Approaches to Developing a Cradle-to-Grave Life Cycle Analysis of Conventional Petroleum Fuels Produced in the U.S. with an Outlook to 2040

Greg Cooney, Associate
Booz Allen Hamilton

October 6, 2015
Original NETL Petroleum LCA published in 2008; crude extraction and refining have changed significantly since

- **Published in 2008; representative of year 2005**
- **Policy Applications**
 - Energy Independence and Security Act Section 526
 - Renewable Fuels Standards
- **Known changes to crude oil mix**
- **Transition to ultra low sulfur diesel, increasing refinery hydrogen demand**
- **Research Goals:**
 - Establish an updated baseline (2014)
 - Evaluate to understand uncertainty in long-term comparisons of alternative fuels projects to the petroleum baseline
 - Utilize a transparent and flexible modeling approach
Evaluate data at the PADD level to highlight key drivers and differences in the WTT and WTW results

Research Questions: How do the upstream crude extraction and refining GHG emissions for finished fuels produced in the U.S. vary between PADDs? How do the PADDs compare to a national average? How does a buildup of the PADDs to create a national average compare to a national average set of inputs?
Open source tools are key to modeling transparency for crude extraction and refining

OPGEE\(^1\)
Primary, secondary, tertiary extraction (steam)

GHOST\(^2\)
Canadian Oil Sands (surface mining and in situ extraction)

NETL CO\(_2\)-EOR\(^3\)
Enhanced oil recovery using injected CO\(_2\)

PRELIM\(^4\)
Crude Oil Refining

Sources:
Modeling the U.S. consumption requires data for 12 foreign countries as well as operations in the U.S.

- Angola
- Brazil
- Canada
- Colombia
- Ecuador
- Iraq
- Kuwait
- Mexico
- Nigeria
- Russia
- Saudi Arabia
- Venezuela
- U.S.

<table>
<thead>
<tr>
<th>% of U.S. Mix</th>
<th>PADD 1</th>
<th>PADD 2</th>
<th>PADD 3</th>
<th>PADD 4</th>
<th>PADD 5</th>
<th>U.S. Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Mix</td>
<td>6.7</td>
<td>21.8</td>
<td>51.9</td>
<td>3.6</td>
<td>15.9</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Alaska
- California
- North Dakota
- GOM Offshore
- Texas
- Remainder

- U.S. Production
Populating upstream crude extraction parameters in OPGEE requires a variety of data sources

U.S. Domestic Production

- **Nehring database**
 - Select information on significant reservoirs in the US
 - Depth, API, GOR, initial pressure, and production methods
 - Over 7,000 entries representing 76% of all U.S. crude production in 2007

- **DI Desktop**
 - GOR and WOR
 - State-level production data for individual wells
 - 74% of 2014 production; approximately 300,000 wells

- **North Dakota Oil and Gas Division for Bakken Shale**
 - Flare rate, GOR, WOR, production, EUR

International Production

- **International Association of Oil and Gas Producers (IOGP)**
 - Venting and flaring rates
 - % of international production

- **Oil-Climate Index (OCI)**
 - Foreign crude parameters modeled in OPGEE
 - Foreign countries utilized: Angola, Brazil, Canada, Iraq, Kuwait, Nigeria, Russia, Venezuela

- **International Council on Clean Transportation (ICCT)**
 - Foreign crudes not included in OCI version 1 (e.g. Saudi Arabia, Mexico)
Wide range of results for extracted crude for the regions considered; process contributions differ by field/country.
Combination of EIA data sources utilized to map imports and domestic production to available crude assays

- Origin Country
- Processing PADD
- Volume
- Quality (API/S)

Import Consumption Quality and Volume by PADD

- Volume
- Quality

Domestic Consumption Quality by PADD

- State
- PADD
- Volume

Domestic Consumption Mix by PADD (Volume)

- Source
- Destination
- Volume
- Mode

Crude Slate by PADD
Blending of limited publicly available assays still yields a good approximation for U.S. crude consumption quality

