Examining the Climate-Energy Nexus for CO₂-Enhanced Oil Recovery

George G. Zaimes, Matthew Jamieson, Greg Cooney, Joe Marriott, & Tim Skone
National Energy Technology Laboratory (NETL)
LCA XVII, Portsmouth, NH

October 4, 2017
DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Attribution

KeyLogic Systems, Inc.’s contributions to this work were funded by the National Energy Technology Laboratory under the Mission Execution and Strategic Analysis contract (DE-FE0025912) for support services.
• Introduction
 • Climate-Energy Nexus
 • Motivation
 • CO₂-EOR Supply Chain

• Research Objectives
 • Scope, Goal, and Sustainability Metrics

• Results
 • Scenario Analysis
 • Tradeoffs in the Climate-Energy Nexus

• Summary
Introduction
Climate-Energy Nexus

• Climate-Energy Nexus
 • Intersection of climate and energy objectives

• Climate-Energy issues are multifaceted and highly interconnected
 • Single metric analysis fails to capture tradeoffs in the Climate-Energy Nexus

Human Health Impacts
Loss of Natural Capital

Air and Water Pollution
Global Climate Change

Energy Security
Economic Growth
Quality of Life

Human & Ecological Impacts
Climate Effects
Introduction

Motivation

• **Benefits of CO$_2$-EOR**
 • Tertiary oil production from existing oil-fields
 •Injecting captured CO$_2$ from power plants allows for concurrent abatement of anthropogenic CO$_2$

1Cooney et al. Environmental Science and Technology 2015
Source: https://energy.gov/fe/science-innovation/oil-gas-research/enhanced-oil-recovery
Introduction

CO₂-EOR Supply Chain

Natural Gas Extraction → Natural Gas Transport

Coal Extraction → Coal Transport

Biomass Cultivation & Harvesting → Biomass Transport

Power Plant

Natural Dome

CO₂ Pipeline Transport

EOR Crude Extraction → EOR Crude Transport

Petroleum Refining

Hydrocarbon Transport → Product Combustion

Legend

- Feedstock
- Feedstock Transport
- CO₂ Source
- CO₂ Pipeline
- EOR Crude Extraction
- EOR Crude Transport
- Petroleum Refining
- Hydrocarbon Transport
- Product Combustion

Flow

Feedstock

Fuel

Technology
Research Objectives
Scope, Goal, and Sustainability Metrics

• Scope & Goal
 • Scope and Goal: Comparative LCA of hydrocarbon fuels produced via CO$_2$-EOR
 • Boundary: Cradle-to-Grave
 • Functional Unit: 1 MJ of Hydrocarbon Fuel
 • Gasoline
 • Diesel
 • Aviation Fuel

• Sustainability Metrics
 • Life Cycle Greenhouse Gas (GHG) Emissions
 • Primary Energy Consumption
Life Cycle GHG Analysis

Life Cycle GHG Emissions by Supply Chain Stage

- Life Cycle GHG Emissions (gCO₂e / MJ-Diesel)

- Error bars represent the 10th and 90th percentiles obtained via varying EOR crude recovery ratio

Error bars represent the 10th and 90th percentiles obtained via varying EOR crude recovery ratio
Life Cycle Energy Analysis
Primary Energy Use by Supply Chain Stage

*Error bars represent the 10th and 90th percentiles obtained via varying EOR crude recovery ratio

Life Cycle Energy Analysis

Box and Whisker Plots: Net Primary Energy Use

Net Primary Energy Use (MJ Primary Energy / MJ-Diesel)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Natural Dome IGCC SCPC
IL #6 PRB IL #6, 50% SG IL #6 PRB IL #6, 50% SRWC IL #6 PRB IL #6, 50% SG PRB, 50% SG
IL #6, 50% SG PRB, 50% SRWC PRB, 50% SG PRB, 50% SG
IL #6, 50% SRWC IL #6, 50% SG PRB, 50% SRWC PRB, 50% SG
IL #6, 50% SRWC IL #6, 50% SG PRB, 50% SRWC PRB, 50% SG
Natural Gas

90th Percentile
75th Percentile
50th Percentile
25th Percentile
10th Percentile
• **Sustainability Implications**
 - Increasing biomass feed rate
 - Lowers life cycle GHG emissions
 - Lowers Energy Return on Investment
 - Near carbon-neutral fuel is obtainable if cofiring rate exceeds 75%
 - Under these conditions, system is not energetically viable
 - Similar environmental profile to hydrocarbon biofuels\(^1\)

\(^1\)Zaimis et al. *Energy and Environmental Science* 2017
Climate-Energy Nexus
Tomado Plots: USCPC, Co-firing PRB & 50% SG

Displacement Credit (Electricity)
Crude Recovery Ratio
Biomass Feed Fraction
CO₂ Capture (%)
Coal Mine Methane
EOR Formation Leakage (%)

Energy Return on Investment
(MJ Diesel / MJ Primary Energy)

Life Cycle GHG Emissions
(gCO₂e / MJ-Diesel)

USCPC: Ultra-SuperCritical Pulverized Coal; PRB: Powder River Basin; SG: Switchgrass
Summary

Main Findings

• Climate-Energy Nexus
 • Implicit tradeoff between life cycle energy use and GHG abatement across CO₂-EOR scenarios
 • Results are sensitive to the electricity displacement credit and environmental profile of captured CO₂
 • Coupling of Power Generation Supply Chain with EOR
 • Implications for grid de-carbonization

• Tradeoffs
 • Increasing the crude recovery ratio results in lower primary energy use but higher life cycle GHG emissions
 • Co-firing biomass reduces life cycle GHG emissions but increases primary energy use
Contact Information

Timothy J. Skone, P.E.
• Senior Environmental Engineer • Strategic Energy Analysis
 (412) 386-4495 • timothy.skone@netl.doe.gov

Joe Marriott, PhD
• Principle Engineer • Strategic Energy Analysis
 joseph.marriott@netl.doe.gov

Greg Cooney
• Senior Engineer • Strategic Energy Analysis
 gcooney@keylogic.com

George G. Zaimes, PhD
• Senior Engineer • Strategic Energy Analysis
 george.zaimes@netl.gov

Matthew Jamieson
• Staff Engineer • Strategic Energy Analysis
 matthew.jamieson@netl.gov

netl.doe.gov/LCA LCA@netl.doe.gov @NETL_News