Operating Labor	AINTENANCE	LABOR				
Operating Labor Rate(base):	39.70	\$/bour				
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:		% of labor				
Labor O-IT Charge Nate.	23.00		Tatal			
			Total			
Skilled Operator	1.0		1.0			
Operator	2.0		2.0			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	5.0		5.0			
					<u>Annual Cost</u>	Annual Unit Cos
					<u>\$</u>	<u>\$/kW-net</u>
Annual Operating Labor Cost					\$2,260,518	\$2.040
Maintenance Labor Cost					\$6,182,298	\$5.579
Administrative & Support Labor					\$2,110,704	\$1.905
Property Taxes and Insurance					\$11,949,102	\$10.783
TOTAL FIXED OPERATING COST	ГS				\$22,502,622	\$20.307
ARIABLE OPERATING COSTS						
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$9,273,447	\$0.00112
Consumables	Consun	nption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	Cost		
Water (/1000 gallons)	0.00	2,396.88	1.67	\$0	\$1,244,836	\$0.00015
Chemicals		,				·
MU & WT Chem.(lbs)	0.00	14,279.92	0.27	\$0	\$1,186,619	\$0.00014
MEA Solvent (ton)	0.00	0.00	3,481.91	\$0 \$0	\$1,100,019	\$0.00000
	0.00		1.63			\$0.00000
Activated Carbon (lb) Corrosion Inhibitor	0.00	0.00 0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000
				\$0 ©0		
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0 \$0	\$274,977 \$252,720	\$0.00003
Ammonia (19% NH3) (ton) Subtotal Chemicals	0.00	8.34	330.00	\$0 \$0	\$853,789	\$0.00010
				\$0	\$2,315,386	\$0.00028
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Waste Disposal				\$0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products	0.00	0.00	0.00	<u>\$0</u>	<u>\$0</u>	\$0.00000
TOTAL VARIABLE OPERATING	20979			\$0 \$0	\$12,833,669	\$0.00155
		454 004				
Fuel (MMBtu)	0	154,281	6.13	\$0	\$293,415,837	\$0.03554

Exhibit 6-11 Case 4a - Advanced/Future turbine without CO_2 capture operating cost estimate

6.2 Case 4b – NGCC with CO₂ Capture Modeling Results

The block flow diagram of the combined cycle with CO_2 capture is shown in Exhibit 6-12. This case also uses the same generic "X" frame gas turbine model as that of Case 4a with the addition of CO_2 capture at the back end. Exhibit 6-13 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4)

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,708°C (3,107°F). The flue gas exits the turbine at 638°C (1,182°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 113°C (235°F) and passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance is not impacted due to the CO_2 capture addition. However, the Rankine cycle performance and the overall plant output and efficiency are reduced due to heat integration requirements and increased auxiliary loads for the CO_2 capture process.

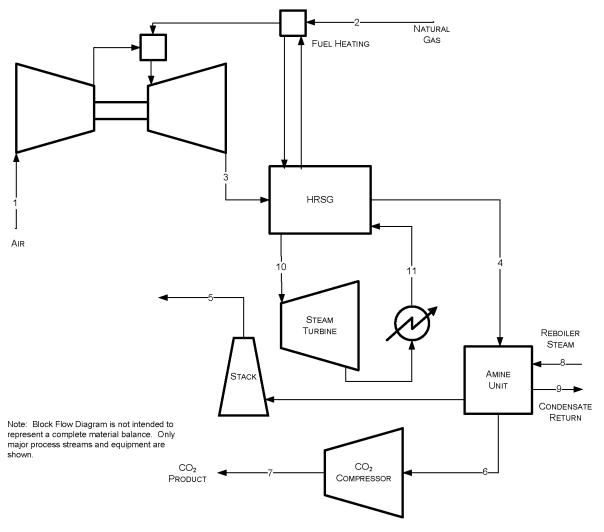


Exhibit 6-12 Case 4b – Advanced/Future turbine with CO₂ capture block flow diagram

Source: NETL

	1	2	3	4	5	6	7	8	9	10	11
V-L Mole Fraction											
Ar	0.0092	0.0000	0.0089	0.0089	0.0098	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0404	0.0499	0.0055	0.9674	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0099	0.0000	0.0867	0.1052	0.0555	0.0326	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7732	0.0160	0.7432	0.7358	0.8176	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.1209	0.1004	0.1115	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0001	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	149,503	7,483	156,578	157,188	141,480	7,294	7,057	20,639	17,887	32,069	20,639
V-L Flowrate (kg/hr)	4,314,208	129,655	4,443,863	4,443,699	3,977,007	314,829	310,584	371,819	371,819	577,732	371,819
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
		1	1	1					1	1	
Temperature (°C)	15	38	639	113	35	35	38	152	151	593	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	0.10	0.17	15.27	0.51	0.49	16.65	0.00
Enthalpy (kJ/kg) ^A	30.96	52,530.38	886.90	287.73	116.31	91.58	-164.90	2,746.79	635.72	3,547.62	2,375.54
Density (kg/m ³)	1.2	22.2	0.4	0.8	0.9	2.9	653.5	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.857	17.328	28.381	28.270	28.110	43.160	44.010	18.015	18.015	18.015	18.015
V-L Flowrate (lb _{mol} /hr)	329,598	16.496	345,196	346.540	311,910	16.082	15,558	45,501	39,435	70,700	45,501
	,	-,	,	,		-,	,	,	,	-,	,
V-L Flowrate (lb/hr)	9,511,200	285,840	, ,	9,796,680	, ,	694,080	684,720	819,720	819,720	1,273,680	819,720
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	100	1,182	235	95	95	101	306	304	1,100	90
Pressure (psia)	14.6	600.0	15.2	14.7	14.7	25.0	2,214.7	73.5	71.0	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.3	22,584.0	381.3	123.7	50.0	39.4	-70.9	1,180.9	273.3	1,525.2	1,021.3
Density (lb/ft ³)	0.076	1.384	0.025	0.052	0.056	0.183	40.800	0.169	57.172	2.977	61.982
		nce conditio									

Exhibit 6-13 Case 4b – Advanced/Future turbine with CO₂ capture stream table

A - Reference conditions are 32.02 F & Liquid Water

Note: Total flow rates shown equal the sum for all process trains

6.2.1 Performance Results

The performance results are summarized in Exhibit 6-14 and when compared with Case 4a show that adding carbon capture reduces the efficiency by approximately 7 percentage points (similar results as determined for Case 1). This is based on using an assumed advanced solvent process that has a lower steam requirement for the reboiler of 2,960 kJ/kg CO₂ (1,272 Btu/lb CO₂) or 17 percent lower when compared with earlier NETL/DOE system studies (i.e., 3,560 kJ/kg CO₂ (1,530 Btu/lb CO₂)). Additional tables below provide overall energy balance (Exhibit 6-15), water balance (Exhibit 6-16), carbon balance (Exhibit 6-17), and an emissions summary (Exhibit 6-18).

Plant	Output	
Gas Turbine Power	810,862	kW _e
Steam Turbine Power	252,770	kW _e
Total	1,063,632	kW _e
Auxilia	ry Load	
Condensate Pumps	13	kW _e
Boiler Feedwater Pumps	6,902	kW _e
Amine CO ₂ Capture System Auxiliaries	19,249	kW _e
CO ₂ Compression	29,183	kW _e
Circulating Water Pump	5,520	kW _e
Ground Water Pumps	450	kW _e
Cooling Tower Fans	3,675	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,097	kW _e
Steam Turbine Auxiliaries	540	kW _e
Miscellaneous Balance of Plant ²	3,157	kW _e
Transformer Losses	5,318	kW _e
Total	75,114	kW _e
Plant Per	formance	
Net Plant Power	988,518	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	52.5%	
Net Plant Efficiency (LHV) ¹	58.1%	
Net Plant Heat Rate (HHV) ¹	6,862 (6,503)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	6,193 (5,870)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	129,655 (285,840)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,884,103	kWt
Thermal Input (LHV) ¹	1,700,644	kWt
Condenser Duty	833 (790)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	18.9 (5.006)	m ³ /min (gpm)
Raw Water Consumption	15.4 (4,063)	m ³ /min (gpm)

Exhibit 6-14 Case 4b – Advanced/Future turbine with CO₂ capture plant performance summary (Values shown are for total 2x2x1 system)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	HHV	Sensible + Latent	Power	Total			
	Energy	n, GJ/hr (MMBtu/hr)					
Natural Gas	6,783 (6,429)	4.5 (4.3)	0 (0)	6,787 (6,433)			
GT Air	0 (0)	133.6 (126.6)	0 (0)	134 (127)			
Raw Water Withdrawal	0 (0)	71.3 (67.5)	0 (0)	71 (68)			
Auxiliary Power	0 (0)	0.0 (0.0)	270 (256)	270 (256)			
TOTAL	6,783 (6,429)	209.4 (198.4)	270 (256)	7,263 (6,884)			
Energy Out, GJ/hr (MMBtu/hr)							
Cooling Tower Blowdown	0 (0)	35.9 (34.0)	0 (0)	36 (34)			
Stack Gas	0 (0)	463 (438)	0 (0)	463 (438)			
Condenser	0 (0)	833 (790)	0 (0)	833 (790)			
CO ₂ Product	0 (0)	-51.2 (-48.5)	0 (0)	-51 (-49)			
CO ₂ Intercoolers	0 (0)	144.4 (136.8)	0 (0)	144 (137)			
Amine System Losses	0 (0)	1,233.8 (1,169.4)	0 (0)	1,234 (1,169)			
Process Losses*	0 (0)	775 (734)	0 (0)	775 (734)			
Power	0 (0)	0.0 (0.0)	3,829 (3,629)	3,829 (3,629)			
TOTAL	0 (0)	3,433 (3,254)	3,829 (3,629)	7,263 (6,884)			

Exhibit 6-15 Case 4b – Advanced/Future turbine with CO₂ capture overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m³/min (gpm)	Raw Water Withdrawal, m³/min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.08 (20)	0.00 (0)	0.08 (20)	0.0 (0)	0.08 (20)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.1 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	21.5 (5,674)	2.7 (703)	18.82 (4,971)	3.6 (943)	15.2 (4,027)
BFW Blowdown	0.00 (0)	0.06 (15)	-0.06 (-15)	0.00 (0)	0.00 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	2.6 (688)	-2.61 (-688)	0.00 (0)	0.00 (0)
Total	21.6 (5,709)	2.66 (703)	18.9 (5,006)	3.6 (943)	15.4 (4,063)

Exhibit 6-16 Case 4b – Advanced/Future turbine with CO₂ capture water balance

Exhibit 6-17 Case 4b – Advanced/Future turbine with CO₂ capture carbon balance

Carbon In, kg/h	r (lb/hr)	Carbon Out, kg/hr (lb/hr)		
Natural Gas	93,648 (206,459)	Stack Gas	9,419 (20,766)	
Air (CO ₂)	587 (1,293)	CO ₂ Product	84,763 (186,871)	
		Convergence Tolerance*	52 (115)	
Total 94,235 (207,752)		Total	94,235 (207,752)	

*by difference

	Kg/GJ (Ib/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.003 (0.006)	133 (146)	0.017 (0.037)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	256,988 (283,281)	32 (72)
			35 (77)

Emissions are estimated based on user input specifications to models.

Exhibit 6-18 Case 4b – Advanced/Future turbine with CO₂ capture air emissions

¹ CO₂ emissions based on net power instead of gross power

6.2.2 Major Equipment List

This section contains the equipment list corresponding to the advanced/future turbine design with CO_2 capture plant configuration for case 4b. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Account 3 - Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	446,682 liters (118,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	6,852 lpm @ 6 m H ₂ O (1,810 gpm @ 20 ft H ₂ O)	2 (1)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with interstage bleed for IP and LP feedwater	HP water: 5,375 lpm @ 1,887 m H ₂ O (1,420 gpm @ 6,190 ft H ₂ O) IP water: 7,003 lpm @ 543 m H ₂ O (1,850 gpm @ 1,780 ft H ₂ O)	2 (1)
			LP water: 606 lpm @ 0.0 m H ₂ O (160 gpm @ 00 ft H ₂ O)	

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H₂O (1,000 gpm @ 350 ft H₂O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H ₂ O (700 gpm @ 250 ft H ₂ O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	10,560 lpm @ 18 m H₂O (2,800 gpm @ 60 ft H₂O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	235 lpm @ 49 m H ₂ O (62 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	223,341 liter (59,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro-deionization unit	530 lpm (140 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	107 m ³ /min @ 4.1 MPa (3,785 acfm @ 600 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		107 m ³ /min (3,785 acfm)	1 (0)

Account 4 – Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Amine CO ₂ Capture System	Amine-based CO ₂ capture technology	2,443,960 kg/hr (5,388,000 lb/hr) 7.8 wt % CO ₂ concentration	2 (0)
2	CO ₂ Compressor	Integrally geared, multi- stage centrifugal	171,005 kg/hr @ 15.3 MPa (377,000 lb/hr @ 2,215 psia)	2 (0)

Account 5B – CO₂ Capture and Compression

Account 6 – Combustion Turbine Generators and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Gas Turbine	Advanced Future w/ dry low-NOx burner	400 MW	2 (0)
2	Gas Turbine Generator	TEWAC	440 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 8.0 m (26 ft) diameter	2 (0)
2	Heat Recovery Steam Generator	Drum, multi- pressure with economizer section and integral deaerator	Main steam - 317,753 kg/h, 16.5 MPa/593°C (700,524 lb/h, 2,400 psig/1,100°F) Reheat steam - 364,814 kg/h, 2.4 MPa/593°C (804,276 lb/h, 345 psig/1,100°F)	2 (0)
3	SCR Reactor	Space for spare layer	2,186,316 kg/h (4,820,000 lb/h)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5	Dilution Air Blowers	Centrifugal	15 m ³ /min @ 107 cm WG (530 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H ₂ O (1 gpm @ 300 ft H ₂ O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	90,851 liter (24,000 gal)	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	266 MW 16.5 MPa/596°C/596°C (2,400 psig/ 1,100°F/1,100°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	300 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	917 GJ/hr, (870 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	552,674 lpm @ 30.5 m (146,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 3,083 MMkJ/hr (2,924 MMBtu/hr) heat load	1 (0)

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	CTG Transformer	Oil-filled	24 kV/345 kV, 440 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 250 MVA, 3-ph, 60 Hz	1 (0)
3	High Voltage Auxiliary Transformer	Oil-filled	345 kV/13.8 kV, 16 MVA, 3-ph, 60 Hz	2 (0)
4	Medium Voltage Transformer	Oil-filled	24 kV/4.16 kV, 45 MVA, 3-ph, 60 Hz	1 (1)
5	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 7 MVA, 3-ph, 60 Hz	1 (1)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
6	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)
7	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)
8	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
9	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
10	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Account 12 – Instrumentation and Control

Equipment No.	Description	Description Type Design Condition						
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)				
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)				
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)				

6.2.3 Cost Estimate Results

Capital and operating costs for Cases 4b using the advanced future turbine design were estimated by WorleyParsons based on simulation results, costing software, and vendor quotes/discussions on the projections of advanced machine designs from multiple vendors. All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 6-19. The summary and detailed capital cost estimates are shown in Exhibit 6-20 and Exhibit 6-21, respectively. The annual operating cost estimates are shown in Exhibit 6-22.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Case	4b			
Total Plant Cost (2011\$/kW)	1,041			
Total Overnight Cost (2011\$/kW)	1,271			
Total As-spent Capital (2011\$/kW)	1,370			
COE ¹ Component Details (mills/kWh or \$/MWh)				
Capital	18.95			
Fixed O&M	4.77			
Variable O&M	2.63			
Fuel	39.86			
CO ₂ T&S total	3.14			
COE ¹ Total	69.35			
LCOE ¹ , total (including T&S)	87.91			
Cost ^{1,2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	73.00 (66.22)			
Cost ^{1,2} of CO ₂ captured, \$/tonne of CO ₂ (\$/ton of CO ₂)	54.23 (49.20)			

Exhibit 6-19 Case 4b – Advanced/Future turbine with CO_2 capture cost estimation summary

¹ Capacity factor assumed to be 85 percent ² Reference base case is 4a – Advanced/Future without capture

	Client:	USDOE/NET								Report Date:	2011-Dec-15	
	Project:	Costing Supp			,							
			_	L PLAN	I COSI	SOMM	ARY					
	Case: Plant Size:	Case 4b - Ad	IvFuture CCS MW,net		ato Typo:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab		Sales	Bare Erected	Eng'g CM	. ,	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	1	\$0	\$0	\$0	\$(
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
3	FEEDWATER & MISC. BOP SYSTEMS	\$32,122	\$7,666	\$12,008	\$0	\$0	\$51,797	\$4,253	\$0	\$9,101	\$65,151	\$6
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
5 A		\$0	• •	\$0 \$0	• -	\$0 \$0			• •			
	GAS CLEANUP & PIPING	1 1	\$0		\$0			· ·	\$0	\$0		
	CO2 REMOVAL & COMPRESSION	\$207,455	\$0	\$65,446	\$0	\$0	\$272,901	\$22,781	\$46,655	\$68,467	\$410,805	\$41
6.1	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Other	\$180,000 \$0	\$0 \$1,221	\$10,386 \$1,320	\$0 \$0	\$0 \$0		\$213	\$0 \$0	\$20,611 \$551	\$3,304	\$
	SUBTOTAL 6	\$180,000	\$1,221	\$11,706	\$0	\$0	\$192,927	\$15,934	\$0	\$21,161	\$230,023	\$23
7.1	HRSG, DUCTING & STACK Heat Recovery Steam Generator SCR System, Ductwork and Stack SUBTOTAL 7	\$42,250 \$2,835 \$45,085	\$0 \$1,769 \$1,769	\$7,433 \$2,203 \$9,636	\$0 \$0 \$0	\$0 \$0 \$0	\$49,683 \$6,806 \$56,489	\$569	\$0 \$0 \$0	\$5,381 \$1,167 \$6,548	\$8,543	\$
8.1	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$38,960 \$14,928 \$53,888	\$0 \$1,075 \$1,075	\$6,339 \$8,692 \$15,031	\$0 \$0 \$0	\$0 \$0 \$0	\$45,299 \$24,695 \$69,994	\$1,799	\$0 \$0 \$0	\$4,887 \$3,896 \$8,783	\$30,390	\$3
9	COOLING WATER SYSTEM	\$8,491	\$8,975	\$8,319	\$0	\$0	\$25,785	\$2,074	\$0	\$4,055	\$31,914	\$32
10	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
11	ACCESSORY ELECTRIC PLANT	\$37,577	\$10,465	\$21,929	\$0	\$0	\$69,971	\$5,255	\$0	\$8,119	\$83,345	\$8
12	INSTRUMENTATION & CONTROL	\$9,734	\$1,101	\$8,253	\$0	\$0	\$19,089	\$1,566	\$954	\$2,481	\$24,090	\$2
13	IMPROVEMENTS TO SITE	\$2,748	\$1,493	\$7,781	\$0	\$0	\$12,022	\$1,065	\$0	\$2,617	\$15,704	\$1
14	BUILDINGS & STRUCTURES	\$0	\$6,292	\$6,536	\$0	\$0	\$12,829	\$1,020	\$0	\$2,077	\$15,926	\$1
	TOTAL COST	\$577,102	\$40,057	\$166,644	\$0	\$0	\$783,803	\$64,019	\$47,610	\$133,410	\$1,028,841	\$1,04 [,]

Exhibit 6-20 Case 4b – Advanced/Future turbine with CO₂ capture capital cost estimate summary

	Client:	USDOE/NET	l						F	Report Date:	2011-Dec-15	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 4b - Ac	VFuture CCS	8								
	Plant Size:	988.5	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	ntingencies	то	TAL PLANT CO	DST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING											
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
3	FEEDWATER & MISC. BOP SYSTEMS											
	Feedwater System	\$3,850	\$3,987	\$3,256	\$0	\$0	\$11,093	\$893	\$0	\$1,798		\$14
	Water Makeup & Pretreating	\$3,044	\$315	\$1,562	\$0	\$0	1 1-	\$406	\$0	\$1,065		\$
	Other Feedwater Subsystems	\$1,804	\$596	\$498	\$0	\$0	\$2,898	\$224	\$0	\$468	\$3,590	\$4
	Service Water Systems	\$368	\$733	\$2,361	\$0	\$0	\$3,462	\$294	\$0	\$751	\$4,508	\$
3.5	Other Boiler Plant Systems	\$2,477	\$925	\$2,129	\$0	\$0	\$5,530	\$450	\$0	\$897	\$6,878	\$
3.6	Natural Gas, incl. pipeline	\$17,827	\$884	\$765	\$0	\$0	\$19,477	\$1,607	\$0	\$3,163	\$24,247	\$2
3.7	Waste Treatment Equipment	\$1,063	\$0	\$615	\$0	\$0	\$1,679	\$145	\$0	\$365	\$2,188	\$2
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,690	\$226	\$821	\$0	\$0	\$2,736	\$234	\$0	\$594	\$3,564	\$4
	SUBTOTAL 3.	\$32,122	\$7,666	\$12,008	\$0	\$0	\$51,797	\$4,253	\$0	\$9,101	\$65,151	\$6
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
	SUBTOTAL 5.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5B	CO2 REMOVAL & COMPRESSION	-										
5B.1	CO2 Removal System	\$179,258	\$0	\$54,018	\$0	\$0	\$233,276	\$19,464	\$46,655	\$59,879	\$359,273	\$36
	CO2 Compression & Drying	\$28,198	\$0	\$11,428	\$0	\$0	\$39,626	\$3,317	\$0	\$8,589		\$5
	SUBTOTAL 5.	\$207,455	\$0	\$65,446	\$0	\$0	\$272,901	\$22,781	\$46,655	\$68,467	\$410,805	\$41
6	COMBUSTION TURBINE/ACCESSORIES						. ,	. , -				
6.1	Combustion Turbine Generator	\$180,000	\$0	\$10,386	\$0	\$0	\$190,386	\$15,722	\$0	\$20,611	\$226,719	\$22
6.2	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	. ,	\$0	\$0	\$0	. ,	· \$
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0		\$
	Combustion Turbine Foundations	\$0	\$1,221	\$1,320	\$0	\$0		\$213	\$0	\$551		\$
	SUBTOTAL 6.	\$180,000	\$1,221	\$11,706	\$0	\$0		\$15,934	\$0	\$21,161		\$23

