A Life Cycle Analysis Perspective of ROZ – CO$_2$ Enhanced Oil Recovery

Timothy J. Skone, P.E
Senior Environmental Engineer

USAE, ROZ Workshop, Washington, D.C
January 12, 2016.
Residual Oil Zone Performance Data

Crude Recovery Ratio (barrels of crude oil per tonne of CO₂ sequestered)

ROZ Data Summary

- Four counties in the Permian Basin of West Texas
- Each county divided into partitions (32 each for low and high quality)
- Crude Recovery Ranges (bbl/tonne CO₂ sequestered):
 - HQ: 1.2 – 5.2 (production wtd. mean 3.2)
 - LQ: 0.07 – 4.2 (production wtd. mean 1.5)

Research Questions

• What are the key contributions to the cradle-to-grave (life cycle) emissions for gasoline derived from crude produced via CO₂ EOR?

• How do different sources of CO₂ (natural vs. fossil) affect the ability of gasoline produced via EOR to meet reduction targets (e.g. net negative) relative to conventional petroleum?

• How does the efficiency of the EOR operation (amount of crude yielded per unit of CO₂ sequestered) affect the ability to hit those same targets?
Life Cycle of Gasoline from CO₂-EOR-Crude

Scenario shown is for 2 bbl crude per tonne CO₂ recovery ratio & a 550-MW supercritical pulverized coal power plant with 90% CO₂ capture.

Life Cycle of Gasoline from CO₂-EOR-Crude

Scenario shown is for 2 bbl crude per tonne CO₂ recovery ratio & a 550-MW supercritical pulverized coal power plant with 90% CO₂ capture
Life Cycle of Gasoline from CO₂-EOR-Crude

Power Plant Fuel & Transport
- 0.04 kg coal
- 0.1 kWh

Power Plant Captured CO₂
- 0.09 kg CO₂

Natural Dome CO₂
- 0.09 kg CO₂

CO₂ Pipeline Transport
- 0.09 kg CO₂

Displaced Electricity

Global Warming Potential (g CO₂e/MJ combusted gasoline)

CO₂ intensity of upstream CO₂

Upstream CO₂

1 MJ gasoline

EOR Crude Extraction
- 0.09 kg CO₂

CO₂ intensity of upstream CO₂

EOR Crude Refining
- crude

Gasoline Transport
- 1 MJ gasoline

Gasoline Combustion
- 1 MJ gasoline

Petroleum Baseline
- 115 g CO₂e/MJ combusted gasoline
- 72 g CO₂e/MJ combusted gasoline

Dome SCPC
CO₂ Intensity of Upstream CO₂

- Emissions downstream of EOR are static
- EOR is indifferent to CO₂ source
- CO₂ source choice determines achievable life cycle targets
- Options for sourcing CO₂ (modeled)
 - Natural Dome
 - Supercritical Pulverized Coal (SCPC)
 - Natural Gas Combined Cycle (NGCC)
 - SCPC co-fired biomass and coal
- Displacement of existing power
 - 2014 Grid Mix
CO₂ Intensity of Upstream CO₂
Comparison of All Sources

- **Fossil CO₂ is preferred to natural dome**
 - Credit for displacement of existing power

- **Adding biomass reduces upstream fuel component**
 - 30% switchgrass results in net negative upstream fuel GHG emissions

- **NGCC is a less efficient CO₂ generator**
 - For a fixed amount of CO₂, NGCC yields more power and thus receives a larger credit
 - Ratio NGCC:SCPC is 2.4:1
CO₂ Intensity of Upstream CO₂

Grid Displacement Impacts

- Dome: 0.10
- SCPC: -0.39
- SCPC/30% Biomass: 0.54
- NGCC: -0.10

2014 Grid Mix
(566 g CO₂e/kWh)

- Dome: 0.10
- SCPC: -0.94
- SCPC/30% Biomass: -1.05
- NGCC: -2.49

Fleet Coal
(1,041 g CO₂e/kWh)
Achievable targets are based on the intersection of CO₂ source technology and crude recovery.
For a fixed crude recovery ratio, determine CO₂ intensity of upstream CO₂ required to meet a specific reduction target:
- Net Zero: -1.2 kg/kg
- 50% Reduction: -0.6 kg/kg
- 25% Reduction: -0.4 kg/kg
Achievable targets are based on the intersection of CO₂ source technology and crude recovery

- The CO₂ intensity of a given source (e.g. NGCC or SCPC) is not a function of the crude recovery ratio
- More aggressive target can be achieved as the CO₂ intensity becomes more negative or the crude recovery ratio is reduced

![Graph showing CO₂ intensity and crude recovery ratio](image)
Achievable targets are based on the intersection of CO₂ source technology and crude recovery

