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Natural Gas (NG) Scenario

Introduction

Dry NG production

NG flaring
• Inefficient and wastage 

of natural resources

❖ Energy Information Administration (EIA) 
❖ ACS C&EN
❖ Shutterstock

• Point source for greenhouse gas emissions, e.g., CO2

and CH4

• Point source for volatile organic compounds (VOCs) 

and other hazardous air emissions

• Lost revenue for oil/gas producer and mineral rights 

owner

• Lost tax revenue for governments at various levels

5



Challenges for Flare Gas Utilization

Introduction
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• Gas volumes and pressures vary 

significantly

• Difficult to size equipment

• Composition varies between basins 

and wells

• Technologies exist today to convert 

methane, ethane, etc., to value-

added, energy dense liquids and 

solid products

• However, they are only efficient and 

cost effective at large-scales

employed in petrochemical industry 

• Need alternative technologies for 

utilizing associated gas

• New catalysts

• Alternative conversion technologies 

(plasma, microwaves)

• Reactor designs



Flare Gas Utilization - Methane Dehydroaromatization

Introduction
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Component Composition

Methane, 

CH4

50-60%

Ethane, C2H6 20-25%

Propane, 

C3H8

10-12%

N-butane, 

C4H10

1-5%

Nitrogen, N2 0-3%

Carbon 

Dioxide, CO2

1-3%

• Single step conversion: 

• State of the art catalyst - Mo/HZSM5

• Challenges:

• Equilibrium constrained

(~12%)

• High temperatures 

(700 °C)

• Carbon deposition

❖ https://ndpipelines.files.wordpress.com/2020/09/assessment-of-bps-produced-gas-compositions-sep20-final.pdf
❖ molview.org
❖ HSC Chemistry 10

Bakken Oil Field, North Dakota

6 𝐶𝐻4 𝑔 → 𝐶6𝐻6 𝑔 + 9 𝐻2(𝑔) ↑, ∆𝐺298 𝐾 = 433 kJ/mol

https://ndpipelines.files.wordpress.com/2020/09/assessment-of-bps-produced-gas-compositions-sep20-final.pdf


• Selective volume-based 

heating

• Rapid startup/shutdown

• Enhanced reaction rates 

and selectivities

• Direct natural gas –

additives already present

Why Microwaves?

Introduction
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❖ Abdelsayed, V. et al. Catal. Tod. 2021, 365, 88.

Catalyst

C

C

C

Value-added Chemicals

Microwave Reactor

NG Wellhead



Requirements for Microwave Catalysts

Catalyst
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❖ Abdelsayed, V. et al. Catal. Tod. 2021, 365, 88.



Dielectric Properties

Catalyst Characterizations
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• Catalyst needs to be modified to 

improve MW absorption

• Combining catalyst with silicon 

carbide as a heating aid

• Powder form

• Monolith form
❖ Abdelsayed, V. et al. Catal. Tod. 2021, 365, 88.



Dielectric Properties

Catalyst Characterization
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• Enhanced MW absorption 
under carbon environments

• Further facilitates more carbon 
production by generating 
hotspots

❖ Abdelsayed, V. et al. Catal. Tod. 2021, 365, 88.



Catalyst Synthesis and Microwave Reactor Schematic

Experimental Details
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*

*

❖ Abdelsayed, V. et al. Catal. Tod. 2021, 365, 88.

^IWI – Incipient Wetness Impregnation

* SiO2/Al2O3 ratio = 23:1
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Catalyst Characterization
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MoO3

~27.3°

H-ZSM-5

4Mo/ZSM-5 (IWI)

Catalyst
BET* Surface area 

(m2/g)

H-ZSM-5 379

4Mo/H-ZSM-5 (IWI) 354

4Mo/H-ZSM-5 (CA) 324

7Mo/H-ZSM-5 (CA) 294

10Mo/H-ZSM-5 (CA) 272

• XRD shows finely dispersed Mo

• CA-based catalysts – probably more 

Mo in pores1 (so more decrease in 

surface area)

1. Chen et al. Inorg. Chem. Front., 2022,9, 4642-4650 *Brunauer Emmett Teller



XRD

Catalyst Characterization

14

❖ Sridhar et al. App. Cat. A., 2020, 589, 117247
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Fresh-XPS

Catalyst Characterization
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Mo 3d5 % of Total Mo
Surface Composition

(atomic %)

C-C C-O C=O
C(=O)-

O
pi-pi*

Mo3d 

(VI)

Mo3d

(V)
Mo(VI) Mo(V) C O Mo Si Al

4Mo (CA) 284.8 286.2 287.9 289.2 290.8 233.1 231.6 88.5 11.5 11.4 62.2 2.0 22.9 1.6

7Mo (CA) 284.8 286.2 287.9 289.2 290.8 232.9 231.5 94.6 5.4 11.9 61.7 9.50 15.3 1.6

10Mo (CA) 284.8 286.2 287.9 289.2 290.8 233.1 231.2 92.5 7.5 15.1 59.4 10.30 13.8 1.4

4Mo (IWI) 284.8 286.2 287.9 289.2 290.8 232.9 231.2 94.5 5.5 11.2 62.7 3.60 20.4 2.0

• Much lower surface concentration of Mo in CA-based catalysts 

compared to IWI

• Higher Mo loadings showed high surface Mo concentrations 

(especially 7 wt.% loading)



Raman

Catalyst Characterization
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TPSR (Temperature Programmed Surface Reaction)

Experimental Details
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• TPSR up to 600 °C with MW 
power increments
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Performance Comparison - With and Without CA

Microwave Reaction Data
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Reaction conditions: 600 °C, 6000 mL/gcat.hr, 1 atm

IWI

CA

• 4Mo (IWI) showed higher 

benzene yield but faster 

deactivation

• 4Mo(CA) showed lower 

benzene yields but 

relatively stable productivity



Effect of Mo Loading

Microwave Reaction Data
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• 4Mo(CA) showed highest 

benzene yield but faster 

deactivation too

• 6Mo(CA) showed high benzene 

yields and relatively stable 

productivity

• 8Mo(CA) showed lower benzene 

yields but relatively stable 

productivity

Reaction conditions: 600 °C, 6000 mL/gcat.hr, 1 atm

7Mo (CA)

10Mo (CA)

4Mo (CA)



Effect of Mo Loading

Microwave Reaction Data
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Reaction conditions: 600 °C, 6000 mL/gcat.hr, 1 atm

7Mo (CA)

7Mo (CA)

10Mo (CA)

4Mo (CA)

Reaction stopped for the day
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• No significant peaks for 

Mo or Mo2C can be 

observed

• Mo still finely dispersed

• No apparent difference 

for CA vs. IWI catalysts
4Mo-IWI

4Mo-CA
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• Higher loadings (10 wt.%) 

showed loss of MoO3 peak

• Slight shift in zeolite peaks -

carbon deposition in pores

7Mo-CA

10Mo-CA

4Mo-CA



• BET, Raman, and XPS results confirmed that citric acid helped in getting 

more Mo in the pores.

• Citric acid based catalysts can help in dispersing higher Mo weight 

loadings up to 7 wt.%.

• Deactivation under microwave conditions was slowed down.

• More detailed understanding is underway.

Conclusions
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