Exhibit 6-21 Case 4b – Advanced/Future turbine with CO₂ capture capital cost estimate detail

	Client:	USDOE/NET	L						I	Report Date:	2011-Dec-15	
	Project:	Costing Supp	oort for NGCC	with CCS A	nalyses							
	-		τοτα	L PLAN	COST		ARY					
	•	0 41 4	_			00000						
	Case:	Case 4b - Ad						- · ·		0011	(0.4000)	
	Plant Size:	988.5	MW,net	Estim	ate Type:	Conceptual			Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Labor		Sales	Bare Erected		ntingencies		TAL PLANT CO	
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee	Process	Project	\$	\$/kW
7	HRSG, DUCTING & STACK											
7.1	Heat Recovery Steam Generator	\$42,250	\$0	\$7,433	\$0	\$0	\$49,683	\$4,126	\$0	\$5,381	\$59,189	\$60
7.2	HRSG Accessories	\$2,835	\$1,191	\$1,661	\$0	\$0	\$5,686	\$476	\$0	\$924	\$7,087	\$7
7.3	Ductwork	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
	Stack	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
7.9	HRSG, Duct & Stack Foundations	\$0	\$578	\$542	\$0	\$0	\$1,120	\$93	\$0	\$243		
	SUBTOTAL 7.	\$45,085	\$1,769	\$9,636	\$0	\$0	\$56,489	\$4,695	\$0	\$6,548	\$67,732	\$69
8	STEAM TURBINE GENERATOR											
8.1	Steam TG & Accessories	\$38,960	\$0	\$6,339	\$0	\$0	\$45,299	\$3,576	\$0	\$4,887	\$53,762	\$54
8.2	Turbine Plant Auxiliaries	\$251	\$0	\$558	\$0	\$0	\$809	\$69	\$0	\$88	\$966	\$1
8.3	Condenser & Auxiliaries	\$2,190	\$0	\$1,298	\$0	\$0	\$3,488	\$293	\$0	\$378	\$4,159	\$4
8.4	Steam Piping	\$12,487	\$0	\$5,061	\$0	\$0	\$17,548	\$1,196	\$0	\$2,812	\$21,555	\$22
8.9	TG Foundations	\$0	\$1,075	\$1,775	\$0	\$0	\$2,850	\$241	\$0	\$618	\$3,709	\$4
	SUBTOTAL 8.	\$53,888	\$1,075	\$15,031	\$0	\$0	\$69,994	\$5,375	\$0	\$8,783	\$84,152	\$85
9	COOLING WATER SYSTEM											
9.1	Cooling Towers	\$5,040	\$0	\$1,530	\$0	\$0	\$6,570	\$548	\$0	\$712	\$7,830	\$8
9.2	Circulating Water Pumps	\$2,438	\$0	\$162	\$0	\$0	\$2,600	\$198	\$0	\$280	\$3,078	\$3
9.3	Circ.Water System Auxiliaries	\$189	\$0	\$25	\$0	\$0	\$214	\$18	\$0	\$23	\$255	\$0
9.4	Circ.Water Piping	\$0	\$5,868	\$1,328	\$0	\$0	\$7,196	\$539	\$0	\$1,160	\$8,896	\$9
9.5	Make-up Water System	\$447	\$0	\$574	\$0	\$0	\$1,021	\$84	\$0	\$166	\$1,271	\$1
9.6	Component Cooling Water Sys	\$377	\$451	\$290	\$0	\$0	\$1,118	\$89	\$0	\$181	\$1,389	\$1
9.9	Circ.Water System Foundations	\$0	\$2,656	\$4,410	\$0	+ -	\$7,066	\$596	\$0	\$1,533		
	SUBTOTAL 9.	\$8,491	\$8,975	\$8,319	\$0	\$0	\$25,785	\$2,074	\$0	\$4,055	\$31,914	\$32
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$10,032	\$0	\$5,934	\$0	\$0	\$15,966	\$1,311	\$0	\$1,296	\$18,573	\$19
11.2	Station Service Equipment	\$3,379	\$0	\$290	\$0	\$0	\$3,670	\$302	\$0	\$298	\$4,270	\$4
11.3	Switchgear & Motor Control	\$4,158	\$0	\$722	\$0	\$0	\$4,880	\$404	\$0	\$528	\$5,813	\$6
	Conduit & Cable Tray	\$0	\$2,173	\$6,260	\$0	\$0	\$8,433	\$702	\$0	\$1,370	\$10,506	•
11.5	Wire & Cable	\$0	\$6,983	\$3,971	\$0	\$0	\$10,954	\$659	\$0	\$1,742	\$13,354	\$14
11.6	Protective Equipment	\$0	\$1,075	\$3,732	\$0	\$0	\$4,807	\$413	\$0	\$522	\$5,743	\$6
11.7	Standby Equipment	\$163	\$0	\$152	\$0	\$0	\$316	\$27	\$0	\$34	\$376	
11.8	Main Power Transformers	\$19,844	\$0	\$272	\$0	\$0	\$20,116	\$1,366	\$0	\$2,148	\$23,630	
11.9	Electrical Foundations	\$0	\$234	\$595	\$0	\$0	\$829	\$70	\$0	\$180	\$1,079	\$1
	SUBTOTAL 11.	\$37,577	\$10,465	\$21,929	\$0	\$0	\$69,971	\$5,255	\$0	\$8,119	\$83,345	\$84

Exhibit 6-21 Case 4b – Advanced/Future turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L							Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGCC	with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 4b - Ad	vFuture CCS	;								
	Plant Size:	988.5	MW,net	Estim	nate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Labor		Sales	Bare Erected	Eng'g CM	ntingencie	s TO	TAL PLANT CO	ST
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах		H.O.& Fee		Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL											
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,238	\$0	\$788	\$0	\$0	\$2,026	\$170	\$101	\$345	\$2,642	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$370	\$0	\$226	\$0	\$0	\$596	\$50	\$30	\$101	\$777	\$1
12.7	Computer & Accessories	\$5,920	\$0	\$181	\$0	\$0	\$6,101	\$501	\$305	\$691	\$7,597	\$8
12.8	Instrument Wiring & Tubing	\$0	\$1,101	\$1,949	\$0	\$0	\$3,050	\$219	\$152	\$513	\$3,935	\$4
12.9	Other I & C Equipment	\$2,207	\$0	\$5,109	\$0	\$0	\$7,316	\$626	\$366	\$831	\$9,139	\$9
	SUBTOTAL 12.	\$9,734	\$1,101	\$8,253	\$0	\$0	\$19,089	\$1,566	\$954	\$2,481	\$24,090	\$24
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$147	\$3,119	\$0	\$0	\$3,266	\$285	\$0	\$710	\$4,261	\$4
13.2	Site Improvements	\$0	\$1,346	\$1,778	\$0	\$0	\$3,124	\$278	\$0	\$680	\$4,083	\$4
13.3	Site Facilities	\$2,748	\$0	\$2,883	\$0	\$0	\$5,631	\$502	\$0	\$1,227	\$7,360	\$7
	SUBTOTAL 13.	\$2,748	\$1,493	\$7,781	\$0	\$0	\$12,022	\$1,065	\$0	\$2,617	\$15,704	\$16
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$431	\$228	\$0	\$0	\$659	\$51	\$0	\$106	\$816	\$1
14.2	Steam Turbine Building	\$0	\$2,699	\$3,591	\$0	\$0	\$6,290	\$506	\$0	\$1,019	\$7,816	\$8
14.3	Administration Building	\$0	\$705	\$477	\$0	\$0	\$1,182	\$92	\$0	\$191	\$1,465	\$1
14.4	Circulation Water Pumphouse	\$0	\$224	\$111	\$0	\$0	\$335	\$26	\$0	\$54	\$415	\$0
14.5	Water Treatment Buildings	\$0	\$646	\$589	\$0	\$0	\$1,235	\$97	\$0	\$200	\$1,532	\$2
14.6	Machine Shop	\$0	\$611	\$391	\$0	\$0	\$1,002	\$78	\$0	\$162	\$1,242	\$1
14.7	Warehouse	\$0	\$395	\$238	\$0	\$0	\$633	\$49	\$0	\$102	\$784	\$1
14.8	Other Buildings & Structures	\$0	\$118	\$86	\$0	\$0	\$204	\$16	\$0	\$33	\$253	\$0
14.9	Waste Treating Building & Str.	\$0	\$463	\$826	\$0	\$0	\$1,288	\$105	\$0	\$209	\$1,602	\$2
	SUBTOTAL 14.	\$0	\$6,292	\$6,536	\$0	\$0	\$12,829	\$1,020	\$0	\$2,077	\$15,926	\$16
	TOTAL COST	\$577,102	\$40,057	\$166,644	\$0	\$0	\$783,803	\$64,019	\$47,610	\$133,410	\$1,028,841	\$1,041

Exhibit 6-21 Case 4b – Advanced/Future turbine with CO₂ capture capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2011-Dec-15	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		Т	OTAL P	LANT CO	OST SU	MMARY					
	Case:	Case 4b - Ad	vFuture CCS	6							
	Plant Size:	988.5	MW,net	Estin	nate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	T COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee		Project	\$	\$/kW
	TOTAL COST	\$577,102	\$40,057	\$166,644	\$0	\$783,803	\$64,019	\$47,610	\$133,410	\$1,028,841	\$1,041
	Owner's Costs										
	Preproduction Costs										
	6 Months All Labor									\$7,268	\$7
	1 Month Maintenance Materials									\$1,289	\$1
	1 Month Non-fuel Consumables									\$606	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$7,192	\$7
	2% of TPC									\$20,577	\$21
	Total									\$36,931	\$37
	Inventory Capital										
	60 day supply of consumables at 100% CF									\$844	\$1
	0.5% of TPC (spare parts)									\$5,144	\$5
	Total									\$5,988	\$6
	Initial Cost for Catalyst and Chemicals									\$2,126	\$2
	Land									\$300	\$C
	Other Owner's Costs									\$154,326	\$156
	Financing Costs									\$27.779	\$28
	•									, , -	
	Total Overnight Costs (TOC)								riale 00 varsi	\$1,256,292	\$1,271
	TASC Multiplier							(IOU, nigh-	risk, 33 year)	1.078	¢4 270
	Total As-Spent Cost (TASC)									\$1,354,283	\$1,37

Exhibit 6-21 Case 4b – Advanced/Future turbine with CO₂ capture capital cost estimate detail (continued)

INITIAL & A	NNUAL O	&M EXPENS	ES	(Cost Base (Jun)	2011
Case 4b - AdvFuture CCS				Heat Rate	e-net (Btu/kWh):	6,503
					MWe-net:	989
				Capa	acity Factor (%):	85
OPERATING & M	AINTENANCI	<u>E LABOR</u>				
Operating Labor	20.70	ф //				
Operating Labor Rate(base):	39.70					
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	<u>1.0</u>		<u>1.0</u>			
TOTAL-O.J.'s	6.3		6.3			
					Annual Cost	Annual Unit Cos
					\$	\$/kW-net
Annual Operating Labor Cost					\$2, 8 61,816	\$2.895
Maintenance Labor Cost					\$8,766,960	\$8.869
Administrative & Support Labor					\$2,907,194	\$2.941
Property Taxes and Insurance					\$20,576,829	\$20.816
TOTAL FIXED OPERATING COST	ſS				\$35,112,799	\$35.521
VARIABLE OPERATING COSTS						·
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$13,150,441	\$0.00179
Consumables	Consu	mption	Unit	Initial Fill		
Consumables	Initial Fill	/Day	Cost	Cost		
					¢4 074 000	***
Water (/1000 gallons)	0.00	3,604.32	1.67	\$0	\$1,871,928	\$0.00025
Chemicals						
MU & WT Chem.(lbs)	0.00	21,473.49	0.27	\$0	\$1,784,385	\$0.00024
MEA Solvent (ton)	587.60	0.83	3,481.91	\$2,045,955	\$891,411	\$0.00012
Activated Carbon (lb)	0.00	985.72	1.63	\$0	\$497,027	\$0.00007
Corrosion Inhibitor	0.00	0.00	0.00	\$80,500	\$3,833	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0	\$274,977	\$0.00004
Ammonia (19% NH3) (ton)	0.00	8.34	330.00	\$0	\$853,789	\$0.00012
Subtotal Chemicals				\$2,126,455	\$4,305,423	\$0.00058
Other						
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0 \$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000
Subtotal Other	0.00	0.00	0.00	<u>\$0</u>	\$0	\$0.00000
Waste Disposal				֥		
•	0.00	0.00	0.00	ድጉ	ድጉ	¢0,0000
Flyash (ton)	0.00	0.00	0.00	\$0 \$0	\$0 \$0	\$0.00000 \$0.00000
Bottom Ash (ton)	0.00	0.00	0.00	\$0 \$0	\$0	\$0.00000
Subtotal Waste Disposal				\$ 0	\$0	\$0.00000
By-products						
Sulfur (tons)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
				CO 400 455	¢40 207 704	¢0,00262
TOTAL VARIABLE OPERATING (COSTS			\$2,126,455	\$19,327,791	\$0.00262

Exhibit 6-22 Case 4b – Advanced/Future turbine with CO₂ capture operating cost estimate

6.3 Case 4c - NGCC with CO_2 Capture and EGR Modeling Results

The block flow diagram of the combined cycle with CO_2 capture and EGR is shown in Exhibit 6-23. This case also uses the same generic "X" frame gas turbine model as that of Case 4a with the addition of EGR and CO_2 capture at the back end. Exhibit 6-24 provides process data for the numbered streams in the BFD. The BFD shows only one of the two GT/HRSG combinations, but the flow rates in the stream table are the total for two systems. The heat required for the solvent (amine) system in the CO_2 capture system is supplied from the Rankine cycle (stream 4) similar to case 4b.

Ambient air (stream 1) and natural gas (stream 2) are combined in the dry LNB, which is operated to control the rotor inlet temperature at 1,706°C (3,104°F). The flue gas exits the turbine at 647°C (1,197°F) (stream 3) and passes into the HRSG. The HRSG generates both the main steam and reheat steam for the steam turbine as well as the steam required for the capture process (stream 8). Flue gas exits the HRSG (stream 4) at 108°C (227°F). A portion of the stream (stream 6) is recycled back to the air inlet and the remainder (stream 4) passes to the capture system where the CO_2 is captured and compressed (stream 7). Cooling is supplied to the steam turbine condenser via water from the cooling tower.

The gas turbine (Brayton cycle) performance and exhaust characteristics are impacted due to addition of the EGR. Of particular interest is that the CO₂ composition at gas turbine exhaust increases from 5.0 percent in the capture only case (Case 4b) to 7.8 percent in this capture with EGR case. The O₂ composition concurrently decreases from 10.0 percent in the capture only case (Case 4b) to 4.9 percent in this capture with EGR. The higher concentration of the CO₂ in the exhaust gas stream reduces the energy consumption of the CO₂ capture system. Because of this, the EGR case provides a better output and efficiency compared to the capture case without EGR (Case 4b). However, the overall plant output and efficiency are reduced compared to the no CO₂ capture case (Case 4a) due to heat integration requirements and increased auxiliary loads for the EGR and CO₂ capture process.

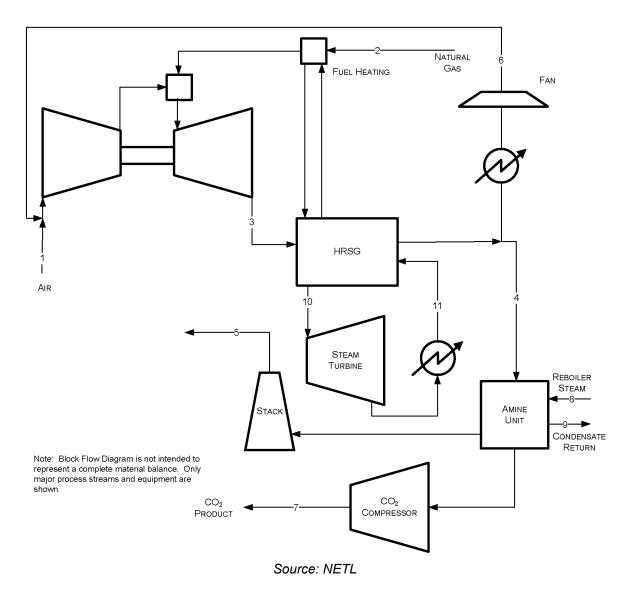


Exhibit 6-23 Case 4c – Advanced/Future turbine with CO₂ capture and EGR block flow diagram

	4	2	2	4	-	c	7	0	0	40	44
V/I Mala Exaction	1	2	3	4	5	6	1	8	9	10	11
V-L Mole Fraction	0.0000	0.0000	0.0000	0.0000	0.0404	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000
Ar	0.0093	0.0000	0.0090	0.0090	0.0104	0.0097	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.9310	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0100	0.0775	0.0775	0.0090	0.0837	1.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0000	0.1185	0.1185	0.0555	0.0480	0.0000	1.0000	1.0000	1.0000	1.0000
N ₂	0.7729	0.0160	0.7460	0.7460	0.8680	0.8057	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2074	0.0000	0.0491	0.0491	0.0571	0.0530	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0001	1.0000	1.0000	1.0000	1.0000	1.0000
			-								
V-L Flowrate (kg _{mol} /hr)	98,134	7,544	156,709	101,861	87,528	50,777	7,102	19,542	19,542	33,565	22,805
V-L Flowrate (kg/hr)	2,832,158	130,733	4,445,822	2,889,801	2,447,276	1,482,703	312,543	352,060	352,060	604,675	410,846
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0
				-			-				
Temperature (°C)	15	38	647	108	35	33	38	292	137	593	32
Pressure (MPa, abs)	0.10	4.14	0.10	0.10	0.10	0.10	15.17	0.33	0.33	16.65	0.00
Enthalpy (kJ/kg) ^A	0.92	47,245.71	380.53	494.74	49.47	133.21	445.20	3,052.18	574.75	3,547.62	2,384.85
Density (kg/m ³)	1.2	27.7	0.4	0.9	1.1	1.2	796.4	2.7	915.8	47.7	992.9
V-L Molecular Weight	28.860	17.330	28.370	28.370	27.960	29.200	44.010	18.015	18.015	18.015	18.015
	216 240	16 621	345,483	004 565	102.000	111 045	15.050	42,002	43,083	72.007	50.077
V-L Flowrate (lb _{mol} /hr)	216,349	16,631	,	224,565	192,966	111,945	15,656	43,083	,	73,997	50,277
V-L Flowrate (lb/hr) Solids Flowrate (lb/hr)	6,243,840 0	288,216 0	9,801,360 0	6,370,920 0	5,395,320 0	3,268,800 0	689,040 0	776,160 0	776,160 0	1,333,080 0	905,760 0
	0	U	U	U	U	U	U	0	0	0	0
Temperature (°F)	59	100	1,197	227	95	92	101	557	278	1,100	90
Pressure (psia)	14.7	600.0	15.2	14.7	14.7	14.7	2,200.0	47.6	47.6	2,414.7	0.7
Enthalpy (Btu/lb) ^A	13.0	19.9	305.3	38.5	4.5	3.6	-97.1	1,312.2	247.1	1,525.2	1,025.3
Density (lb/ft ³)	0.076	1.731	0.024	0.057	0.069	0.072	49.720	0.169	57.172	2.977	61.982

Exhibit 6-24 Case 4c – Advanced/Future turbine with CO₂ capture and EGR stream table

Note: Total flow rates shown equal the sum for all process trains

6.3.1 Performance Results

The performance results are summarized in Exhibit 6-25 and when compared with Case 4b show that adding exhaust gas recycle increases the efficiency only by approximately 0.4 percentage points. This is due to lowering the steam requirement for the reboiler slightly (to 2,790 kJ/kg CO_2 (1,200 Btu/lb CO_2) from the 2,960 kJ/kg CO_2 (1,272 Btu/lb CO_2) used in Case 4b), based on the CO_2 concentration increasing and the oxygen concentration decreasing for the exhaust gas entering the solvent recovery section. An additional improvement would be expected if the exhaust gas recycle was increased from the 35 percent used to 50 percent. This was not explored in the current study since it was determined based on information from GE that 35 percent was a limit above which the gas turbine's combustor would need major redesign. Additional tables below provide overall energy balance (Exhibit 6-26), water balance (Exhibit 6-27), carbon balance (Exhibit 6-28), and an emissions summary (Exhibit 6-29).