<table>
<thead>
<tr>
<th>Country</th>
<th>Assay Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>4</td>
</tr>
<tr>
<td>Brazil</td>
<td>3</td>
</tr>
<tr>
<td>Canada</td>
<td>21</td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1</td>
</tr>
<tr>
<td>Iraq</td>
<td>1</td>
</tr>
<tr>
<td>Kuwait</td>
<td>3</td>
</tr>
<tr>
<td>Mexico</td>
<td>2</td>
</tr>
<tr>
<td>Nigeria</td>
<td>8</td>
</tr>
<tr>
<td>Russia</td>
<td>1</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>3</td>
</tr>
<tr>
<td>Venezuela</td>
<td>2</td>
</tr>
<tr>
<td>U.S.</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>API EIA</th>
<th>Modeled</th>
<th>Delta</th>
<th>Sulfur EIA</th>
<th>Modeled</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>PADD1</td>
<td>34.3</td>
<td>33.3</td>
<td>-2.9%</td>
<td>0.86</td>
<td>0.84</td>
<td>-2.9%</td>
</tr>
<tr>
<td>PADD2</td>
<td>32.9</td>
<td>30.2</td>
<td>-8.4%</td>
<td>1.47</td>
<td>1.34</td>
<td>-8.6%</td>
</tr>
<tr>
<td>PADD3</td>
<td>31.1</td>
<td>30.8</td>
<td>-1.1%</td>
<td>1.54</td>
<td>1.32</td>
<td>-14.6%</td>
</tr>
<tr>
<td>PADD4</td>
<td>33.7</td>
<td>30.2</td>
<td>-10.5%</td>
<td>1.33</td>
<td>1.32</td>
<td>-0.5%</td>
</tr>
<tr>
<td>PADD5</td>
<td>28.4</td>
<td>28.2</td>
<td>-1.0%</td>
<td>1.41</td>
<td>1.05</td>
<td>-25.9%</td>
</tr>
<tr>
<td>US</td>
<td>31.4</td>
<td>30.7</td>
<td>-2.3%</td>
<td>1.45</td>
<td>1.28</td>
<td>-11.5%</td>
</tr>
</tbody>
</table>
Map EIA refinery operating data to the various configurations available for modeling in PRELIM

2015 Refinery Capacity Report

<table>
<thead>
<tr>
<th>PADD</th>
<th>Hydro - skimming</th>
<th>Medium Conversion</th>
<th>Deep Conversion - Coker</th>
<th>Deep Conv - Resid HC</th>
<th>Wtd. Complex Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FCC</td>
<td>GO HC</td>
<td>Both</td>
<td>FCC</td>
</tr>
<tr>
<td>1</td>
<td>5.8%</td>
<td>66.8%</td>
<td></td>
<td></td>
<td>12.8%</td>
</tr>
<tr>
<td>2</td>
<td>10.7%</td>
<td>17.0%</td>
<td>1.8%</td>
<td></td>
<td>46.9%</td>
</tr>
<tr>
<td>3</td>
<td>5.1%</td>
<td>7.9%</td>
<td>1.3%</td>
<td>2.7%</td>
<td>45.0%</td>
</tr>
<tr>
<td>4</td>
<td>26.6%</td>
<td>17.6%</td>
<td></td>
<td></td>
<td>55.7%</td>
</tr>
<tr>
<td>5</td>
<td>7.9%</td>
<td>9.6%</td>
<td>5.6%</td>
<td>8.6%</td>
<td>37.4%</td>
</tr>
<tr>
<td>Total</td>
<td>7.6%</td>
<td>14.6%</td>
<td>1.6%</td>
<td>3.1%</td>
<td>42.4%</td>
</tr>
</tbody>
</table>
Slight variations between PADDs on WTW and WTT basis; crude extraction 70% higher than 2005 baseline

Well-to-Wheels

- Extraction
- Crude Transport
- Refining

Well-to-Tank

- Product Transport
- Combustion
Selected References

