Dimensionally Reduced Model for Rapid and Accurate Prediction of Gas Saturation, Pressure, and Brine Production in a CO₂ Storage Application: Case Study at the SACROC Field

AAPG Carbon Capture, Utilization, and Storage (CCUS) Conference

March 31, 2022

NETL Support Contractors
Kolawole Bello
Derek Vikara

NETL's Strategic Systems Analysis and Engineering
Donald Remson
David Morgan
SMART Task 5 – Motivation and Vision

How can we overcome the lack of relevant experience among CCS stakeholders to ensure rapid and safe deployment of large-scale geologic CO₂ storage?

- The oil and gas industry has learned through doing over decades.
- There is no Commercial-scale CO₂ storage in the US.
- Transformational approach using advances in machine learning: virtual learning environments.

Vision: Enable a virtual learning environment (VLE) for exploring and testing strategies to optimize reservoir development, management and monitoring prior to field activities.

- An interactive way to gain an intuitive understanding of CO₂ storage site behavior.

Study Objective: Develop a fast, accurate, physics-informed predictive model for reservoir pressure, CO₂ saturation, and water production in a CO₂ storage application (that can be used in a VLE).

https://edx.netl.doe.gov/smart/
SACROC Modeling Domain

Grid dimensions in a 25 x 16 x 34 orientation (13,600 grids total)

Permeability: Three components \((i, j, k)\) per grid

\(k = \text{layer 25 (deepest)}\)

Porosity: One component per grid

\(k = \text{layer 25 (deepest)}\)

Modeling Domain Contains:
- Three (3) \(\mathrm{CO}_2\) injection wells (I1, I2, and I4).
- Two (2) brine production wells (P2 and P3).
- Three (3) permeability and porosity variants (P10, P50, and P90).

<table>
<thead>
<tr>
<th>Geologic Realization</th>
<th>Permeability (i) (mD)</th>
<th>Permeability (j) (mD)</th>
<th>Permeability (k) (mD)</th>
<th>Porosity (decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>55.84</td>
<td>179</td>
<td>55.84</td>
<td>17.9</td>
</tr>
<tr>
<td>P50</td>
<td>53.37</td>
<td>183</td>
<td>53.37</td>
<td>18.2</td>
</tr>
<tr>
<td>P90</td>
<td>48.2</td>
<td>195</td>
<td>48.2</td>
<td>19.5</td>
</tr>
</tbody>
</table>
Summary of Training/Testing Data

CMG-GEM Framework

- CMG-GEM model to simulate 90 cases of different injection allocation and geology realizations.
- CO₂ Injection / Water Production for 30 years; 50 years of plume stabilization (represented by 963 timesteps).

Physics-based Realization Library

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sample Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated Cases</td>
<td>90</td>
</tr>
<tr>
<td>Geologic Realizations (Porosity and Permeability)</td>
<td>P10, P50, P90</td>
</tr>
<tr>
<td>Total Mass of CO₂ Injection (Million Metric Tons)</td>
<td>22.4, 16.8, 11.2, 8.4, 5.6</td>
</tr>
<tr>
<td>CO₂ Injection Allocation Scenarios (%)</td>
<td></td>
</tr>
<tr>
<td>2 Active Injection Wells</td>
<td></td>
</tr>
<tr>
<td>- 50/50 Split (24)</td>
<td></td>
</tr>
<tr>
<td>- 10/90 Split (13)</td>
<td></td>
</tr>
<tr>
<td>- 90/10 Split (20)</td>
<td></td>
</tr>
<tr>
<td>3 Active Injection Wells Cases</td>
<td></td>
</tr>
<tr>
<td>- 33/33/33 Split (7)</td>
<td></td>
</tr>
<tr>
<td>- 60/20/20 Split (9)</td>
<td></td>
</tr>
<tr>
<td>- 20/60/20 Split (10)</td>
<td></td>
</tr>
<tr>
<td>- 20/20/60 Split (7)</td>
<td></td>
</tr>
</tbody>
</table>
Autoencoder Overview

Goal: Reduce the dimensionality of the geologic input into a single input array.

```
Input                              | None, 4, 34, 16, 25
Flatten                            | None, 54400
Encode 1                           | None, 256
Encode 2                           | None, 128
Encode 3                           | None, 64
Decode 1                           | None, 128
Decode 2                           | None, 256
Decode 3                           | None, 54400
Reshape                            | None, 4, 34, 16, 25
```

“None” in the model architecture above refers to a tensor that could vary in size. In this case, it is consistent with the three geologic realizations (P_{10}, P_{50}, and P_{90}).