Exhibit 6-25 Case 4c – Advanced/Future turbine with CO₂ capture and EGR plant performance summary (Values shown are for total 2x2x1 system)

Plant 0	Dutput	
Gas Turbine Power	811,186	kW _e
Steam Turbine Power	266,140	kW _e
Total	1,077,326	kW _e
Auxilia	ry Load	
Condensate Pumps	245	kW _e
Boiler Feedwater Pumps	7,023	kW _e
Exhaust Gas Recycle Fan	443	kW _e
Amine CO ₂ Capture System Auxiliaries	15,923	kW _e
CO ₂ Compression	28,961	kW _e
EGR Coolant Pump	448	kW _e
Circulating Water Pump	6,110	kW _e
Ground Water Pumps	490	kW _e
Cooling Tower Fans	3,890	kW _e
SCR	10	kW _e
Gas Turbine Auxiliaries	1,097	kW _e
Steam Turbine Auxiliaries	671	kW _e
Miscellaneous Balance of Plant ²	5,155	kW _e
Transformer Losses	3,000	kW _e
Total	73,466	kW _e
Plant Per	formance	
Net Plant Power	1,003,860	kW _e
Plant Capacity Factor	85.0	
Net Plant Efficiency (HHV) ¹	52.8%	
Net Plant Efficiency (LHV) ¹	58.5%	
Net Plant Heat Rate (HHV) ¹	6,813 (6,458)	kJ/kWh (Btu/kWh)
Net Plant Heat Rate (LHV) ¹	6,150 (5,829)	kJ/kWh (Btu/kWh)
Natural Gas Feed Flow	130,733 (288,216)	kg/hr (lb/hr)
Thermal Input (HHV) ¹	1,899,942	kWt
Thermal Input (LHV) ¹	1,714,916	kWt
Condenser Duty	928 (880)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	20.5 (5,411)	m³/min (gpm)
Raw Water Consumption	14.5 (3,844)	m³/min (gpm)

¹ HHV of Natural Gas 52,314 kJ/kg (22,491 Btu/lb)

LHV of Natural Gas 47,220 kJ/kg (20,301 Btu/lb) ² Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	нну	Sensible + Latent	Power	Total			
Energy In, GJ/hr (MMBtu/hr)							
Natural Gas	6,840 (6,483)	4.6 (4.3)	0 (0)	6,844 (6,487)			
GT Air	0 (0)	85.6 (81.1)	0 (0)	86 (81)			
Raw Water Withdrawal	0 (0)	77.0 (73.0)	0 (0)	77 (73)			
Auxiliary Power	0 (0)	0.0 (0.0)	264 (251)	264 (251)			
TOTAL	6,840 (6,483)	167.2 (158.5)	264 (251)	7,271 (6,892)			
Energy Out, GJ/hr (MMBtu/hr)							
Cooling Tower Blowdown	0 (0)	39.8 (37.7)	0 (0)	40 (38)			
Stack Gas	0 (0)	26 (24)	0 (0)	26 (24)			
Condenser	0 (0)	924 (876)	0 (0)	924 (876)			
CO ₂ Product	0 (0)	-70.6 (-66.9)	0 (0)	-71 (-67)			
CO ₂ Intercoolers	0 (0)	181.2 (171.7)	0 (0)	181 (172)			
EGR Cooling	0 (0)	309.6 (293.5)	0 (0)	310 (293)			
Amine System Losses	0 (0)	1,252.7 (1,187.4)	0 (0)	1,253 (1,187)			
Process Losses*	0 (0)	730 (692)	0 (0)	730 (692)			
Power	0 (0)	0.0 (0.0)	3,878 (3,676)	3,878 (3,676)			
TOTAL	0 (0)	3,393 (3,216)	3,878 (3,676)	7,271 (6,892)			

Exhibit 6-26 Case 4c – Advanced/Future turbine with CO₂ capture and EGR overall energy balance

Note: Italicized numbers are estimated

* Process losses are estimated to match the heat input to the plant.

Process losses include losses from: HRSG, combustion reactions, and gas cooling

Water Use	Water Demand, m ³ /min (gpm)	Internal Recycle, m ³ /min (gpm)	Raw Water Withdrawal, m ³ /min (gpm)	Process Water Discharge, m ³ /min (gpm)	Raw Water Usage, m ³ /min (gpm)
Amine Capture System	0.08 (20)	0.0 (0)	0.1 (20)	0.0 (0)	0.1 (20)
Condenser Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.1 (15)
BFW Makeup	0.06 (15)	0.0 (0)	0.06 (15)	0.0 (0)	0.0 (0)
Cooling Tower	23.8 (6,286)	3.5 (912)	20.34 (5,375)	5.9 (1,567)	14.4 (3,808)
BFW Blowdown	0.00 (0)	0.06 (15)	-0.06 (-15)	0.0 (0)	0.0 (0)
EGR Condensate	0.00 (0)	1.2 (324)	-1.2 (-324)	0.0 (0)	0.0 (0)
Flue Gas/CO ₂ Condensate	0.00 (0)	2.2 (573)	-2.2 (-573)	0.0 (0)	0.0 (0)
Total	23.9 (6,322)	3.45 (912)	20.51 (5,411)	5.9 (1,567)	14.5 (3,844)

Carbon In, kç	/hr (lb/hr)	Carbon Out, kg/hr (lb/hr)		
Natural Gas	94,413 (208,145)	Stack Gas	9,478 (20,896)	
Air (CO ₂)	354 (780)	CO ₂ Product	85,298 (188,050)	
		Convergence Tolerance*	-10 (-21)	
Total	94,767 (208,925)	Total	94,767 (208,925)	

Exhibit 6-28 Case 4c – Advanced/Future turbine with CO ₂ capt	ture and EGR carbon balance
--	-----------------------------

*by difference

Emissions are estimated based on user input specifications to models.

Exhibit 6-29 Case 4c – Advanced/Future turbine with CO₂ capture and EGR air emissions

	Kg/GJ (lb/10 ⁶ Btu)	Tonne/year (tons/year) 90% capacity	kg/MWh (lb/MWh)
SO ₂	negligible	negligible	negligible
NO _x	0.002 (0.004)	82 (91)	0.010 (0.023)
Particulates	negligible	negligible	negligible
Hg	negligible	negligible	negligible
CO ₂	5.1 (11.8)	258,602 (285,060)	32 (71)
CO ₂ ¹			35 (76)

¹ CO₂ emissions based on net power instead of gross power

6.3.2 Major Equipment List

This section contains the equipment list corresponding to the advanced/future turbine design with CO_2 capture and EGR plant configuration for case 4c. This list, along with the heat and material balance and supporting performance data, was used to generate plant costs. The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as N/A.

Account 1 – Coal and Sorbent Handling

N/A

Account 2 – Coal and Sorbent Preparation and Feed

N/A

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	454,253 liters (120,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	3,785 lpm @ 40 m H₂O (1,000 gpm @ 130 ft H₂O)	2 (1)
3	Boiler Feedwater Pump	Horizontal, split case, multi-stage, centrifugal, with interstage bleed for IP and LP feedwater	$\begin{array}{c} \text{HP water: } 5,640 \text{ lpm } @ 1,887 \text{ m} \\ \text{H}_2\text{O} \ (1,490 \text{ gpm } @ 6,190 \text{ ft } \text{H}_2\text{O}) \\ \text{IP water: } 7,192 \text{ lpm } @ 323 \text{ m} \\ \text{H}_2\text{O} \ (1,900 \text{ gpm } @ 1,060 \text{ ft } \text{H}_2\text{O}) \\ \text{LP water: } 7,079 \text{ lpm } @ 9.1 \text{ m} \\ \text{H}_2\text{O} \ (1870 \text{ gpm } @ 30 \text{ ft } \text{H}_2\text{O}) \end{array}$	2 (1)
4	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg /hr, 2.8 MPa, 343°C (40,000 lb /hr, 400 psig, 650°F)	1 (0)
5	Service Air Compressors	Flooded Screw	13 m ³ /min @ 0.7 MPa (450 scfm @ 100 psig)	2 (1)
6	Instrument Air Dryers	Duplex, regenerative	13 m ³ /min (450 scfm)	2 (1)
7	Closed Cycle Cooling Heat Exchangers	Plate and frame	13 GJ/hr (13 MMBtu/hr)	2 (0)
8	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	5,300 lpm @ 21 m H ₂ O (1,400 gpm @ 70 ft H ₂ O)	2 (1)
9	Engine-driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 107 m H ₂ O (1,000 gpm @ 350 ft H ₂ O)	1 (1)
10	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 76 m H₂O (700 gpm @ 250 ft H₂O)	1 (1)
11	Raw Water Pumps	Stainless steel, single suction	13,627 lpm @ 18 m H ₂ O (3,600 gpm @ 60 ft H ₂ O)	2 (1)
12	Filtered Water Pumps	Stainless steel, single suction	360 lpm @ 49 m H ₂ O (95 gpm @ 160 ft H ₂ O)	2 (1)
13	Filtered Water Tank	Vertical, cylindrical	344,475 liter (91,000 gal)	1 (0)
14	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly and electro-deionization unit	795 lpm (210 gpm)	1 (0)
15	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)

Account 3 - Feedwater and Miscellaneous Systems and Equipment

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
16	Gas Pipeline	Underground, coated carbon steel, wrapped cathodic protection	86 m ³ /min @ 4.1 MPa (3,053 acfm @ 600 psia) 41 cm (16 in) standard wall pipe	16 km 10 mile
17	Gas Metering Station		86 m ³ /min (3,053 acfm)	1 (0)

Account 4 – Gasifier, Boiler, and Accessories

N/A

Account 5 – Flue Gas Cleanup

N/A

Account 5B – CO₂ Capture and Compression

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Amine CO ₂ Capture System	Amine-based CO ₂ capture technology	1,589,390 kg/hr (3,504,000 lb/hr) 12.0 wt % CO ₂ concentration	2 (0)
2	CO ₂ Compressor	Integrally geared, multi-stage centrifugal	171,912 kg/hr @ 15.2 MPa (379,000 lb/hr @ 2,200 psia)	2 (0)
3	Exhaust Gas Recycle Blowers	Centrifugal	11,700 m ³ /min @ 12.7 cm WG (413,290 scfm @ 5 in WG)	2 (0)
4	EGR Cooler	Contact Heat Exchanger	137 MMkJ/hr, (130 MMBtu/hr), Gas Stream 1,674,000 kg/hr, (3,691,000 lb/hr) 30,540 m ³ /min, (1,079,000 acfm) from 106°C (222.8°F) to 32°C (90°F), Water Stream 6,019,000 kg/hr, (13,270,000 lb/hr) 6,977,000 lpm, (1,843,000 gpm) from 18°C (64.5°F) to 29°C (84.54°F)	1 (0)
5	EGR Cooler Pumps	Horizontal Centrifugal	61,430 lpm @ 18 m H ₂ O (16,230 gpm @ 60 ft H ₂ O)	4 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Gas Turbine	Advanced Future w/ dry low-NOx burner	395 MW	2 (0)
2	Gas Turbine Generator	TEWAC	440 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	2 (0)

Account 6 – Combustion Turbine Generators and Auxiliaries

Account 7 – Waste Heat Boiler, Ducting, and Stack

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Stack	CS plate, type 409SS liner	46 m (150 ft) high x 8.0 m (26 ft) diameter	2 (0)
2	Heat Recovery Steam Generator Beam Generator Heat Recovery pressure with economizer section and integral deaerator		Main steam - 332,572 kg/h, 16.5 MPa/593°C (733,194 lb/h, 2,400 psig/1,100°F) Reheat steam - 376,489 kg/h, 2.4 MPa/593°C (830,016 lb/h, 345 psig/1,100°F)	2 (0)
3	SCR Reactor	Space for spare layer	1,347,171 kg/h (2,970,000 lb/h)	2 (0)
4	SCR Catalyst		Space available for an additional catalyst layer	1 layer (0)
5 Dilution Air Blowers		Centrifugal	15 m ³ /min @ 107 cm WG (530 scfm @ 42 in WG)	2 (1)
6	Ammonia Feed Pump	Centrifugal	3.8 lpm @ 91 m H₂O (1 gpm @ 300 ft H₂O)	2 (1)
7	Ammonia Storage Tank	Horizontal tank	90,851 liter (24,000 gal)	1 (0)

Account 8 – Steam Turbine Generator and Auxiliaries

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Steam Turbine	Tandem compound, HP, IP, and two-flow LP turbines	280 MW 16.5 MPa/593°C/593°C (2,400 psig/ 1100°F/1100°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	230 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Steam Bypass	One per HRSG	50% steam flow @ design steam conditions	2 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
4	Surface Condenser	Single pass, divided waterbox including vacuum pumps	1,012 MMkJ/hr, (960 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

Account 9 – Cooling Water System

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	613,241 lpm @ 30.5 m (162,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT 3,416 MMkJ/hr (3,240 MMBtu/hr) heat load	1 (0)

Account 10 – Ash Spent Sorbent Recovery and Handling

N/A

Account 11 – Accessory Electric Plant

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	CTG Transformer	Oil-filled	24 kV/345 kV, 440 MVA, 3-ph, 60 Hz	2 (0)
2	STG Transformer	Oil-filled	24 kV/345 kV, 260 MVA, 3-ph, 60 Hz	1 (0)
3	High Voltage Auxiliary Transformer	Oil-filled	345 kV/13.8 kV, 16 MVA, 3-ph, 60 Hz	2 (0)
4	Medium Voltage Transformer	Oil-filled	24 kV/4.16 kV, 46 MVA, 3-ph, 60 Hz	1 (1)
5	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 7 MVA, 3-ph, 60 Hz	1 (1)
6	CTG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	2 (0)
7	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
8	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
9	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
10	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Account 12 – Instrumentation and Control

Equipment No.	Description	Туре	Design Condition	Oper. Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer; Engineering printer	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

6.3.3 Cost Estimate Results

Capital and operating costs for Cases 4c using the advanced future turbine design were estimated by WorleyParsons based on simulation results, costing software, and vendor quotes/discussions on the projections of advanced machine designs from multiple vendors. All costs are in June 2011 dollars. The cost estimation results for this case are summarized in Exhibit 6-30. The summary and detailed capital cost estimates are shown in Exhibit 6-31 and Exhibit 6-32, respectively. The annual operating cost estimates are shown in Exhibit 6-33.

The equipment cost account numbers are based on standard power plant cost estimation designations. Not all accounts are applicable to NGCC plants, but the numbering was kept consistent to allow comparison between multiple studies. Accounts not applicable to NGCC plants are shown as zero.

Exhibit 6-30 Case 4c - Advanced/Future turbine with CO_2 capture and EGR cost estimation summary

Case	4c
Total Plant Cost (2011\$/kW)	974
Total Overnight Cost (2011\$/kW)	1,190
Total As-spent Capital (2011\$/kW)	1,283
COE ¹ Component Details (mills/kWh or \$/MWh)	
Capital	17.74
Fixed O&M	4.58
Variable O&M	2.65
Fuel	39.59
CO ₂ T&S total	3.11
COE ¹ Total	67.67
LCOE ¹ , total (including T&S)	85.78
Cost ^{1.2} of CO ₂ avoided, \$/tonne of CO ₂ (\$/ton of CO ₂)	66.86 (60.66)
Cost ^{1,2} of CO ₂ captured, \$/tonne of CO ₂ (\$/ton of CO ₂)	49.44 (44.85)

¹ Capacity factor assumed to be 85 percent ² Reference base case is 4a – Advanced/Future without capture

	Client:	USDOE/NET	_							Report Date:	2012-Apr-04	
	Project:	Costing Supp										
	-		_		I COSI	SUMM	ARY					
	Case: Plant Size:	Case 4c - Ad 1003.9			ate Type:	Concentual		Cost	Base (Jun)	2011	(\$x1000)	
Acct	Fiaint Size.	Equipment	Material	Lab		Sales		Eng'g CM	. ,	igencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost	H.O.& Fee		Project	S	\$/kW
1	COAL & SORBENT HANDLING	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$ 0	\$0	\$0
2	COAL & SORBENT PREP & FEED	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS	\$32,720	\$7,938	\$12,523	\$0	\$0	\$53,181	\$4,367	\$0	\$9,358	\$66,906	\$67
4	GASIFIER & ACCESSORIES SUBTOTAL 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$(
5A	GAS CLEANUP & PIPING	\$0	\$9.768	\$6.171	\$0	\$0	\$15,939		\$0	\$3,436	• -	\$21
	CO2 REMOVAL & COMPRESSION	\$160.971	\$0 \$0	\$51.495	\$0 \$0	\$0	\$212,467	. ,	\$34,566	\$52,954	. ,	\$317
	COMBUSTION TURBINE/ACCESSORIES	+ ,		<i></i>			<i> </i>	•,	+;	+;		
	Combustion Turbine Generator	\$189,000	\$0	\$10,905	\$0	\$0	\$199,905	, .,	\$0	\$21,641	,	\$23
6.2-6.9	Combustion Turbine Other	\$0	\$1,221	\$1,320	\$0	\$0	\$2,541		\$0	\$551		\$3
	SUBTOTAL 6	\$189,000	\$1,221	\$12,226	\$0	\$0	\$202,446	\$16,721	\$0	\$22,192	\$241,359	\$240
	HRSG, DUCTING & STACK Heat Recovery Steam Generator	\$43.320	\$0	\$7.621	\$0	\$0	¢ 60 0 4 4	¢4 000	¢0	\$5.517	¢ c n c 99	\$60
	SCR System, Ductwork and Stack	\$43,320 \$2.838	ֆՍ \$1.783	\$7,621 \$2,217	\$0 \$0	\$0 \$0	\$50,941 \$6,837	\$4,230 \$572	\$0 \$0	\$5,517 \$1,173	,	\$00 \$9
1.2 1.0	SUBTOTAL 7	\$46,158	\$1,783	\$9,837	\$0	\$0	\$57,778	· · ·	\$0	\$6,690		\$69
8	STEAM TURBINE GENERATOR											
	Steam TG & Accessories	\$40,600	\$0	\$6,606	\$0	\$0	\$47,206	. ,	\$0	\$5,093		\$56
8.2-8.9	Turbine Plant Auxiliaries and Steam Piping SUBTOTAL 8	\$15,434	\$1,116	\$9,239	\$0 \$0	\$0 \$0	\$25,789	. ,	\$0	\$4,051	. ,	\$32
0	COOLING WATER SYSTEM	\$56,034 \$9,103	\$1,116 \$9.551	\$15,845 \$8.870	\$U \$0	\$0 \$0	\$72,995 \$27,523		\$0 \$0	\$9,145 \$4,323		\$8 7 \$34
		. ,	· - /	v -)	+-	\$0 \$0			• •		. ,	1 -
	ASH/SPENT SORBENT HANDLING SYS	\$0	\$0	\$0	\$0		\$0	· ·	\$0	\$0		\$0
	ACCESSORY ELECTRIC PLANT	\$37,754	\$10,403	\$21,903	\$0	\$0	\$70,060	, - , -	\$0	\$8,119	()	\$83
12	INSTRUMENTATION & CONTROL	\$9,787	\$1,107	\$8,298	\$0	\$0	\$19,192	\$1,575	\$960	\$2,494	\$24,221	\$24
13	IMPROVEMENTS TO SITE	\$2,765	\$1,502	\$7,828	\$0	\$0	\$12,095	\$1,072	\$0	\$2,633	\$15,800	\$10
14	BUILDINGS & STRUCTURES	\$0	\$6,424	\$6,692	\$0	\$0	\$13,116	\$1,043	\$0	\$2,124	\$16,282	\$1
	TOTAL COST	\$544,291	\$50,813	\$161,687	\$0	\$0	\$756,791	\$61,646	\$35,526	\$123,469	\$977,432	\$974

Exhibit 6-31 Case 4c - Advanced/Future turbine with CO₂ capture and EGR capital cost estimate summary

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	port for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	г созт	SUMM	ARY					
	Case:	Case 4c - Ad	vFuture CCS	EGR								
	Plant Size:	1003.9	MW,net	Estim	ate Type:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Sales	Bare Erected	Eng'g CM	Contin	gencies	TOTAL PLAN	т созт
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee		Project	\$	\$/kW
1	COAL & SORBENT HANDLING									-		
	SUBTOTAL 1.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2	COAL & SORBENT PREP & FEED											
	SUBTOTAL 2.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	FEEDWATER & MISC. BOP SYSTEMS											
3.1	Feedwater System	\$3,977	\$4,119	\$3,363	\$0	\$0	\$11,460		\$0	\$1,857	\$14,240	\$1 4
	Water Makeup & Pretreating	\$3,217	\$332	\$1,651	\$0	\$0			\$0	\$1,126		\$
	Other Feedwater Subsystems	\$1,863	\$616	\$514	\$0	\$0	. ,		\$0	\$484		\$4
3.4	Service Water Systems	\$388	\$775	\$2,496	\$0	\$0	\$3,659	\$311	\$0	\$794	\$4,764	\$
3.5	Other Boiler Plant Systems	\$2,617	\$978	\$2,249	\$0	\$0	\$5,845	\$476	\$0	\$948	\$7,269	\$
3.6	Natural Gas, incl. pipeline	\$17,831	\$891	\$771	\$0	\$0	\$19,493	\$1,608	\$0	\$3,165	\$24,267	\$24
3.7	Waste Treatment Equipment	\$1,123	\$0	\$650	\$0	\$0	\$1,774	\$153	\$0	\$385	\$2,312	\$2
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$1,703	\$227	\$827	\$0	\$0	\$2,757	\$236	\$0	\$599	\$3,591	\$4
	SUBTOTAL 3.	\$32,720	\$7,938	\$12,523	\$0	\$0	\$53,181	\$4,367	\$0	\$9,358	\$66,906	\$6
4	GASIFIER & ACCESSORIES											
	SUBTOTAL 4.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$
5A	GAS CLEANUP & PIPING											
5A.6	Exhaust Gas Recycle System	\$0	\$9.768	\$6.171	\$0	\$0	\$15,939	\$1.243	\$0	\$3.436	\$20.618	\$2 ⁻
	SUBTOTAL 5.	\$0	\$9,768	\$6,171	\$0	\$0			\$0	\$3,436	\$20,618	\$2 [.]
5B	CO2 REMOVAL & COMPRESSION						. ,	. ,		. ,		
	CO2 Removal System	\$132.810	\$0	\$40.021	\$0	\$0	\$172,831	\$14,420	\$34,566	\$44,363	\$266.181	\$26
	CO2 Compression & Drying	\$28,161	\$0	\$11.474	\$0	\$0	. ,	\$3,318	\$0	\$8,591	\$51.545	\$5
	SUBTOTAL 5.	\$160.971	\$0	\$51,495	\$0	\$0	\$212,467		\$34,566	\$52,954	1 - 7	\$31
6	COMBUSTION TURBINE/ACCESSORIES	+,		÷ ; - • •			, , , , , , , , , , , , , , , , , , ,	,,. 	, •	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, . 	÷
	Combustion Turbine Generator	\$189.000	\$0	\$10.905	\$0	\$0	\$199,905	\$16.508	\$0	\$21,641	\$238,055	\$23
	Combustion Turbine Accessories	\$0	\$0 \$0	\$0	\$0	\$0		\$0	\$0 \$0	\$0		\$_0
	Compressed Air Piping	\$0 \$0	\$0 \$0	\$0 \$0	\$0	\$0			\$0 \$0	\$0 \$0		\$
	Combustion Turbine Foundations	\$0 \$0	\$1.221	\$1.320	\$0	\$0			\$0 \$0	\$551		\$
0.0	SUBTOTAL 6.	\$189,000	\$1,221	\$12,226	\$0	\$0			\$0	\$22,192	+ - ,	\$24