- The CO₂ intensity of a given source (e.g. NGCC or SCPC) is not a function of the crude recovery ratio
- More aggressive target can be achieved as the CO₂ intensity becomes more negative or the crude recovery ratio is reduced
- The type of electricity displaced is key to determining the CO₂ intensity and achievable reductions (fleet coal at 1,041 g CO₂e/kWh)
Variability in CO₂ Intensity Due to Displacement Mix

- A given source of CO₂ can span a range of CO₂ intensities according to the assumptions regarding the type of displaced electricity.
- This range can inform the types of reduction targets that may be achievable.
As the grid decarbonizes, the CO₂ intensity of upstream CO₂ increases

- As capture is implemented, the grid becomes less GHG intensive
- Hypothetical example depicts range from fleet coal (1,041) to a carbon constrained grid (163)
- This analysis can help determine the grid GHG intensity at which it is no longer possible to hit a target
- Under full fossil capture, transportation would likely shift away from conventional technology
As the grid decarbonizes, the CO₂ intensity of upstream CO₂ increases

- As capture is implemented, the grid becomes less GHG intensive
- Hypothetical example depicts range from fleet coal (1,041) to a carbon constrained grid (163)
- This analysis can help determine the grid GHG intensity at which it is no longer possible to hit a target
- Under full fossil capture, transportation would likely shift away from conventional technology

![Graph showing CO₂ intensity of upstream CO₂](image)
Key Conclusions

• Life cycle net negative carbon crude oil can be produced from CO₂ EOR pathways
• The percentage reduction from the petro baseline depends on the source of CO₂ and the efficiency of the EOR operation
• Displacing carbon intensive power by capturing CO₂ at an alternative plant increases the credit
• Sources of CO₂ that are inefficient at generating captured CO₂ per unit of power (or other output) result in a larger credit
• As the electricity sector becomes less carbon intensive, the life cycle GHG profile for EOR crude will increase
Timothy J. Skone, P.E.
Senior Environmental Engineer • Strategic Energy Analysis and Planning Division • (412) 386-4495 • timothy.skone@netl.doe.gov

Joe Marriott, Ph.D.
Lead Associate • Booz Allen Hamilton • (412) 386-7557 • marriott_joe@bah.com

Greg Cooney
Associate • Booz Allen Hamilton • (412) 386-7555 • cooney_gregory@bah.com

netl.doe.gov/LCA LCA@netl.doe.gov @NETL_News
LCA is well suited for energy analysis

- Draws a more complete picture than one focused solely on stack or tailpipe emissions
- Allows direct comparison of dramatically different options based on function or service
- Includes methods for evaluating a wide variety of emissions and impacts on a common basis
- Brings clarity to results through systematic definition of goals and boundaries
LCA of complex systems requires co-product management to apportion burdens

- Objective of LCA is to assign ownership of environmental burdens to a single function
- When more than one product exits the system boundary of an LCA, it is necessary to redefine the boundaries or apply an assignment that splits life cycle burdens among products
- NETL has studied the system (captured fossil power coupled with CO₂-EOR) extensively and recommends system expansion with displacement
 - System expansion alters system boundaries to include all co-products
 - With displacement, the system receives a credit for the GHGs emitted via the conventional product route for co-products
 - This analysis expands the boundaries of the system to include displacement of one of the co-products, leaving us with the desired product (power or fuel)
Evaluating the Climate Benefits of CO$_2$-Enhanced Oil Recovery Using Life Cycle Analysis

- Detailed models are necessary to give confidence to broader system applications
- CO$_2$-EOR is a GHG-intensive way of extracting crude compared to conventional extraction methods
- Linking EOR with anthropogenic CO$_2$ yields a benefit due to the displacement of uncaptured electricity
- Crude recovery impacts depend on the source of CO$_2$ (natural vs. fossil)
- Inefficient CO$_2$ generators are best (NGCC vs. SCPC): increasing efficiency will increase the amount of power generated per unit of CO$_2$ captured and sent to EOR

Other NETL CCUS-related publications

• Gate-to-Gate Life Cycle Inventory and Model of CO₂-Enhanced Oil Recovery (Sept. 2013)
 – Full process detail and comparison of four gas processing technologies

• Gate-to-Grave Life Cycle Analysis Model of Saline Aquifer Sequestration of Carbon Dioxide (Sept. 2013)

• Cradle-to-Gate Life Cycle Analysis Model for Alternative Sources of Carbon Dioxide (Sept. 2013)
 – Three potential sources considered: natural dome, ammonia production, natural gas processing

• All reports accessible via: www.netl.doe.gov/LCA