Training Overview

Trained on the P_{10}, P_{50}, and P_{90} realizations of porosity and permeability.

Performance

Geologic input represented in single 1 x 64 array.
- 850-fold reduction.
- > 99.9% reconstruction accuracy.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Time/RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time per Epoch (sec)</td>
<td>< 1</td>
</tr>
<tr>
<td>Training Error (normalized)</td>
<td>3.24E-7</td>
</tr>
<tr>
<td>Test Error (Full Dataset - normalized)</td>
<td>1.71E-6</td>
</tr>
<tr>
<td>Porosity (decimal)</td>
<td>4.10E-7</td>
</tr>
<tr>
<td>Permeability - i (mD)</td>
<td>0.0115</td>
</tr>
<tr>
<td>Permeability - j (mD)</td>
<td>0.0115</td>
</tr>
<tr>
<td>Permeability - k (mD)</td>
<td>0.0012</td>
</tr>
</tbody>
</table>
Autoencoder Reconstruction Results

Model Prediction vs. Ground Truth

Porosity
Porosity (i-direction)
Permeability (j-direction)
Permeability (k-direction)

Porosity
Permeability (log10 mD)
Permeability (log10 mD)
Permeability (log10 mD)
Approach: Integrate the autoencoder that reduces geomodel dimensions into a deep learning framework intended for CO₂ saturation, reservoir pressure, and water production prediction. Evaluate the efficacy of the framework’s prediction response time and preservation of performance accuracy.

“None” in the model frameworks refers to a tensor that could vary in size. In this case, it is consistent with 963 timesteps per batch.
Pressure, CO₂ Saturation, Water Production Models

Model Objective

- Predictive capability for pressure and CO₂ saturation over project life at all grid blocks.
- Predictive capability for flow rates over project life from the two water (brine) production wells.

Training Overview

- Trained and validated on 81 simulation realizations (train = 78, validation = 3).
- Early stopping applied to prevent overfitting of training data.
- Tested on all nine test realizations.

Model Performance

- > 99.9 percent accuracy following reconstruction.
- Fast prediction (~ 1 second) for full project (963 time steps).

<table>
<thead>
<tr>
<th>Model / Target Prediction</th>
<th>Training Duration Summary</th>
<th>Prediction Time per Realization</th>
<th>Accuracy on Test Data</th>
<th>Root Mean Squared Error on Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training time per Epoch, Number of Epochs</td>
<td>Total Training Time</td>
<td>System Info.</td>
<td>CPU Time</td>
</tr>
<tr>
<td>Pressure</td>
<td>7 sec., 403 epochs</td>
<td>~ 47 minutes</td>
<td>16 GB NVIDIA P100 GPU</td>
<td>0.84 sec.</td>
</tr>
<tr>
<td>CO₂ Saturation</td>
<td>7 sec., 444 epochs</td>
<td>~ 52 minutes</td>
<td></td>
<td>0.97 sec.</td>
</tr>
<tr>
<td>Water Production</td>
<td>16 sec., 229 epochs</td>
<td>~ 61 minutes</td>
<td>Intel® Core™ i5-6300U CPU @ 2.40GHz</td>
<td>1.56 sec.</td>
</tr>
</tbody>
</table>
99% of the predictions have an error of less than 250 kPa
Saturation Model Performance

84% of the predictions are within 1% of the true value.
Pressure and Saturation Model Performance

Model Prediction vs. Ground Truth (Test Case 1 = Realization 82) for 1 layer at 2 different timesteps

15 years of CO₂ Injection

25 years post-injection
Majority of the predicted water production values fall within a close range of the true water production values.

- More than 83% of the predictions have an error of less than 15 m³/day.
- Approximately 90% of the predictions have an error of less than 25 m³/day.
Findings and Implications

• Integration of encoder into DL model framework offers >99% accuracy in predicting reservoir pressure, CO₂ saturation, and water production in ~1 second.

• Computational resources and model training/prediction time are important in real-time / virtual learning—use of autoencoder to reduce input data dimensions reduces training/prediction time with minimal compromise to accuracy.

• Other neural network formulations were tested with the autoencoder framework, but the bidirectional LSTM model was found to be most efficient for training times and prediction performance.

• Feature engineering and selection helps maintain model accuracy at no cost for additional data acquisition.
 ◦ The use of cumulative injection volumes as input was found to improve model performance compared to test models compiled relying only on instantaneous CO₂ injection rates.
Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thank you!

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE
@NETL_DOE
@NationalEnergyTechnologyLaboratory

CONTACT:
Kolawole Bello
Kolawole.Bello@netl.doe.gov

Luciane Cunha
Luciane.Cunha@netl.doe.gov