Exhibit 6-32 Case 4c - Advanced/Future turbine with CO₂ capture and EGR capital cost estimate detail

	Client:	USDOE/NET	L							Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	COST	SUMM	ARY					
	Case:	Case 4c - Adv				•••						
	Plant Size:	1003.9			ato Tyno:	Conceptual		Cost	Base (Jun)	2011	(\$x1000)	
A	Tiant 0ize.		,						, ,		. ,	T 0 00 T
Acct	Item /Decemintien	Equipment	Material	Lab	-	Sales		Eng'g CM	Contin	igencies	TOTAL PLAN \$	
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee	Process	Project	\$	\$/kW
	HRSG, DUCTING & STACK	¢ 40.000	\$ 0	\$7.004	^	* 0	\$50.044	¢4.000	¢ 0	ФГ Г 4 7	* ~~~~~~~	* ~~
	Heat Recovery Steam Generator	\$43,320	\$0	\$7,621	\$0	\$0	\$50,941	\$4,230	\$0 \$0	\$5,517		\$60
	HRSG Accessories	\$2,838	\$1,192	\$1,662	\$0	\$0	\$5,691	\$477	\$0 \$0	\$925	, ,	\$7
-	Ductwork	\$0	\$0	\$0 \$0	\$0	\$0	\$0	\$0	\$0	\$0		\$0
	Stack	\$0 \$0	\$0 #504	\$0 ****	\$0 ©0	\$0 \$0	\$0 ¢1 1 4 5	\$0 #00	\$0 \$0	\$0 \$248		\$0 \$1
7.9	HRSG,Duct & Stack Foundations SUBTOTAL 7.	\$0	\$591	\$554	\$0 \$0	ֆՍ \$0	\$1,145	\$96	\$0 \$0	• -	, ,	\$1 \$69
0		\$46,158	\$1,783	\$9,837	\$ 0	\$ U	\$57,778	\$4,802	\$ 0	\$6,690	\$69,270	\$6 9
-	STEAM TURBINE GENERATOR	* 40,000	^	* *****	^	*	* 1 7 000	* 0 7 00	^		\$50.005	
-	Steam TG & Accessories	\$40,600	\$0	\$6,606	\$0	\$0	\$47,206	\$3,726	\$0	\$5,093		\$56
	Turbine Plant Auxiliaries	\$261	\$0	\$579	\$0	\$0	\$840	\$72	\$0	\$91	\$1,003	\$1
	Condenser & Auxiliaries	\$2,340	\$0	\$1,615	\$0	\$0	\$3,955	\$333	\$0	\$429	. ,	\$5
	Steam Piping	\$12,833	\$0	\$5,201	\$0	\$0	\$18,035	\$1,229	\$0	\$2,890		\$22
8.9	TG Foundations	\$0	\$1,116	\$1,843	\$0	\$0	\$2,959	\$250	\$0	\$642	+ -)	\$4
	SUBTOTAL 8.	\$56,034	\$1,116	\$15,845	\$0	\$0	\$72,995	\$5,611	\$0	\$9,145	\$87,750	\$87
	COOLING WATER SYSTEM											
	Cooling Towers	\$5,410	\$0	\$1,650	\$0	\$0	\$7,060	\$589	\$0	\$765	+ -)	\$8
	Circulating Water Pumps	\$2,622	\$0	\$179	\$0	\$0	\$2,801	\$214	\$0	\$302	+ - , -	\$3
	Circ.Water System Auxiliaries	\$201	\$0	\$27	\$0	\$0	\$228	\$19	\$0	\$25		\$0
	Circ.Water Piping	\$0	\$6,245	\$1,414	\$0	\$0	\$7,659	\$574	\$0	\$1,235		\$9
	Make-up Water System	\$468	\$0	\$601	\$0	\$0	\$1,069	\$88	\$0	\$174	+)	\$1
	Component Cooling Water Sys	\$402	\$480	\$308	\$0	\$0	\$1,190	\$95	\$0	\$193		\$1
9.9	Circ.Water System Foundations	\$0	\$2,825	\$4,691	\$0	\$0	\$7,515	\$634	\$0	\$1,630		\$10
	SUBTOTAL 9.	\$9,103	\$9,551	\$8,870	\$0	\$0	\$27,523	\$2,214	\$0	\$4,323	\$34,060	\$34
10	ASH/SPENT SORBENT HANDLING SYS											
	SUBTOTAL 10.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
11	ACCESSORY ELECTRIC PLANT											
11.1	Generator Equipment	\$10,107	\$0	\$5,979	\$0	\$0	\$16,086	\$1,321	\$0	\$1,306	\$18,713	\$19
	Station Service Equipment	\$3,356	\$0	\$288	\$0	\$0	\$3,644	\$300	\$0	\$296	• • •	\$4
	Switchgear & Motor Control	\$4,129	\$0	\$717	\$0	\$0	\$4,846	\$401	\$0	\$525		\$6
11.4	Conduit & Cable Tray	\$0	\$2,158	\$6,216	\$0	\$0	\$8,374	\$698	\$0	\$1,361	\$10,432	\$10
11.5	Wire & Cable	\$0	\$6,934	\$3,943	\$0	\$0	\$10,877	\$654	\$0	\$1,730		\$13
11.6	Protective Equipment	\$0	\$1,075	\$3,732	\$0	\$0	\$4,807	\$413	\$0	\$522	\$5,743	\$6
11.7	Standby Equipment	\$164	\$0	\$153	\$0	\$0	\$317	\$27	\$0	\$34	\$379	\$0
11.8	Main Power Transformers	\$19,997	\$0	\$274	\$0	\$0	\$20,271	\$1,376	\$0	\$2,165	\$23,813	\$24
11.9	Electrical Foundations	\$0	\$236	\$601	\$0	\$0	\$837	\$71	\$0	\$181	\$1,089	\$1
	SUBTOTAL 11.	\$37,754	\$10,403	\$21,903	\$0	\$0	\$70,060	\$5,262	\$0	\$8,119	\$83,441	\$83

Exhibit 6-32 Case 4c - Advanced/Future turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	Ľ							Report Date:	2012-Apr-04	
	Project:	Costing Supp	oort for NGC	C with CCS A	nalyses							
			ΤΟΤΑ	L PLAN	T COST	SUMM	ARY					
	Case:	Case 4c - Ad	vFuture CCS	S EGR								
	Plant Size:	1003.9 MW,net Estimate Type: Conceptual Cost Base (Jun)							Base (Jun)	2011	(\$x1000)	
Acct		Equipment Material		Labor		Sales	Bare Erected	Eng'g CM	Contingencies		TOTAL PLAN	т созт
No.	Item/Description	Cost	Cost	Direct	Indirect	Тах	Cost	H.O.& Fee		Project	\$	\$/kW
12	INSTRUMENTATION & CONTROL									-		
12.1	IGCC Control Equipment	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	w/6.1	\$0	w/6.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$1,245	\$0	\$792	\$0	\$0	\$2,037	\$171	\$102	\$346	\$2,656	\$3
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$372	\$0	\$227	\$0	\$0	\$599	\$50	\$30	\$102	\$781	\$1
12.7	Computer & Accessories	\$5,952	\$0	\$182	\$0	\$0	\$6,134	\$504	\$307	\$694	\$7,638	\$8
12.8	Instrument Wiring & Tubing	\$0	\$1,107	\$1,959	\$0	\$0	\$3,066	\$220	\$153	\$516	\$3,956	\$4
12.9	Other I & C Equipment	\$2,219	\$0	\$5,137	\$0	\$0	\$7,356	\$630	\$368	\$835	\$9,189	\$9
	SUBTOTAL 12.	\$9,787	\$1,107	\$8,298	\$0	\$0	\$19,192	\$1,575	\$960	\$2,494	\$24,221	\$24
13	IMPROVEMENTS TO SITE											
13.1	Site Preparation	\$0	\$148	\$3,138	\$0	\$0	\$3,286	\$287	\$0	\$715	\$4,287	\$4
13.2	Site Improvements	\$0	\$1,354	\$1,789	\$0	\$0	\$3,143	\$280	\$0	\$685	\$4,108	\$4
13.3	Site Facilities	\$2,765	\$0	\$2,901	\$0	\$0	\$5,666	\$505	\$0	\$1,234	\$7,405	\$7
	SUBTOTAL 13.	\$2,765	\$1,502	\$7,828	\$0	\$0	\$12,095	\$1,072	\$0	\$2,633	\$15,800	\$16
14	BUILDINGS & STRUCTURES											
14.1	Combustion Turbine Area	\$0	\$431	\$228	\$0	\$0	\$659	\$51	\$0	\$106	\$816	\$`
14.2	Steam Turbine Building	\$0	\$2,784	\$3,704	\$0	\$0	\$6,488	\$522	\$0	\$1,051	\$8,061	\$8
14.3	Administration Building	\$0	\$708	\$479	\$0	\$0	\$1,187	\$92	\$0	\$192	\$1,471	\$
14.4	Circulation Water Pumphouse	\$0	\$225	\$111	\$0	\$0	\$336	\$26	\$0	\$54	\$417	\$0
14.5	Water Treatment Buildings	\$0	\$683	\$622	\$0	\$0	\$1,305	\$103	\$0	\$211	\$1,619	\$2
14.6	Machine Shop	\$0	\$614	\$392	\$0	\$0	\$1,006	\$78	\$0	\$163	\$1,247	\$
14.7	Warehouse	\$0	\$397	\$239	\$0	\$0	\$636	\$49	\$0	\$103	\$787	\$
14.8	Other Buildings & Structures	\$0	\$119	\$86	\$0	\$0	\$205	\$16	\$0	\$33	\$254	\$
14.9	Waste Treating Building & Str.	\$0	\$465	\$829	\$0	\$0	\$1,294	\$105	\$0	\$210	\$1,609	\$2
	SUBTOTAL 14.	\$0	\$6,424	\$6,692	\$0	\$0	\$13,116	\$1,043	\$0	\$2,124	\$16,282	\$1
	TOTAL COST	\$544,291	\$50,813	\$161,687	\$0	\$0	\$756,791	\$61,646	\$35,526	\$123,469	\$977,432	\$974

Exhibit 6-32 Case 4c - Advanced/Future turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	Client:	USDOE/NET	L						Report Date:	2012-Apr-04	
	Project:	Costing Supp	ort for NGC	C with CCS A	nalyses						
		тс	DTAL PL	ANT CO	DST SU	MMARY					
	Case:	Case 4c - Ad	vFuture CCS	EGR							
	Plant Size:	1003.9	MW,net	Estim	ate Type:	Conceptual	Cost	Base (Jun)	2011	(\$x1000)	
Acct		Equipment	Material	Lab	or	Bare Erected	Eng'g CM	Conti	ngencies	TOTAL PLAN	TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost	H.O.& Fee		Project	\$	\$/kW
	TOTAL COST	\$544,291	\$50,813	\$161,687	\$0	\$756,791	\$61,646	\$35,526	\$123,469	\$977,432	\$974
	Owner's Costs										
	Preproduction Costs									A- A /	<u> </u>
	6 Months All Labor									\$7,341	\$7
	1 Month Maintenance Materials									\$1,306	\$1
	1 Month Non-fuel Consumables									\$636	\$1
	1 Month Waste Disposal									\$0	\$0
	25% of 1 Months Fuel Cost at 100% CF									\$7,253	\$7
	2% of TPC									\$19,549	\$19
	Total									\$36,084	\$36
	Inventory Capital									• • - •	•
	60 day supply of consumables at 100% CF									\$874	\$1
	0.5% of TPC (spare parts)									\$4,887	\$5 \$6
	Total									\$5,761	9 0
	Initial Cost for Catalyst and Chemicals									\$2.140	\$2
	Land									\$300	چې \$0
	Other Owner's Costs									\$300 \$146,615	ەن \$146
										\$140,015	³ 140 \$26
	Financing Costs									+ -)	, -
	Total Overnight Costs (TOC)									\$1,194,722	\$1,190
	TASC Multiplier							(IOU, high-	risk, 33 year)	1.078	¢4 000
	Total As-Spent Cost (TASC)									\$1,287,911	\$1,283

Exhibit 6-32 Case 4c - Advanced/Future turbine with CO₂ capture and EGR capital cost estimate detail (continued)

	& ANNUAL	O&M EXPENSES	;		Cost Base (Jun)	2011
Case 4c - AdvFuture CCS EGR				Heat Ra	ate-net (Btu/kWh): MWe-net:	6,458 1004
				Ca	pacity Factor (%):	85
OPERATING & I	MAINTENAN	<u>CE LABOR</u>				
Operating Labor	00.70	¢ //				
Operating Labor Rate(base):	39.70					
Operating Labor Burden:		% of base				
Labor O-H Charge Rate:	25.00	% of labor				
			Total			
Skilled Operator	1.0		1.0			
Operator	3.3		3.3			
Foreman	1.0		1.0			
Lab Tech's, etc.	1.0		1.0			
TOTAL-O.J.'s	6.3		6.3			
101AL-0.0.3	0.0		0.5		Annual Cost	Annual Unit Cos
						\$/kW-net
Appual Operating Labor Cost					<u>\$</u> \$2,961,916	
Annual Operating Labor Cost					\$2,861,816	\$2.851
Maintenance Labor Cost					\$8,883,381	\$8.849
Administrative & Support Labor					\$2,936,299	\$2.925
Property Taxes and Insurance					\$19,548,636	\$19.473
TOTAL FIXED OPERATING COSTS					\$34,230,132	\$34.099
ARIABLE OPERATING COSTS						
						<u>\$/kWh-net</u>
Maintenance Material Cost					\$13,325,071	\$0.00178
Consumables	Cor	nsumption	<u>Unit</u>	Initial Fill		
	Initial Fill	/Day	Cost	<u>Cost</u>		
Water (/1000 gallons)	0.00	3,895.67	1.67	\$0	\$2,023,243	\$0.00027
Chemicals						
MU & WT Chem.(lbs)	0.00	23,209.28	0.27	\$0	\$1,928,623	\$0.00026
MEA Solvent (ton)	591.30	0.83	3,481.91	\$2,058,863	\$897,035	\$0.00012
Activated Carbon (lb)	0.00	991.93	1.63	\$0	\$500,163	\$0.00007
Corrosion Inhibitor	0.00	0.00	0.00	\$81,008	\$3,858	\$0.00000
SCR Catalyst (m3)	w/equip.	0.10	8,938.80	\$0	\$275,099	\$0.00004
Ammonia (19% NH3) (ton)	0.00	8.34	330.00	\$0 \$0	\$854,166	\$0.00011
Subtotal Chemicals	0.00	0.04	550.00	\$2,139,871	\$4,458,943	\$0.00060
				φ 2 ,155,071	φ 4 , 4 30,343	\$0.00000
Other		-		. -		
Supplemental Fuel (MBtu)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Gases,N2 etc. (/100scf)	0.00	0.00	0.00	\$0	\$0	\$0.00000
L.P. Steam (/1000 pounds)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Subtotal Other				\$0	\$0	\$0.00000
Waste Disposal						
Flyash (ton)	0.00	0.00	0.00	\$0	\$0	\$0.00000
Bottom Ash (ton)	0.00	0.00	0.00		\$0 \$0	\$0.00000
Subtotal Waste Disposal	0.00	0.00	0.00	<u>\$0</u>	<u> </u>	\$0.00000
•				ΨŪ	ΨΟ	<i>40.0000</i>
By-products	0.00	0.00	0.00	**	*^	£0.00000
Sulfur (tons)	0.00	0.00	0.00		\$0	\$0.00000
Subtotal By-products				\$0	\$0	\$0.00000
TOTAL VARIABLE OPERATING COS	STS			\$2,139,871	\$19,807,257	\$0.00265
	0	166 600	6.13	\$0		\$0.03956
Fuel (MMBtu)	0	155,590	0.13	φU	\$295,906,718	\$0.02 820

Exhibit 6-33 Case 4c - Advanced/Future turbine with CO_2 capture and EGR operating cost estimate

7 Summary Comparison

The purpose of this study is to present the cost and performance of natural gas combined cycle (NGCC) power plants using state-of-the-art (SOA) and advanced gas turbines, both non-capture configurations and with post combustion carbon capture based on an advanced solvent process.

The simulation and cost estimation results for the cases in this study are summarized in Exhibit 7-1. The results for each turbine with the addition of CO_2 capture alone and CO_2 capture with EGR are approximately equal for the projected cost of electricity (COE) and the overall process efficiency. The addition of EGR that was set at 35 percent of the flue gas exhaust improves case efficiencies by approximately 0.5 percentage points. The net output and efficiency increase with each turbine design improvement. As a result of the improvements, the normalized total overnight cost (TOC) and cost of electricity (COE) values decrease as the turbine design improves.

The efficiencies estimated for each case are shown in Exhibit 7-2. The addition of CO_2 capture alone and CO_2 capture with EGR reduce the efficiencies of each case by between 10 and 13 percent with the reduction decreasing slightly as the turbine design improves.

More detailed stream, performance, and cost data for each case are listed in Exhibit 7-3, Exhibit 7-4, and Exhibit 7-5, respectively, for comparison purposes.

The normalized annual CO_2 emissions for each case are shown in Exhibit 7-6. The emissions per MW decrease by approximately 3.5 to 5.8 percent for each turbine design improvement with the overall decrease of 12 to 14 percent going from the current SOA to the advanced future turbine design. The emissions from the current SOA turbine without capture case are estimated at 760 lb/MWh_{gross}. The Environmental Protection Agency (EPA) recently proposed a CO_2 emissions limit of 1000 lb/MWh_{gross} for new power plants. This rule would result in carbon capture not being required for NGCC.

The normalized raw water withdrawal, process water discharge, and raw water consumption for each case are shown in Exhibit 7-7. The cases without capture have the lowest water usage values. The withdrawal rates for the CO_2 capture plus EGR cases were 4 to 6 percent higher than those for the CO_2 capture cases without EGR, but the reverse is true for the consumption rates. All the water usage rates fall as the turbine design improves.

The normalized capital costs (TOC and TASC) are shown by component for each case in Exhibit 7-8. All values are in June 2011 dollars. As the turbine design improves the capital costs per MW decrease. The reduction in TOC for modifications from SOA to the advanced future turbine design is approximately 20 percent for the without capture cases and 25 percent for the cases with capture. The capital costs for the capture cases (both with and without EGR) are approximately twice the amount as the non-capture cases for each turbine design. This is due primarily to the high additional capital costs for the capture technology.

The first year COE values are shown for each case in Exhibit 7-9. All values are in June 2011 dollars. As the turbine design (performance efficiency) improves the COE decreases. The COE for the capture cases (both with and without EGR) are 38 to 46 percent higher than the non-capture cases for each turbine design. The difference decreases slightly as the turbine design improves.

The costs of CO_2 avoided and captured are shown for each case in Exhibit 7-10. All values are in June 2011 dollars. As the turbine designs improve the costs per unit of CO_2 captured decrease.

The fuel component accounts for the largest portion of the COE for NGCC plants (approximately 72 percent for without capture and 58 percent for with capture cases.) This is a major difference when compared with coal power plants. The sensitivities of the COEs to the price of natural gas are shown in Exhibit 7-11. The values at the \$6.13/MMBtu price assumed for this study are along the vertical line shown in the chart. As the price increases, the COEs increase. The non-capture cases are slightly more sensitive than the capture cases, primarily because the capital component becomes more significant in the capture cases. A natural gas cost reduction of 51 percent (to \$3/MMBtu) results in an average of 37 percent decrease in the non-capture values but only a 29 percent decrease in the capture case values. An increase of 31 percent (to \$8/MMBtu) results in an average of 22 percent increase in the non-capture values but only an 18 percent increase in the capture case values. The impact of the price on the COE is approximately the same for all turbine designs since the annual fuel costs are a large portion of the COEs (71 to 73 percent of the non-capture cases and 55 to 59 percent of the capture cases)

The sensitivities of the COEs to capacity factor are shown in Exhibit 7-12. The values at the 85 percent capacity factor assumed for this study are along the vertical line shown in the chart. As the capacity factor increases, the COEs decrease. The calculations were made with the assumption that no addition or reduction in equipment or capital would be needed to operate at higher or lower capacity factors. The capacity factor has a smaller impact as the turbine design improves.

Options for carbon dioxide storage include both storage in a saline reservoir and storage/use in EOR. The EOR option may be attractive even without the passage of regulations depending on the price of oil. The higher oil prices climb, the more incentive there is to recover more oil using enhanced techniques like CO_2 injection which could result in an increase of the sale price for CO_2 to oil recovery operations. The impact of selling the captured CO_2 for EOR was estimated and the results are listed in Exhibit 7-13. Eliminating the CO_2 T&S charges and adding revenue from the EOR sales reduces the COEs (excluding CO_2 T&S) by approximately 5 percent for an EOR credit of \$10/tonne. The sensitivities of the COEs (excluding CO_2 T&S) to CO_2 plant gate sales price are shown in Exhibit 7-14. The horizontal lines represent the non-capture case values. As the CO_2 sales price increases, the COEs decrease and approach the non-capture values. The CO_2 sales price value at the point where each capture case line crosses the corresponding non-capture line is equal to the cost of CO_2 captured for that capture case.

Turbine	Са	se / Technology	Efficiency (% HHV/ LHV)	Net Power (MWe)	TOC (\$/kW)	COE without CO ₂ T&S (\$/MWh)	COE with CO ₂ T&S (\$/MWh)	Cost of CO ₂ avoided (\$/tonne)	Cost of CO ₂ captured (\$/tonne)
	1a	w/o CO ₂ capture	51.8 / 57.4	634	829	57.14	57.14	n/a	n/a
SOA (based on "7FA.05")	1b	w CO ₂ capture	45.2 / 50.1	553	1,674	80.62	84.27	86.59	64.24
	1c	w CO ₂ +EGR	45.7 / 50.6	563	1,568	78.32	81.92	78.94	58.75
	2a	w/o CO ₂ capture	53.7 / 59.5	820	756	54.19	54.19	n/a	n/a
SOA (based on "H")	2b	w CO ₂ capture	47.2 / 52.2	721	1,499	75.03	78.53	80.45	59.53
	2c	w CO ₂ +EGR	47.7 / 52.9	738	1,396	72.71	76.16	72.48	53.70
	3a	w/o CO ₂ capture	56.5 / 62.6	982	684	50.73	50.73	n/a	n/a
Advanced (based on "J")	3b	w CO ₂ capture	50.1 / 55.5	870	1,343	69.17	72.47	75.60	56.02
	3c	w CO ₂ +EGR	50.6 / 56.1	889	1,251	67.17	70.42	68.35	50.56
	4a	w/o CO ₂ capture	58.8 / 65.2	1,108	661	49.17	49.17	n/a	n/a
Advanced Future turbine	4b	w CO ₂ capture	52.5 / 58.1	989	1,271	66.21	69.35	73.00	54.23
	4c	w CO ₂ +EGR	52.8 / 58.5	1,004	1,190	64.56	67.67	66.86	49.44

Exhibit 7-1 Case results summary (Values shown are for total 2 GT x 2 HRSG x 1 ST system)

COEs based on a natural gas price of \$6.13/MMBtu and 85% capacity factor in June 2011 dollars

CO₂ capture technology represents an advanced solvent process

COE = (Annual Capital Charges + O&M + Fuel (\$/yr)) / (Annual MWh_{net})

Cost of CO₂ avoided = $(COE_{with \ capture} - COE_{w/o \ capture} (\$/MWh)) / (Emissions_{w/o \ capture} - Emissions_{with \ capture}) (tons/MWh)), includes CO₂ T&S$

 $Cost of CO_2 captured = (COE_{with capture} - COE_{w/o capture} (\$/MWh)) / (CO_2 captured (tons/MWh)), excludes CO_2 T\&S$

Reference case for Cost of CO_2 avoided and Cost of CO_2 captured calculation is matching turbine without capture case.

See Section 2.8 for calculation details.

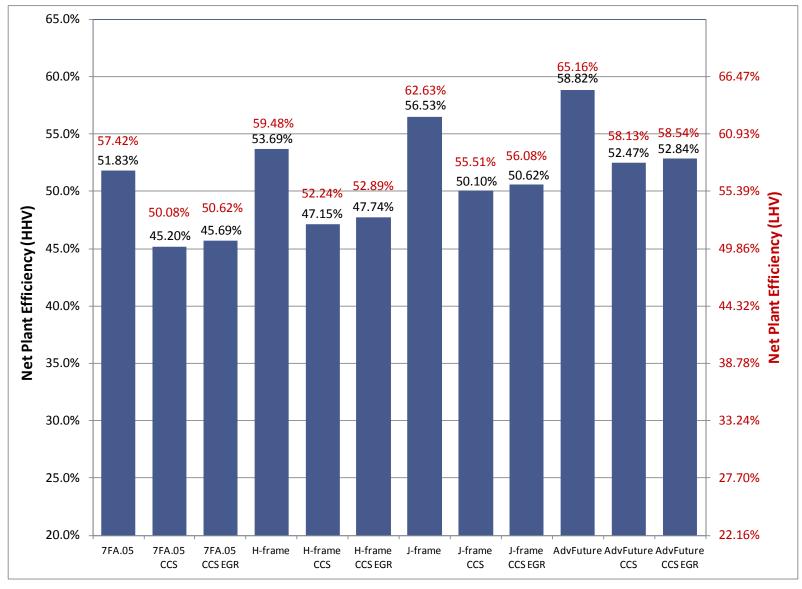


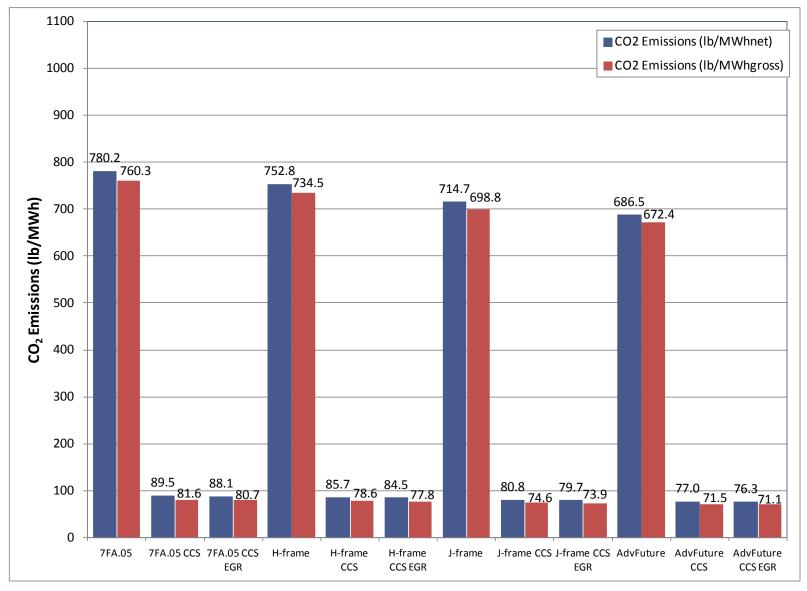
Exhibit 7-2 Net Plant efficiency

Source: NETL

0	4.	44			-			01-	2.	4.5	41-	4.5
Case	1a	1b		2a	2b	2c	3a	3b	3c	4a	4b	4c
Turbine	7FA.05	7FA.05 CCS	7FA.05 CCS+EGR	H-frame	H-frame CCS	H-frame CCS+EGR	J-frame None	J-frame CCS	J-frame CCS+EGR	Advanced None	Advanced CCS	Advanced CCS+EGR
Technology	None 7,986,960			None	9,342,000							
Air Feed Flowrate (lb/hr)		7,986,960 14.6	5,205,600 14.7	9,342,000		6,120,000	9,511,200	9,511,200	6,230,880	9,511,200	9,511,200	6,243,840
Air Feed Pressure (psia)	14.6			14.6	14.6 59	14.7	14.6	14.6 59	14.7	14.6	14.6	14.7 59
Air Feed Temperature (°F)	59 185 544	59 185,544	59	59 231,840		59 234,432	59 263,520		59	295 940	295 840	
NG Feed Flowrate (lb/hr)	185,544 399.7	399.7	186,984		231,840	234,432	600.0	263,520 600.0	266,328	285,840	285,840	288,216
NG Feed Pressure (psia)	100		399.7 100	411.5 100	411.5	100	100	77	600.0 100	600.0	600.0	600.0
NG Feed Temperature (°F)		100			100					100	100	100
NG from Fuel Heater Flowrate (lb/hr)	n/a	n/a	n/a	231,840	231,840	234,432	263,520	263,520	266,328	285,840	285,840	288,216
NG from Fuel Heater Pressure (psia)	n/a	n/a	n/a	411.5	411.5	411.5	411.5	411.5	411.5	411.5	411.5	411.5
NG from Fuel Heater Temperature (°F)	n/a	n/a	n/a	400	400	400	400	400	400	400	400	400
Gas to Turbine Flowrate (lb/hr)	3,663,432	3,663,432	36,547,200	3,964,320	3,964,320 277	3,970,080	4,014,720	4,014,720	4,014,000	4,025,880	4,025,880	4,028,040
Gas to Turbine Pressure (psia)	235	235	234.9	277		277	318	318	317	415	415	414
Gas to Turbine Temperature (°F)	2,479	2,479	2,486.1	2,709	2,709	2,709	2,948	2,948	2,944	3,107	3,107	3,104
Gas to HRSG Flowrate (lb/hr)	8,172,000	8,172,000	8,151,120	9,573,840	9,573,840	9,587,520	9,774,720	9,774,720	9,771,840	9,797,040	9,797,040	9,801,360
Gas to HRSG Pressure (psia)	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2
Gas to HRSG Temperature (°F)	1,120	1,120	1,139	1,146	1,146	1,160	1,177	1,177	1,191	1,182	1,182	1,197
Gas to CCS Flowrate (lb/hr)	n/a	8,172,360	5,298,120	n/a	9,573,480	6,231,960	n/a	9,774,360	6,351,840	n/a	9,796,680	6,370,920
Gas to CCS Pressure (psia)	n/a	15	15	n/a	15	15	n/a	15	15	n/a	15	15
Gas to CCS Temperature (°F)	n/a	231	225	n/a	229	223	n/a	231	224	n/a	235	227
Stack Flowrate (lb/hr)	8,172,360	7,558,200	4,689,360	9,573,480	8,786,880	5,460,480	9,774,360	8,847,720	5,460,120	9,796,680	8,767,800	5,395,320
Stack Pressure (psia)	14.7	14.7	14.7	14.7	14.7	14.7	15	14.7	14.7	15	14.7	14.7
Stack Temperature (°F)	190	95	95	190	95	95	190	95	95	190	95	95
EGR Flowrate (lb/hr)	n/a	n/a	2,758,320	n/a	n/a	3,233,520	n/a	n/a	3,275,280	n/a	n/a	3,268,800
EGR Pressure (psia)	n/a	n/a	14.7	n/a	n/a	14.7	n/a	n/a	14.7	n/a	n/a	14.7
EGR Temperature (°F)	n/a	n/a	92	n/a	n/a	92	n/a	n/a	92	n/a	n/a	92
CO ₂ Flowrate (lb/hr)	n/a	445,320	447,480	n/a	556,200	560,880	n/a	631,800	636,840	n/a	684,720	689,040
CO ₂ Pressure (psia)	n/a	2,214.7	2,200.0	n/a	2,214.7	2,200.0	n/a	2,214.7	2,200.0	n/a	2,214.7	2,200.0
CO ₂ Temperature (°F)	n/a	101	101	n/a	101	101	n/a	101	101	n/a	101	101
Steam to CCS Flowrate (lb/hr)	n/a	532,440	505,152	n/a	671,040	663,048	n/a	756,000	717,624	n/a	819,720	776,160
Steam to CCS Pressure (psia)	n/a	73.5	49.0	n/a	73.5	48.5	n/a	73.5	47.6	n/a	73.5	47.6
Steam to CCS Temperature (°F)	n/a	306	557	n/a	306	457	n/a	306	557	n/a	306	557
Condensate From CCS Flowrate (lb/hr)	n/a	532,440	505,152	n/a	671,040	663,048	n/a	756,000	717,624	n/a	819,720	776,160
Condensate From CCS Pressure (psia)	n/a	71.0	56.7	n/a	71.0	48.5	n/a	71.0	47.6	n/a	71.0	47.6
Condensate From CCS Temperature (°F)	n/a	304	280	n/a	304	279	n/a	304	278	n/a	304	278
Steam to ST Flowrate (lb/hr)	882,000	882,360	936,000	1,137,240	1,138,320	1,193,760	1,248,840	1,251,000	1,304,280	1,271,520	1,273,680	1,333,080
Steam to ST Pressure (psia)	2,415.0	2,415.0	2,415.0	2,414.7	2,414.7	2,414.7	2,414.7	2,414.7	2,414.7	2,414.7	2,414.7	2,414.7
Steam to ST Temperature (°F)	1,050	1,050	1,050	1,075	1,075	1,075	1,100	1,100	1,100	1,100	1,100	1,100
Condensate to HRSG Flowrate (lb/hr)	1,268,280	750,240	815,760	1,507,680	875,520	948,960	1,578,960	865,080	943,920	1,593,360	819,720	905,760
Condensate to HRSG Pressure (psia)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Condensate to HRSG Temperature (°F)	90	90	90	90	90	90	90	90	90	90	90	90

Exhibit 7-4 Summary performance data for an cases												
Case	1a	1b	1c	2a	2b	2c	3a	3b	3c	4a	4b	4c
Turbine	7FA.05	7FA.05	7FA.05	H-frame	H-frame	H-frame	J-frame	J-frame	J-frame	Advanced	Advanced	Advanced
Technology	None	CCS	CCS+EGR	None	CCS	CCS+EGR	None	CCS	CCS+EGR	None	CCS	CCS+EGR
Gas Turbine Power (kWe)	420,816	420,816	418,558	551,220	551,220	553,926	689,832	689,832	694,394	810,862	810,862	811,186
Steam Turbine Power (kWe)	229,607	185,503	196,582	289,730	235,081	247,554	314,517	252,117	263,964	320,546	252,770	266,140
Gross Total (kWe)	650,423	606,319	615,140	840,950	786,301	801,480	1,004,349	941,949	958,358	1,131,408	1,063,632	1,077,326
Condensate Pumps (kWe)	416	248	268	0	2	262	0	7	255	0	13	245
Boiler Feedwater Pumps (kWe)	4,577	4,581	4,834	6,085	6,157	6,400	6,725	6,790	6,872	6,848	6,902	7,023
Exhaust Gas Recycle Fan			376			440			444			443
Amine CO ₂ Capture System Auxiliaries (kWe)	0	15,971	13,128	0	18,745	15,104	0	19,206	15,684	0	19,249	6,110
CO ₂ Compression (kWe)	0	18,977	18,815	0	23,702	23,575	0	26,921	26,766	0	29,183	28,961
Circulating Water Pump (kWe)	2,337	4,030	4,463	2,791	4,910	5,409	2,941	5,290	5,857	2,964	5,520	4,452
Exhaust Gas Coolant Pump			301			374			414			490
Ground Water Pumps (kWe)	240	350	370	290	420	450	300	440	480	300	450	640
Cooling Tower Fans (kWe)	1,747	2,704	2,846	2,085	3,284	3,491	2,180	3,539	3,751	2,193	3,675	3,890
SCR (kWe)	10	10	10	10	10	10	10	10	10	10	10	10
Gas Turbine Auxiliaries (kWe)	860	860	860	1,097	1,097	1,097	1,097	1,097	1,097	1,097	1,097	1,097
Steam Turbine Auxiliaries (kWe)	488	395	556	615	500	656	672	538	669	684	540	671
Miscellaneous Balance of Plant (kWe)	2,603	2,346	2,147	3,279	2,981	3,606	3,434	3,106	4,523	3,508	3,157	5,155
Transformer Losses (kWe)	3,252	3,032	3,000	4,205	3,932	3,000	5,022	4,710	3,000	5,657	5,318	3,000
Net Auxiliary Load (kWe)	16,531	53,503	51,975	20,457	65,741	63,894	22,381	71,655	69,822	23,262	75,114	73,466
Net Plant Power (kWe)	633,892	552,816	563,165	820,493	720,560	737,586	981,968	870,294	888,536	1,108,147	988,518	1,003,860
Net Plant Efficiency (HHV)	51.8%	45.2%	45.7%	53.7%	47.2%	47.7%	56.5%	50.1%	50.6%	58.8%	52.5%	52.8%
Net Plant Efficiency (LHV)	57.4%	50.1%	50.6%	59.5%	52.2%	52.9%	62.6%	55.5%	56.1%	65.2%	58.1%	58.5%
Net Plant Heat Rate (HHV) (Btu/kWh)	6,583	7,549	7,468	6,355	7,236	7,148	6,036	6,810	6,741	5,801	6,503	6,458
Net Plant Heat Rate (LHV) (Btu/kWh)	5,942	6,814	6,741	5,736	6,532	6,452	5,448	6,147	6,085	5,237	6,193 (5,870)	5,829
Natural Gas Feed Flow (lb/hr)	185,544	185,544	186,984	231,840	231,840	234,432	263,520	263,520	266,328	285,840	285,840	288,216
Thermal Input (HHV) (kWt)	1,223,006	1,223,006	1,232,595	1,528,164	1,528,164	1,545,122	1,736,982	1,736,982	1,755,410	1,884,103	1,884,103	1,899,942
Thermal Input (LHV) (kWt)	1,103,919	1,103,919	1,112,558	1,379,364	1,379,364	1,394,650	1,567,848	1,567,848	1,584,459	1,700,644	1,700,644	1,714,916
Condenser Duty (MMBtu/hr)	1,220	730	790	1,460	850	920	1,530	840.0	920	1,530	790	880
Raw Water Withdrawal (gpm)	2,665	3,823	4,109	3,170	4,604	4,940	3,309	4,876	5,268	3,329	5,006	5,411
Raw Water Consumption (gpm)	2,210	3,126	3,069	2,629	3,759	3,626	2,744	3,967	3,889	2,760	4,063	3,844

Exhibit 7-4 Summary performance data for all cases


Exhibit 7-5 Summary cost estimation data for all cases

(All Costs are annual dollar values in June 2011 dollars)

Case	1a	1b	1c	2a	2b	2c	3a	3b	3c	4a	4b	4c
Turbine	7FA.05	7FA.05	7FA.05	H-frame	H-frame	H-frame	J-frame	J-frame	J-frame	Advanced	Advanced	Advanced
Technology	None	CCS	CCS+EGR	None	CCS	CCS+EGR	None	CCS	CCS+EGR	None	CCS	CCS+EGR
Bare Erected Cost by Account												
A3 – Feedwater & Misc. BOP Systems	41,488,323	44,403,141	45,608,842	45,590,023	49,128,696	50,613,642	47,253,721	51,041,140	52,372,062	47,767,401	51,796,514	53,180,603
A5A – Gas Cleanup & Piping	0	0	15,088,200	0	0	15,883,033	0	0	15,948,999	0	0	15,938,800
A5B – CO ₂ Capture & Compression & EGR	0	207,713,286	161,619,349	0	239,162,146	186,471,580	0	259,311,302	202,108,222	0	272,901,237	212,466,576
A6 – Combustion Turbine and Accessories	112,396,975	112,396,975	118,155,928	142,067,516	142,067,516	148,669,615	162,652,886	162,652,886	170,213,713	192,927,001	192,927,001	202,446,309
A7 – HRSG, Ducting & Stack	47,609,281	46,315,272	47,449,930	55,028,585	53,665,555	54,866,835	57,587,865	56,145,529	57,290,043	58,111,377	56,489,213	57,777,561
A8 – Steam Turbine Generator	63,093,559	55,648,331	58,352,288	74,957,656	66,182,785	68,978,469	79,671,620	69,739,448	72,410,673	80,894,303	69,993,609	72,994,575
A9 – Cooling Water System	16,017,984	21,151,823	22,655,224	17,859,060	23,900,908	25,517,682	18,348,564	25,062,007	26,788,451	18,458,485	25,785,076	27,523,488
A11 – Accessory Electric Plant	40,007,717	52,442,601	52,535,221	44,683,271	58,390,255	58,615,242	47,385,034	61,817,940	62,137,059	54,601,300	69,971,161	70,059,936
A12 – Instrumentation & Controls	14,017,269	15,419,604	15,515,593	15,951,384	17,553,273	17,614,397	16,845,421	18,530,965	18,601,444	17,244,298	19,088,871	19,192,058
A13 – Improvements To Site	9,064,072	9,205,081	9,261,407	10,328,710	10,529,995	10,590,509	11,000,709	11,277,334	11,324,634	11,790,288	12,021,827	12,095,100
A14 – Building & Structures	10,965,759	10,566,903	10,833,914	12,405,406	11,951,603	12,225,834	13,028,847	12,538,889	12,799,852	13,368,051	12,828,740	13,116,068
Total BEC	354,660,938	575,263,018	557,075,896	418,871,611	672,532,735	650,046,838	453,774,666	728,117,439	701,995,151	495,162,504	783,803,249	756,791,075
Eng'g CM H.O.& Fee	28,624,705	46,952,566	45,633,262	33,845,017	54,925,835	53,322,821	36,696,548	59,502,672	57,653,351	40,025,736	64,018,735	61,646,190
Process Contingencies	0	36,640,676	27,418,127	0	41,967,205	31,411,813	0	45,343,920	33,892,111	0	47,609,573	35,525,781
Project Contingencies	45,526,129	99,853,048	93,274,540	53,428,958	115,910,951	108,101,941	57,598,242	125,230,989	116,438,389	62,266,841	133,409,897	123,468,772
Total Plant Cost (TPC)	428,811,772	758,709,309	723,401,825	506,145,586	885,336,725	842,883,412	548,069,456	958,195,020	909,979,002	597,455,081	1,028,841,453	977,431,819
Total Plant Cost (TPC) (\$/kW)	676.5	1,372.4	1,284.5	616.9	1,228.7	1,142.8	558.1	1,101.0	1,024.1	539.1	1,040.8	973.7
Total Overnight Costs (TOC)	525,221,757	925,472,523	883,204,362	619,957,731	1,080,125,919	1,029,321,853	671,443,596	1,169,235,122	1,111,512,317	732,621,532	1,256,292,488	1,194,722,472
Total Overnight Costs (TOC) (\$/kW)	828.6	1,674.1	1,568.3	755.6	1,499.0	1,395.5	683.8	1,343.5	1,250.9	661.1	1,270.9	1,190.1
Total As-spent Cost (TASC)	564,613,389	997,659,379	952,094,302	666,454,561	1,164,375,741	1,109,608,957	721,801,866	1,260,435,461	1,198,210,277	787,568,147	1,354,283,302	1,287,910,824
Total As-spent Cost (TASC) (\$/kW)	890.7	1,804.7	1,690.6	812.3	1,615.9	1,504.4	735.1	1,448.3	1,348.5	710.7	1,370.0	1,283.0
Total Fixed Operating Costs	15,862,074	25,680,103	25,115,266	18,213,121	29,369,032	28,672,617	19,487,660	31,491,551	30,670,268	22,502,622	35,112,799	34,230,132
Maintenance Material Cost (100%CF)	6,296,740	9,781,620	9,981,119	7,432,322	11,414,157	11,629,664	8,047,939	12,353,479	12,555,414	10,909,938	15,471,107	15,676,554
Consumables (100%CF)	3,397,666	5,457,991	5,706,199	4,021,617	6,584,346	6,885,989	4,168,285	7,025,803	7,374,789	4,188,496	7,267,471	7,626,101
Fuel (100%CF)	224,080,457	224,096,139	225,842,095	279,998,158	279,984,214	283,114,377	318,281,285	318,256,872	321,635,422	345,195,102	345,193,873	348,125,550

This page intentionally left blank.

Exhibit 7-6 CO₂ emission rates

Source: NETL

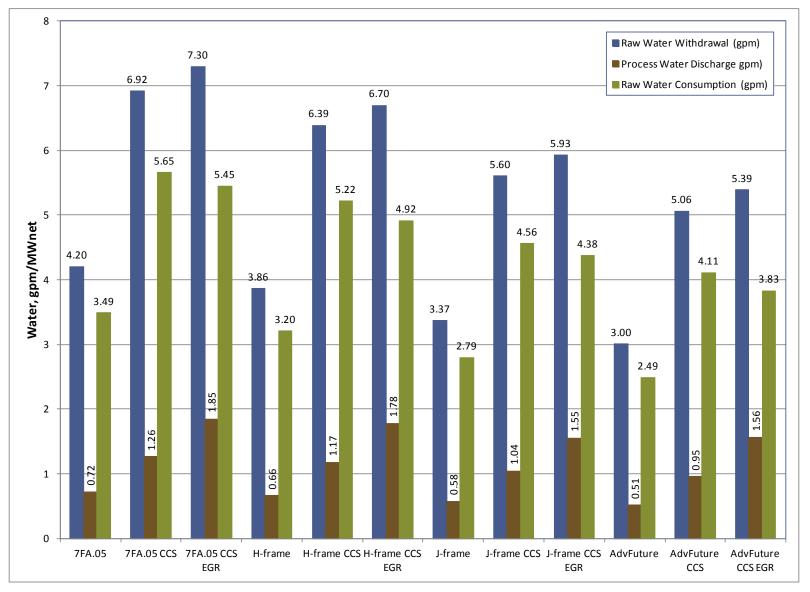


Exhibit 7-7 Raw water withdrawal and consumption

Source: NETL

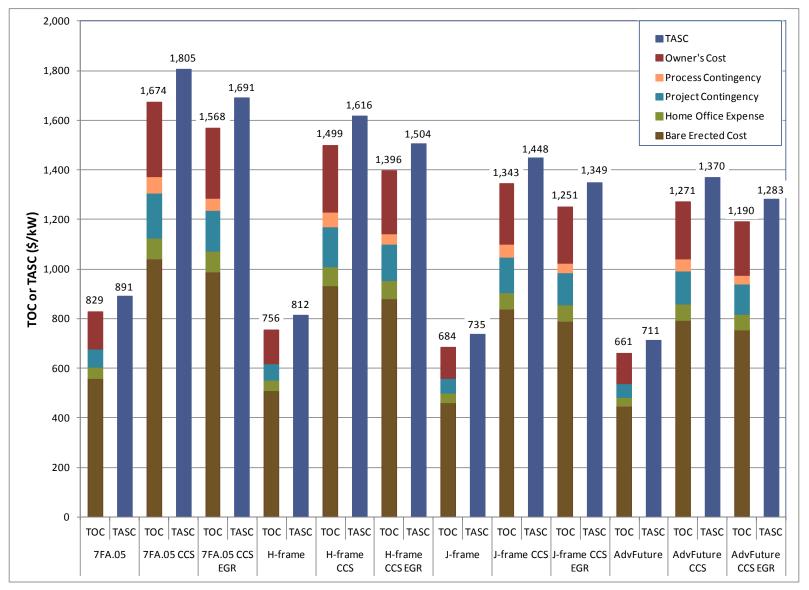


Exhibit 7-8 Plant capital costs

Source: NETL (All Costs are in June 2011 dollars)

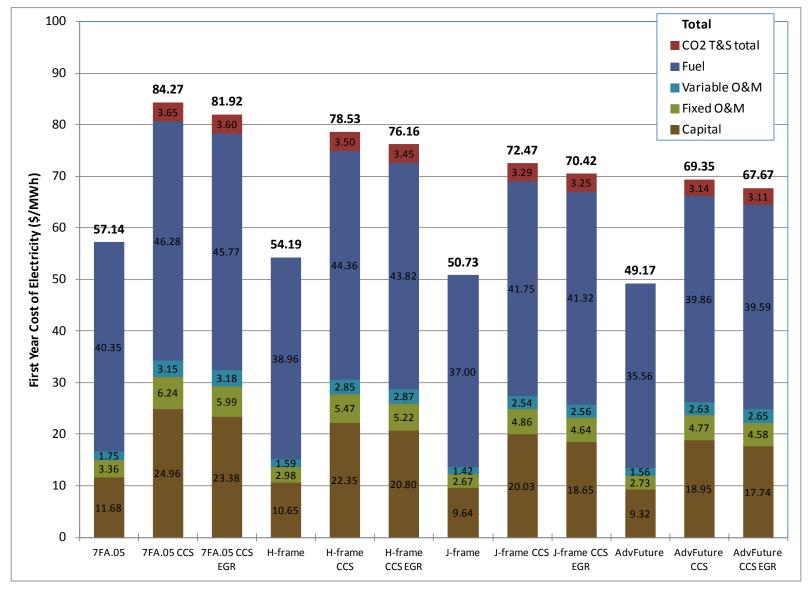


Exhibit 7-9 COE by cost component

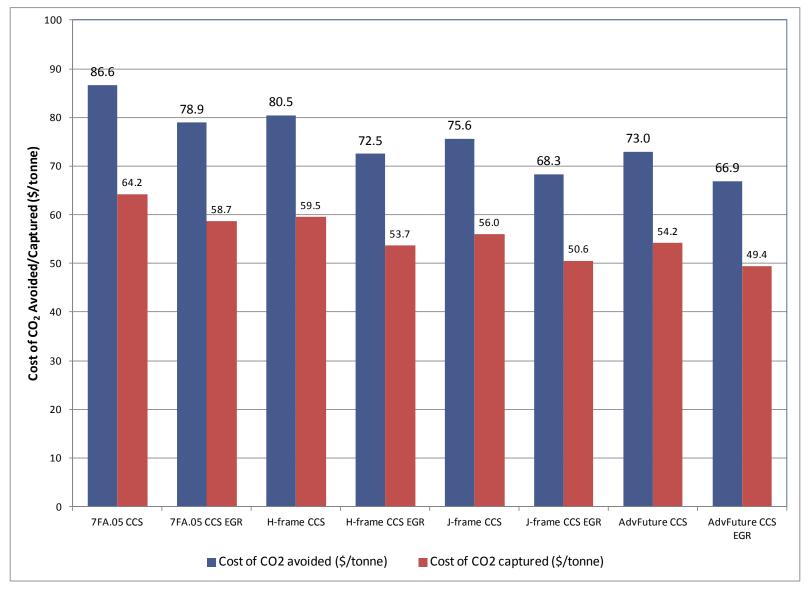


Exhibit 7-10 Cost of CO₂ avoided/captured

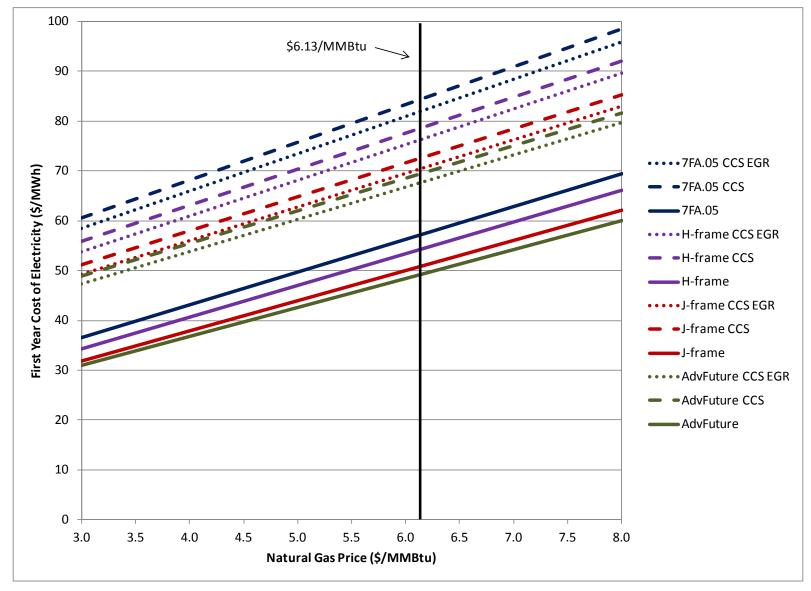


Exhibit 7-11 COE sensitivity to natural gas price

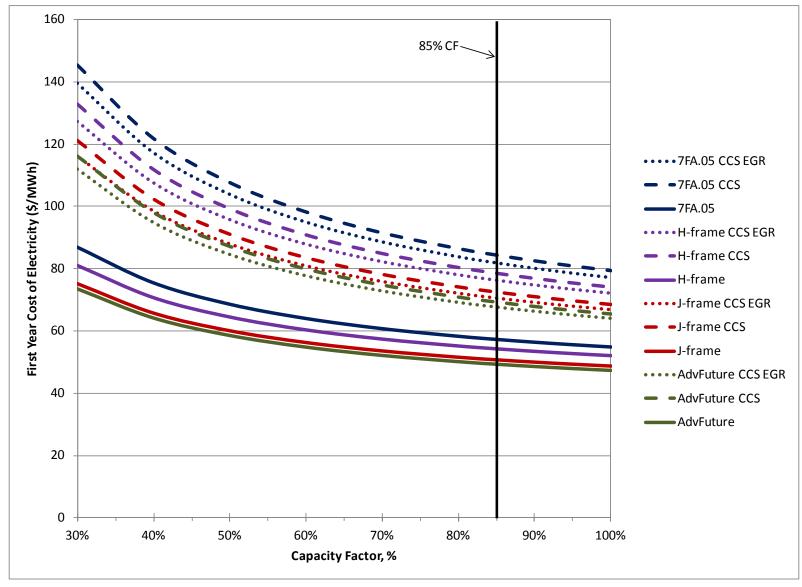


Exhibit 7-12 COE sensitivity to capacity factor

Turbine		CO₂ Capture Configuration	TOC	COE without CO ₂ T&S	COE with CO ₂ T&S	With \$10/Tonne CO ₂ Plant Gate Sales Price
		Jonnguration	(\$/kW)	(\$/MWh)	(\$/MWh)	COE without CO ₂ T&S (\$/MWh)
SOA (based on "ZEA OF")	1b	CO ₂ capture	1,674	80.62	84.27	76.96
SOA (based on "7FA.05")	1c	capture + EGR	1,568	78.32	81.92	74.71
SOA	2b	CO ₂ capture	1,499	75.03	78.53	71.53
(based on "H")	2c	capture + EGR	1,396	72.71	76.16	69.26
Advanced (bacad on " !")	3b	CO ₂ capture	1,343	69.17	72.47	65.88
Advanced (based on "J")	3c	capture + EGR	1,251	67.17	70.42	63.92
Advanced Future turbine	4b	CO ₂ capture	1,271	66.21	69.35	63.06
	4c	capture + EGR	1,190	64.56	67.67	61.45

Exhibit 7-13 Capture case results with EOR

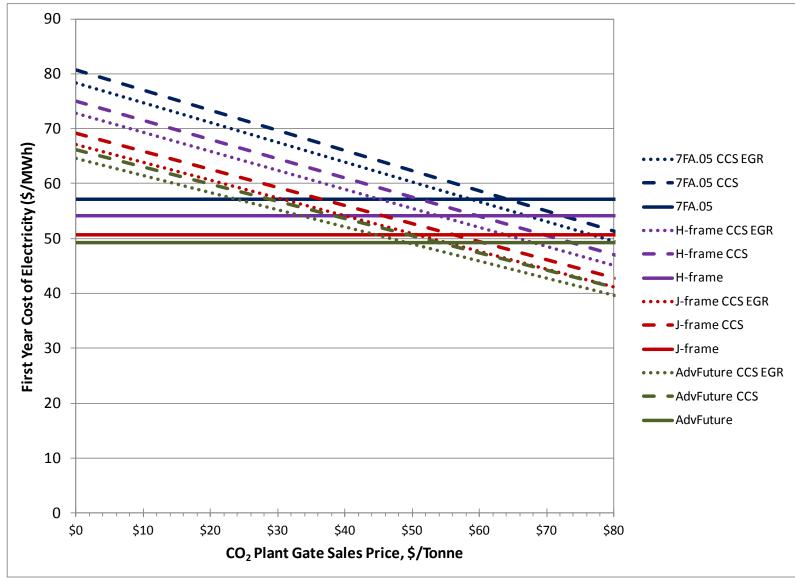


Exhibit 7-14 COE sensitivity to EOR credit

Source: NETL (All Costs are in June 2011 dollars, 85% capacity factor)

This study provides the following analysis tools and findings:

- Process simulation models of NGCC plants representing both SOA and advanced gas turbines, with and without an advanced post combustion capture system, are available to compare with coal power plants. Additionally, as new and evolving capture technologies develop, the models can be easily modified to evaluate the benefits.
- The performance penalty for carbon capture is approximately 6-7 absolute percentage points for the advanced solvent process represented.
- EGR greater than 35 percent may be required to further improve results.
- Natural gas fuel costs account for approximately 72 percent of the COE for the noncapture cases and approximately 57 percent for the CO₂ capture cases when based on a price of \$5.81/GJ (\$6.13/MMBtu). This implies that comparisons with coal power plants, which are less sensitive to fuel costs, will be greatly influenced by natural gas prices.
- The EPA recently proposed CO₂ emissions limit of 1000 lb/MWh_{gross} for new power plants, which would result in carbon capture not being required for NGCC.
- Carbon capture plants require a sales price for CO₂ of approximately \$50 to \$65/tonne for capture cases to have a COE equivalent to non-capture cases.

8 References

- 1 Thermoflow. (2011). GT PRO and THERMOFLEX Version 21.0: Sudbury, Massachusetts. www.thermoflow.com
- 2 National Energy Technology Laboratory (NETL). (2011). Carbon Capture Approaches for Natural Gas Combined Cycle Systems. Energy Analysis Publications: Details. Retrieved on November 16, 2011, from http://www.netl.doe.gov/energyanalyses/refshelf/PubDetails.aspx?Action=View&PubId=368
- 3 —. (2010). Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Energy Analyses: Cost and Performance Baselines for Fossil Energy Plants. Retrieved on November 16, 2011, from http://www.netl.doe.gov/energy-analyses/baseline_studies.html
- 4 ——. (January 2013). Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology, DOE/NETL-341/013113. Pittsburgh, Pennsylvania. Details Retrieved on May 16, 2013, from http://www.netl.doe.gov/energyanalyses/refshelf/PubDetails.aspx?Action=View&Source=Main&PubId=466
- 5 —. (April 2011). Quality Guidelines for Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance. DOE/NETL-2011/1455: Pittsburgh, Pennsylvania. Details Retrieved on May 16, 2013, from http://www.netl.doe.gov/energyanalyses/refshelf/PubDetails.aspx?Action=View&PubId=355
- 6 ——. (February 2013). Quality Guideline for Energy System Studies: Fuel Prices for Selected Feedstocks in NETL Studies, DOE/NETL-341/11212. Pittsburgh, Pennsylvania. Details Retrieved on May 16, 2013, from http://www.netl.doe.gov/energyanalyses/refshelf/PubDetails.aspx?Action=View&Source=Main&PubId=465
- 7 ——. (March 2013). Quality Guideline for Energy System Studies: Carbon Dioxide Transport and Storage Costs in NETL Studies, NETL/DOE-2013/1614. Pittsburgh, Pennsylvania. Details Retrieved on May 16, 2013, from http://www.netl.doe.gov/energyanalyses/refshelf/PubDetails.aspx?Action=View&Source=Main&PubId=466
- 8 U.S. Energy Information Administration (EIA). (2012). Annual Energy Review 2011, Release Date: September 27, 2012; Report Number: DOE/EIA-0384(2011).
- 9 —. (2013). Annual Energy Outlook 2013 Early Release with Projections to 2040, Release Date: December 5, 2012; Report Number: DOE/EIA-0383ER(2013).
- 10 GE Energy. (2009). 7FA Heavy Duty Gas turbine. Retrieved on April 10, 2012, from http://www.ge-flexibility.com/downloads/7FA Product Evolution - GEA17553.pdf
- 11 Siemens Energy. (2012). Siemens Gas Turbines. Retrieved on April 10, 2012, from http://www.energy.siemens.com/us/en/power-generation/gas-turbines/sgt6-8000h.htm
- 12 Koeneke, C. (2011). Mitsubishi's latest Large Frame Gas Turbine Development. ICEPAG 2011 (Costa Mesa, CA). Mitsubishi Power Systems Americas, Inc.

- de Biasi, V. (2010). 1600 C –Class M501J plant rated 460 MW and over 61% efficiency.
 Gas Turbine World, September October 2010, Volume 40 No. 5.
- 14 Dennis, R. (2011). Proposed NETL/DOE Turbine Development Roadmaps (private communication. National Energy Technology Laboratory (NETL)
- 15 Tonko, P. (2009). High Efficiency Gas Turbines (bill H.R. 3029) House of Representatives Report. 111-343.
- 16 Updated Coal Power Systems Study, Pulverized Coal Boiler, Fluor Subcontract Report for Carbon Dioxide Capture Unit, Fluor. December 2005.
- 17 OEMs. (2011). Confidential communications with National Energy Technology Laboratory (NETL).
- 18 Aspentech. (2009). Aspen Plus Version 2006.5: Burlington, Massachusetts. www.aspentech.com

Appendix

Case 1a - SOA turbine without CO2 capture heat and mass balance diagram

Case 1b - SOA turbine with CO2 capture heat and mass balance diagram

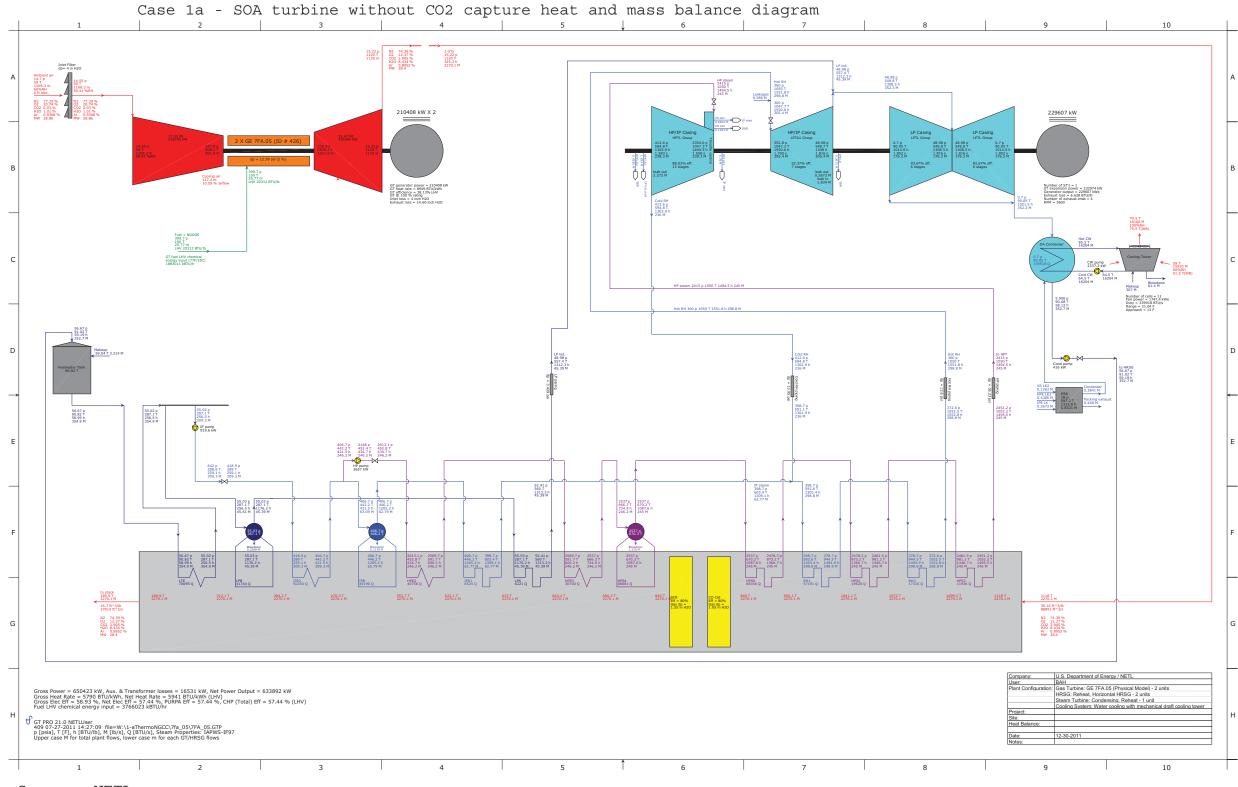
Case 1c - SOA turbine with CO2 capture and EGR heat and mass balance diagram

Case 2a - "H" frame turbine without CO2 capture heat and mass balance diagram

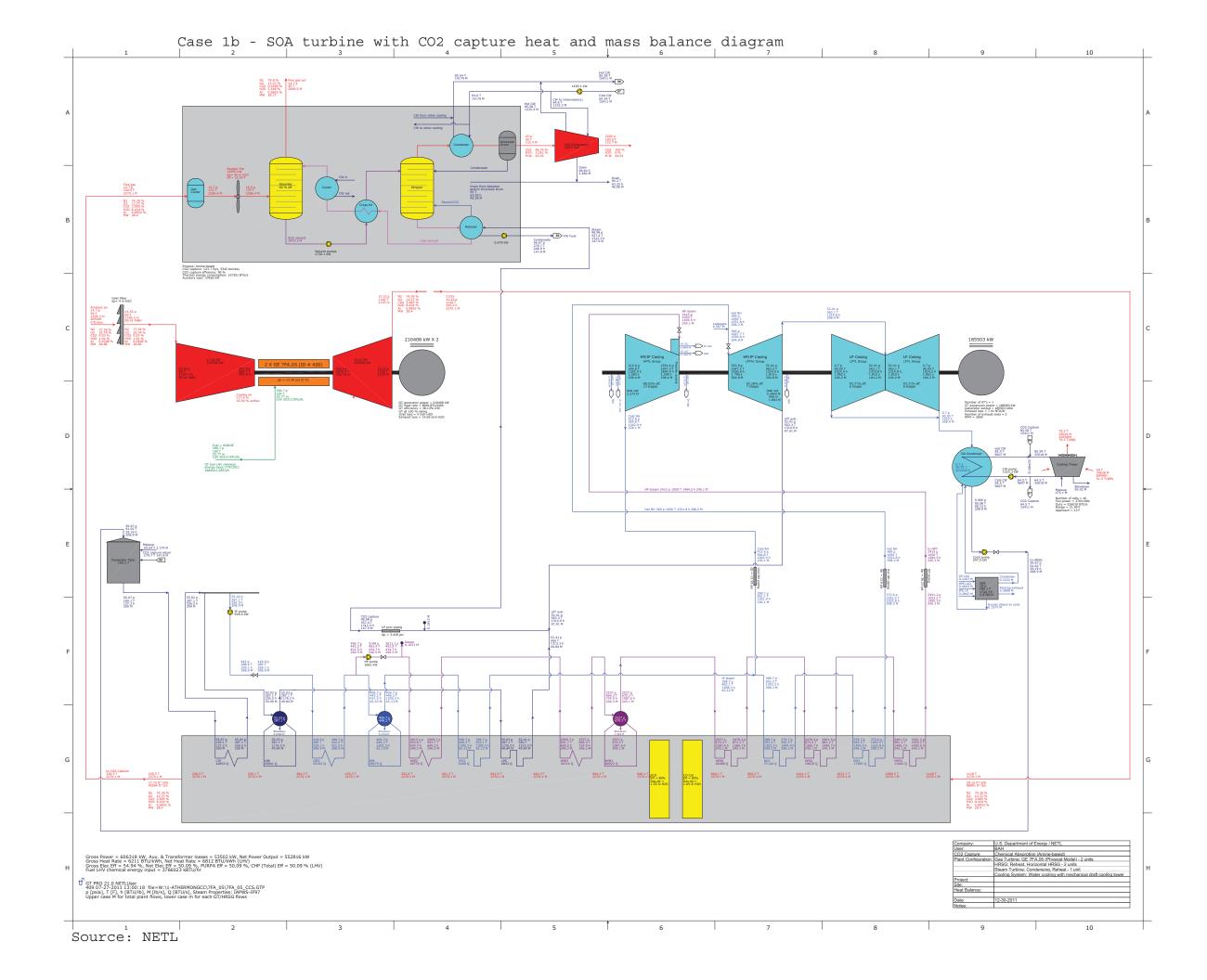
Case 2b - "H" frame turbine with CO2 capture heat and mass balance diagram

Case 2c – "H" frame turbine with CO2 capture and EGR heat and mass balance diagram

Case 3a – "J" frame turbine without CO2 capture heat and mass balance diagram


Case 3b – "J" frame turbine with CO2 capture heat and mass balance diagram

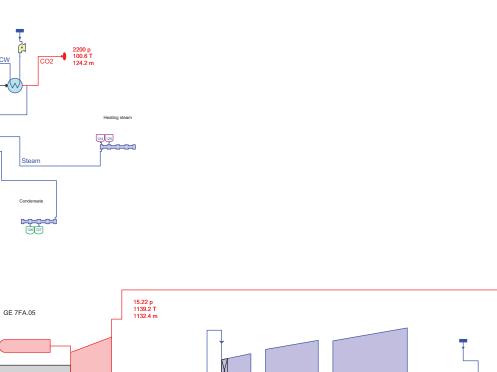
Case 3c – "J" frame turbine with CO2 capture and EGR heat and mass balance diagram

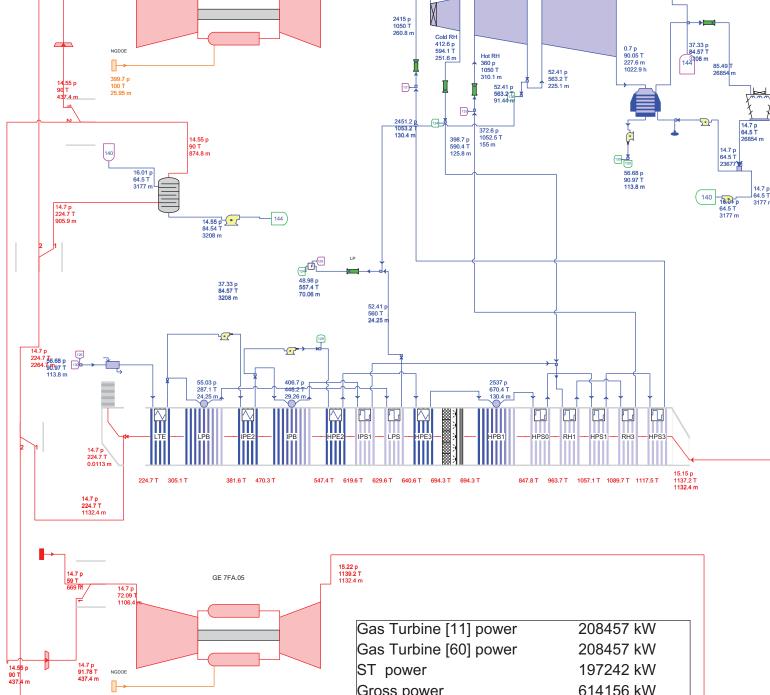

Case 4a - Advanced/Future turbine without CO2 capture heat and mass balance diagram

Case 4b - Advanced/Future turbine with CO2 capture heat and mass balance diagram

Case 4c - Advanced/Future turbine with CO2 capture and EGR heat and mass balance diagram

Source: NETL

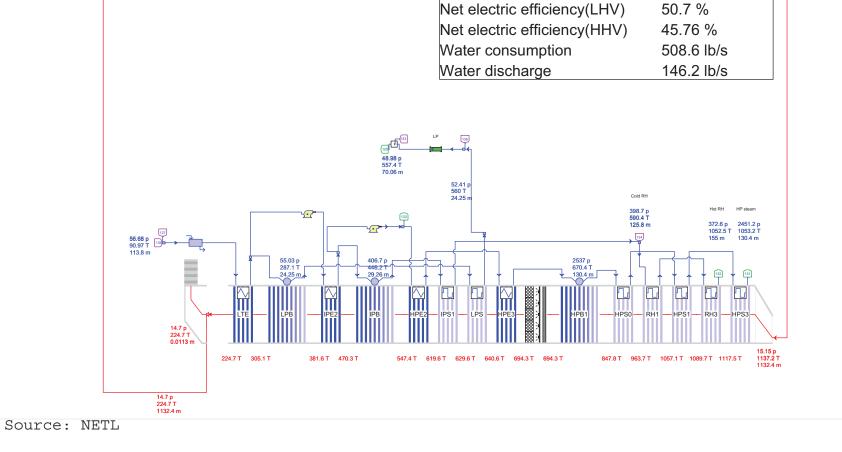

14.7 p 95 T 1191.6 m


14.7 p 59 T 669 m

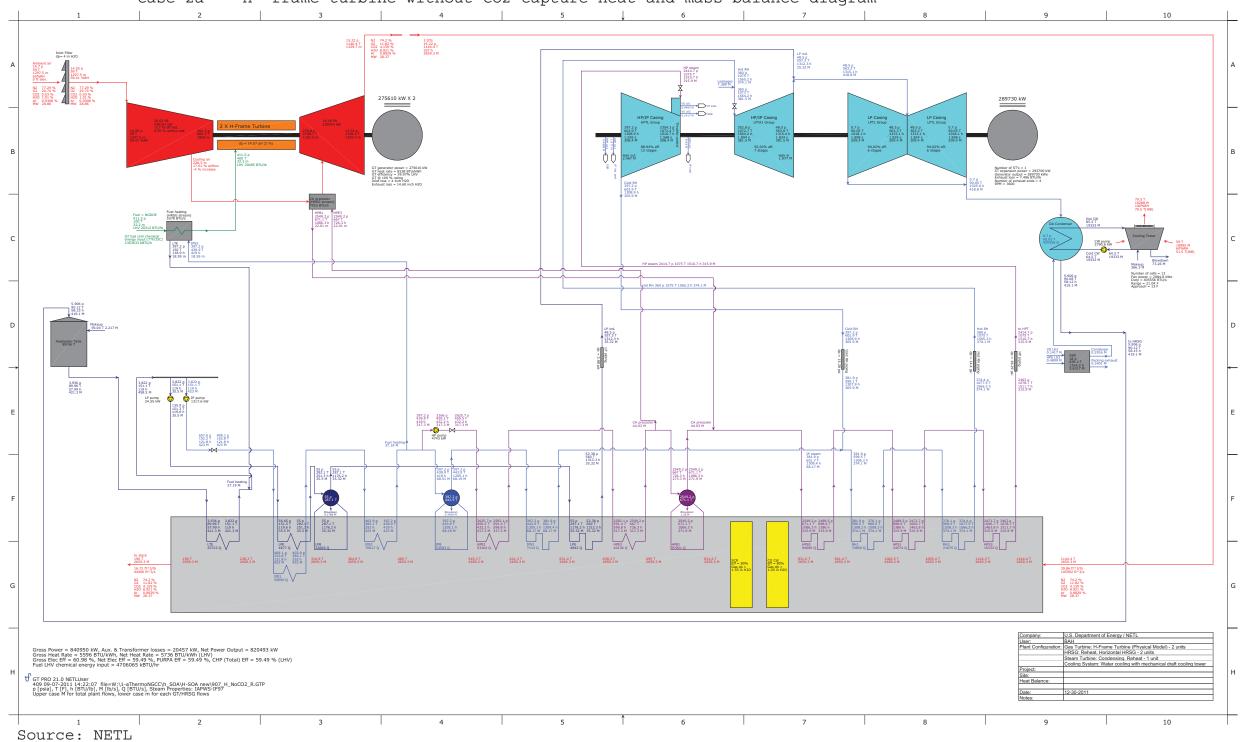
14.7 p 72.09 T 1106.4 n

399.7 p 100 T 25.95 m

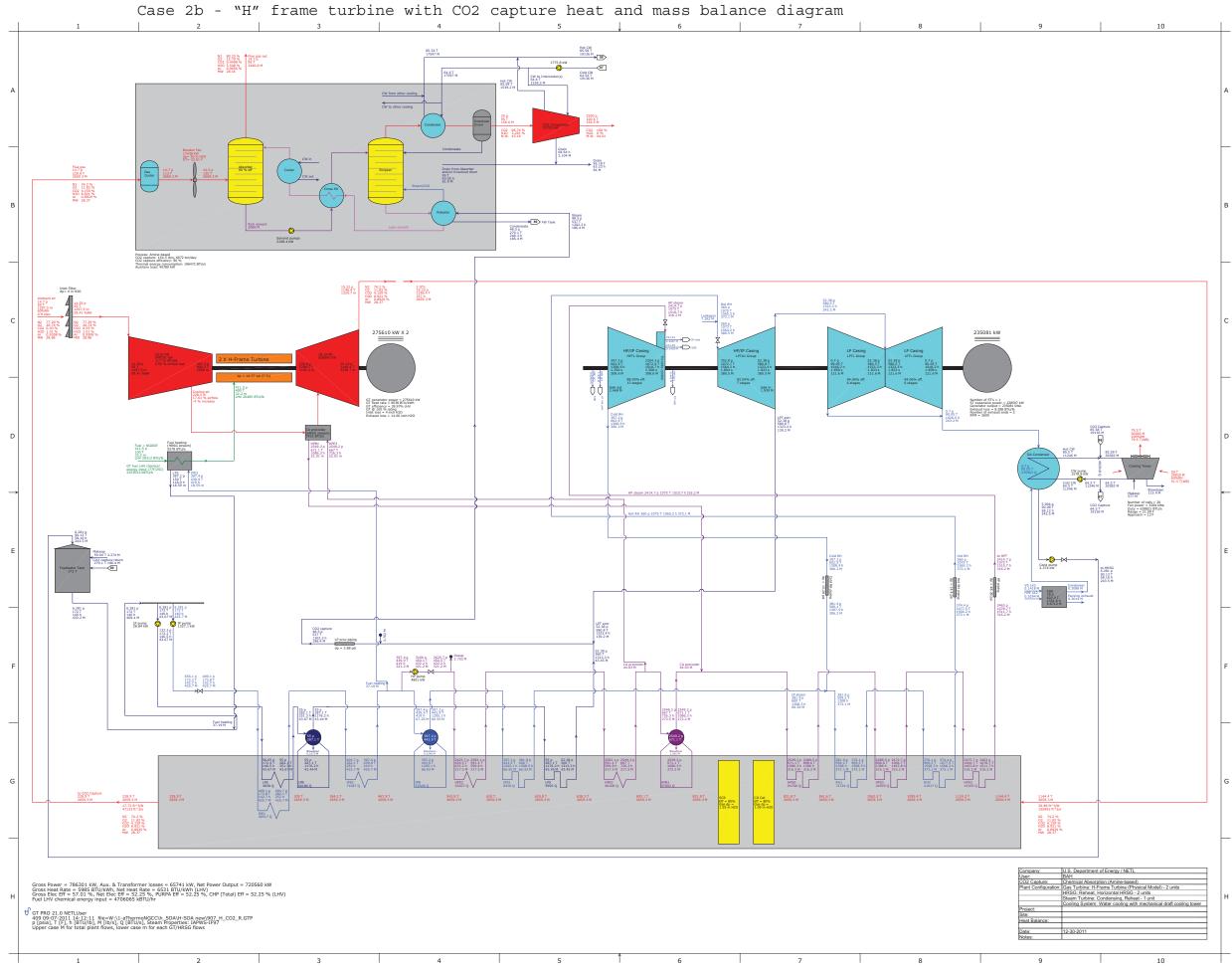
14.7 p 224.7 T 1358.8 m

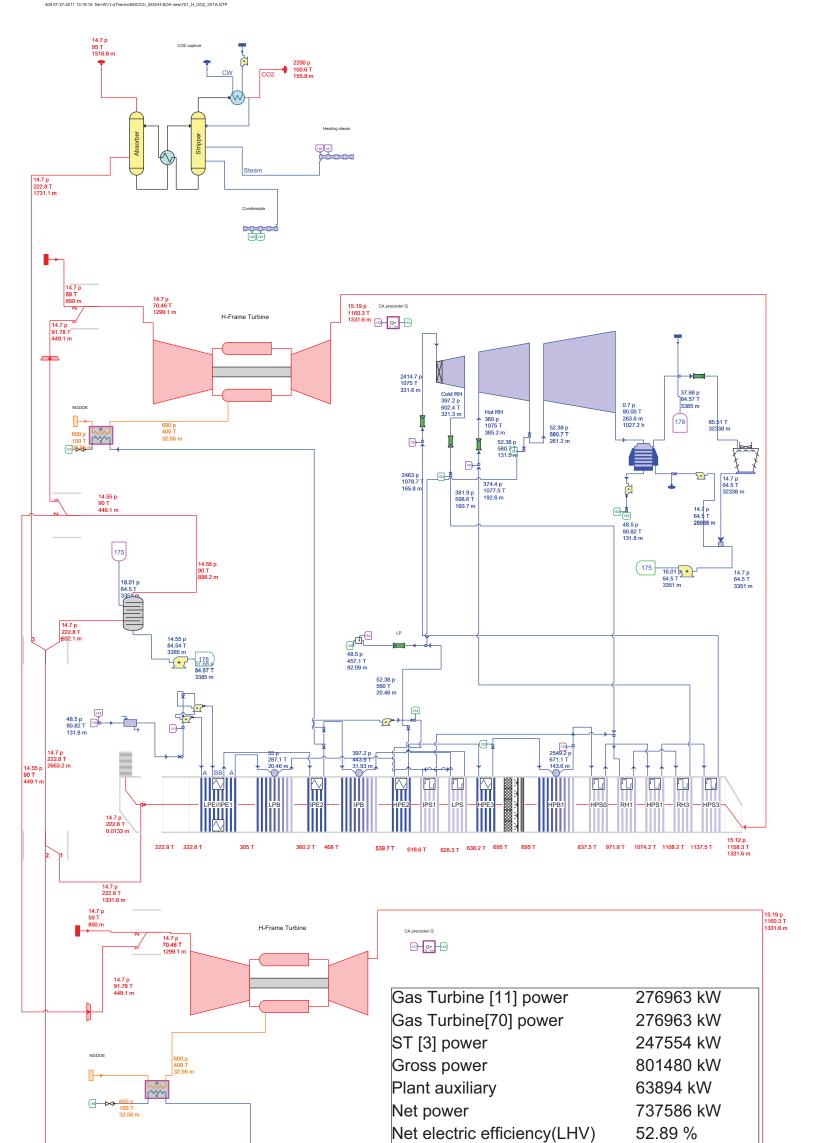

Gross power

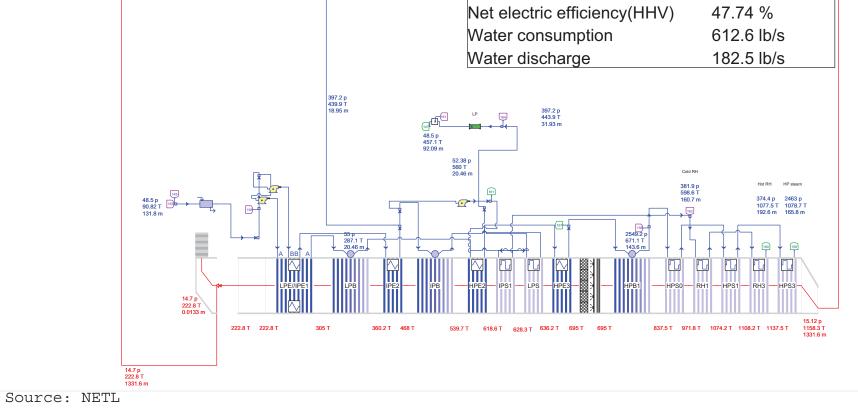
Plant auxiliary

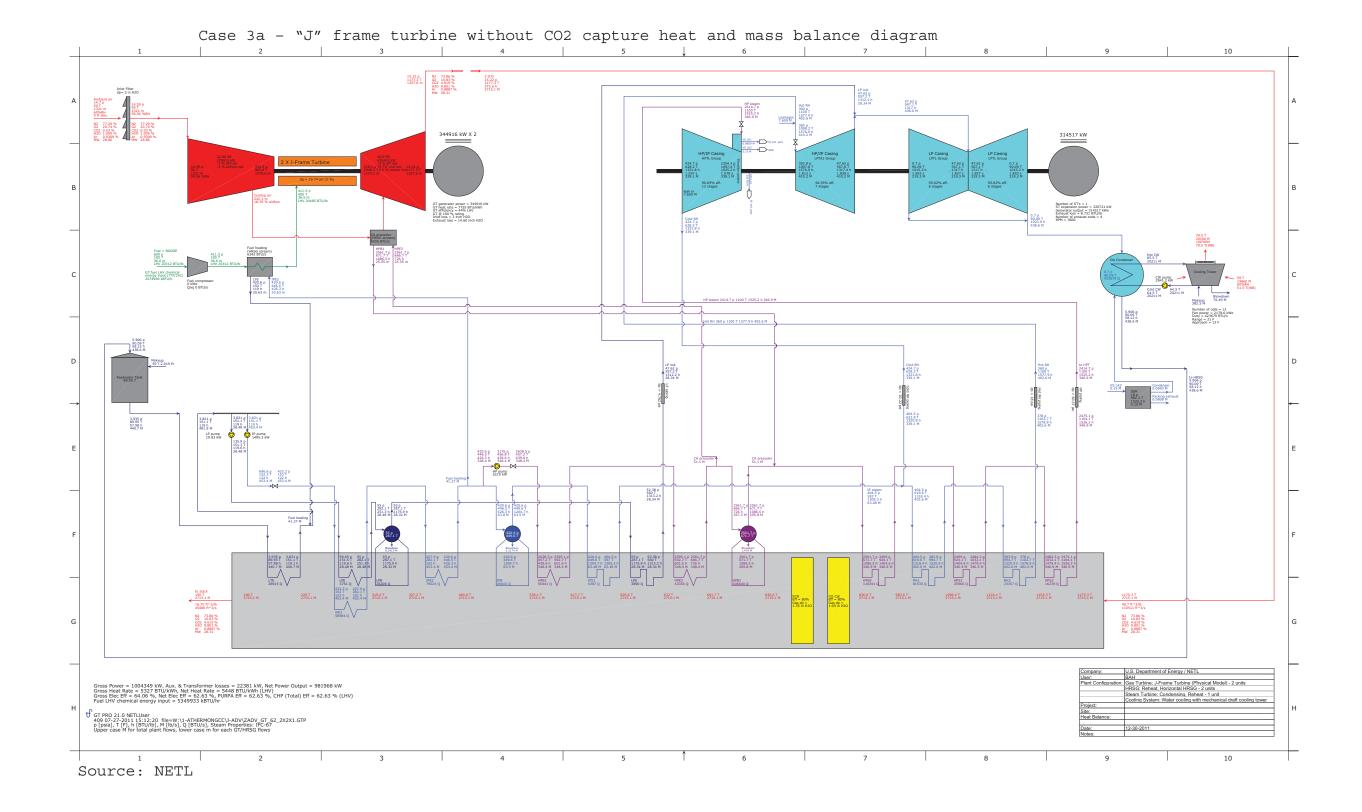

Net power

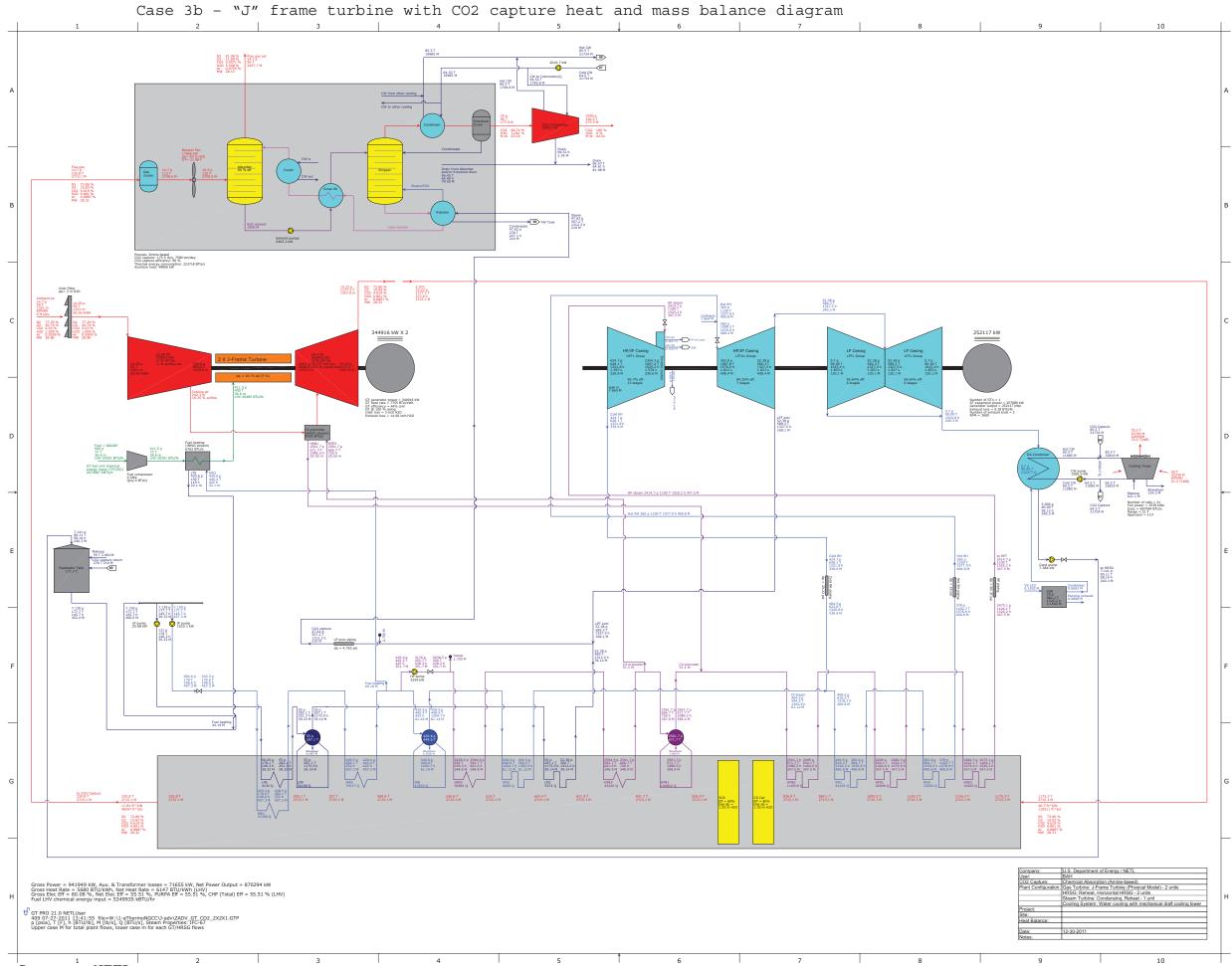
614156 kW

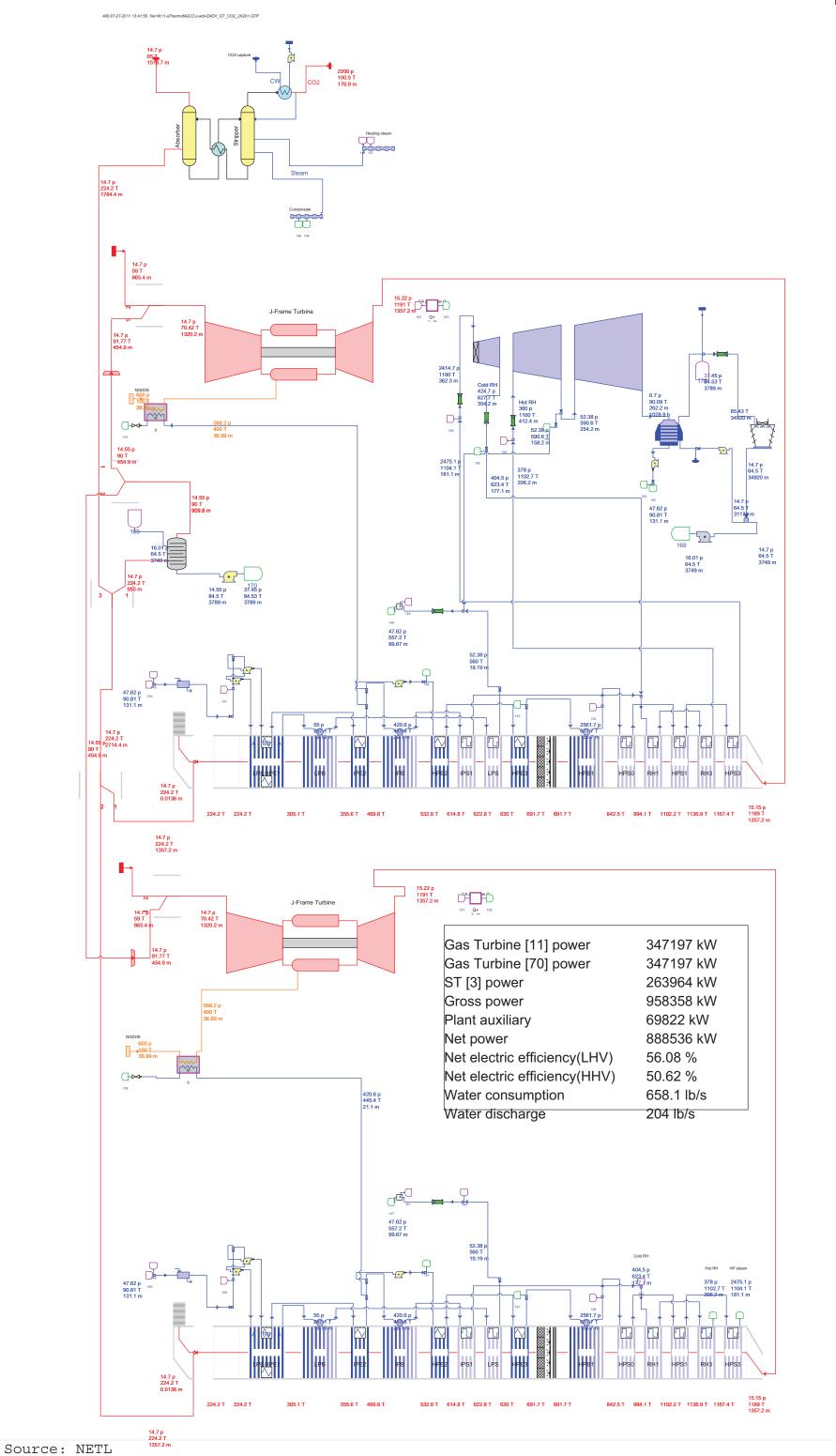

50701 kW 563455 kW



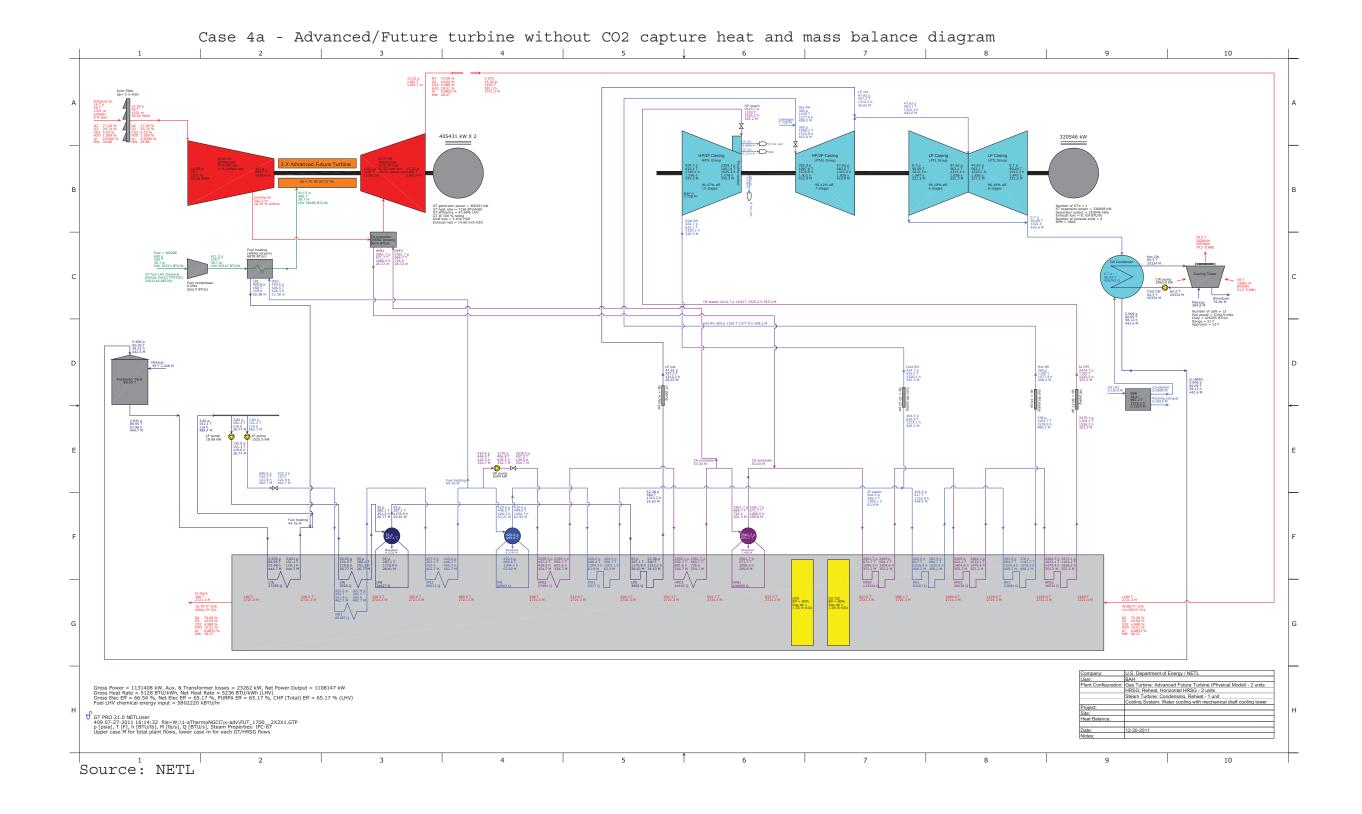

Sheet 1: GT 1-2

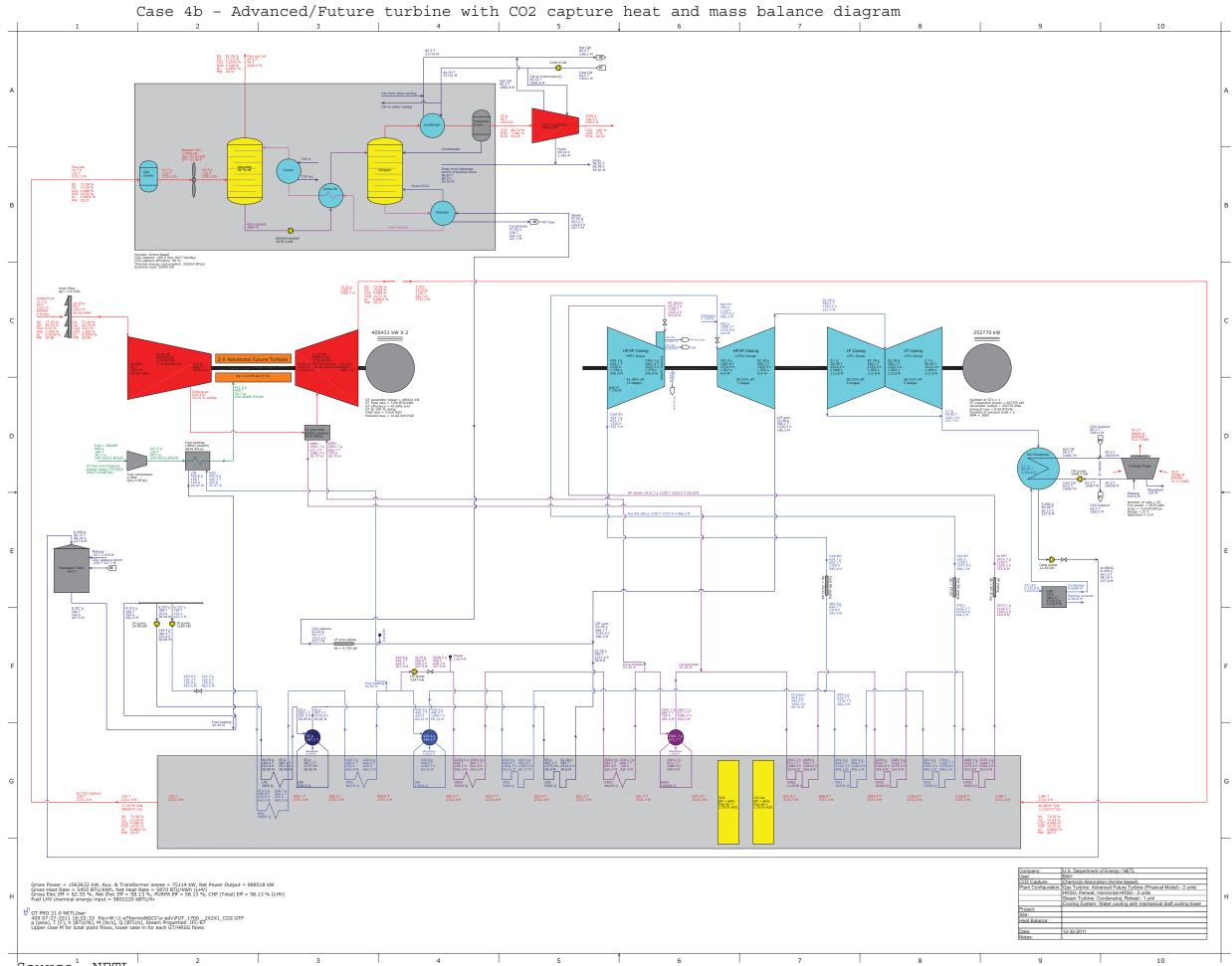

Case 2a - "H" frame turbine without CO2 capture heat and mass balance diagram



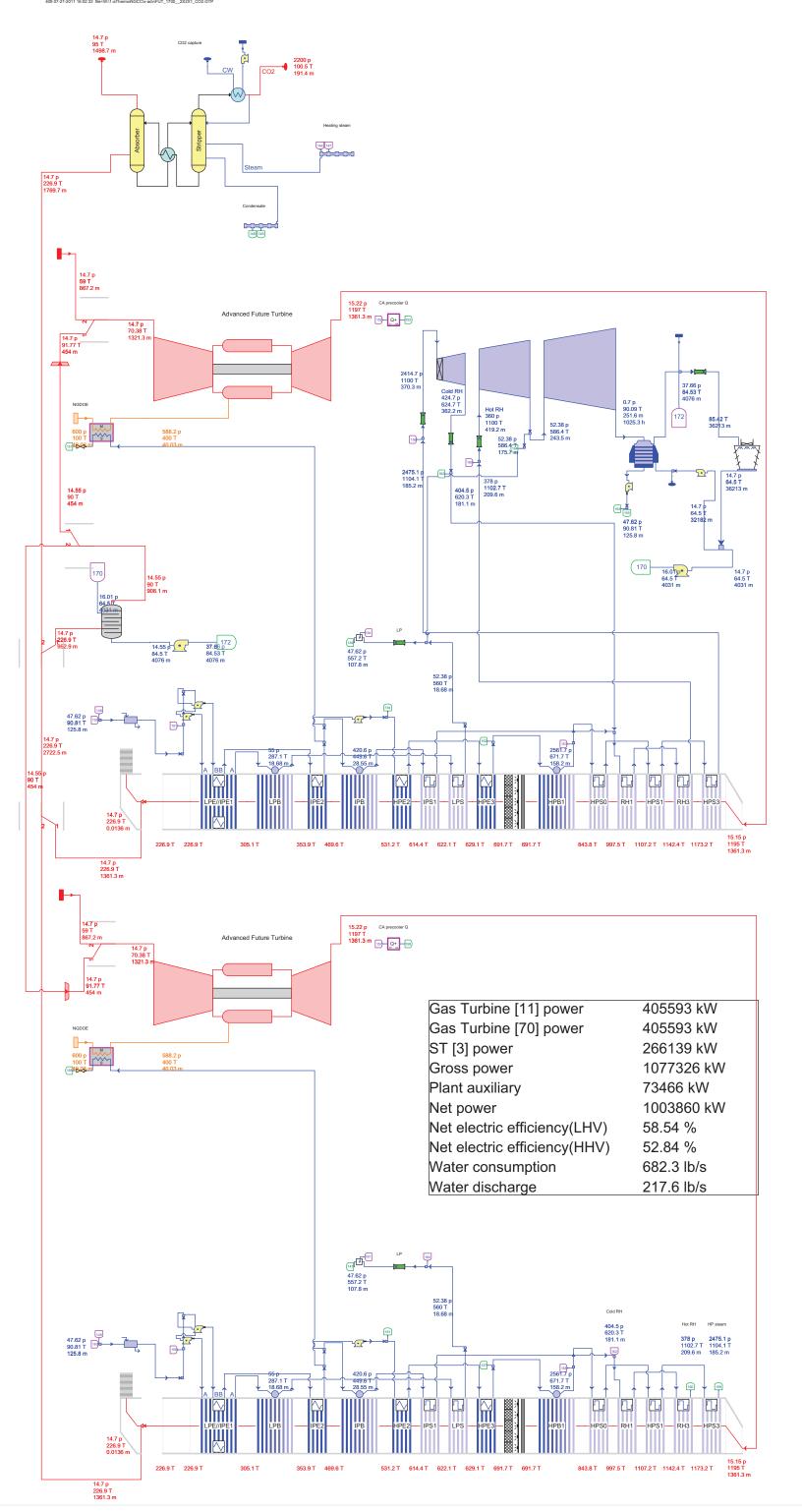


Sheet 1: GT 1-2





Case 3c - "J" frame turbine with CO2 capture and EGR heat and mass balance diagram



lb/s BTU/lb

Source¹: NETL

Source: NETL

Sheet 1: GT 1-2

psia F lb/s BTU/lb