

Advancing Oxycombustion Technology for Bituminous Coal Power Plants: An R&D Guide

April 2012

FINAL REPORT

DOE/NETL-2010/1405

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

ADVANCING OXYCOMBUSTION TECHNOLOGY FOR BITUMINOUS COAL POWER PLANTS: AN R&D GUIDE

DOE/NETL-2010/1405

FINAL REPORT April 2012

NETL Contact:

Michael Matuszewski Office of Program Planning and Analysis

National Energy Technology Laboratory www.netl.doe.gov This page intentionally left blank

Table of Contents

TABLE OF CONTENTS	I
LIST OF EXHIBITS	II
PREPARED BY	V
ACKNOWLEDGMENTS	VI
LIST OF ACRONYMS AND ABBREVIATIONS	VII
EXECUTIVE SUMMARY	1
1. INTRODUCTION	6
1.1 OXYCOMBUSTION TECHNOLOGY	6
2. DESIGN BASIS	9
2.1 SITE DESCRIPTION	10
2.2 COAL CHARACTERISTICS	11
2.3 NATURAL GAS CHARACTERISTICS	16
2.4 Steam Conditions	16
2.5 TECHNOLOGY REVIEW AND SIMULATION ASSUMPTIONS	16
2.5.1 Current Status of Oxycombustion Technology	17
2.5.2 Oxygen Separation (Cases 1 and 1A)	18
2.5.3 High Temperature Materials – Ultrasupercritical Steam Conditions (Case 3)	22
2.5.4 Sulfur-Tolerant Materials – Co-Sequestration (Case 4)	22
2.5.5 Advanced Recycle (Case 5)	23
2.5.6 Advanced CO ₂ Compression (Case 6)	23
2.5.7 Oxycombustion Boiler Design (Case 7)	24
2.5.8 Cumulative Case	25
2.6 Cost Estimating Methodology	25
2.6.1 Capital, Operation, and Maintenance Costs	25
2.6.2 Cost of Electricity	28
2.6.3 Costs of CO_2 Avoided	31
2.6.4 Costs of CO ₂ Transport, Storage, and Monitoring	31
3. COST AND PERFORMANCE EVALUATION	36
3.1 CURRENT TECHNOLOGY USING SC STEAM CYCLE	36
3.2 CASE 3: ULTRASUPERCRITICAL (USC) OXYCOMBUSTION	51
3.3 CASES 1 - ADVANCED OXYGEN SEPARATION/MEMBRANE TECHNOLOGY	78
3.3.1 Case 1 – Advanced Membrane Oxycombustion Process with PC Boiler	
Integration	78
3.3.2 Case 1a – Advanced Membrane Oxycombustion Process with Natural Gas-fi	red
Integration	93
3.4 CASE 4 – SUPERCRITICAL CO-SEQUESTRATION PROCESS	120
3.5 CASE 5 – ADVANCED FLUE GAS RECYCLE PROCESS	135
3.6 CASE 6 – ADVANCED CO ₂ COMPRESSION PROCESS	149
3.7 CASE 7 – OXYCOMBUSTION BOILER DEVELOPMENT	164
3.8 CUMULATIVE CASE – COMBINATION OF EXAMINED TECHNOLOGIES	191
3.9 COMPARATIVE PERFORMANCE SUMMARY	216
3.10 COMPARATIVE ECONOMIC SUMMARY	221
3.11 RECOMMENDATIONS FOR FUTURE RESEARCH	227
4. REFERENCES	229

List of Exhibits

Exhibit ES-1 Case Descriptions	1
Exhibit ES-2 Cost of Electricity	2
Exhibit ES-3 Percent Increase in Cost of Electricity with CCS	3
Exhibit ES-4 Performance Summary Comparison	5
Exhibit 1-1 Components of an Oxycombustion System	7
Exhibit 2-1 Case Descriptions	9
Exhibit 2-2 Site Ambient Conditions	11
Exhibit 2-3 Site Characteristics	11
Exhibit 2-4 Design Coal	12
Exhibit 2-5 Probability Distribution of Mercury Concentration in the Illinois No. 6 Coal	15
Exhibit 2-6 Natural Gas Composition	16
Exhibit 2-7 Cost Breakdown of a SC PC Plant with and without Oxycombustion	17
Exhibit 2-8 Cost Breakdown for Oxycombustion Power Plant	18
Exhibit 2-9 Oxygen Separation Technology Comparison Table	19
Exhibit 2-10 Oxygen Production Cost of Three Different Technologies	19
Exhibit 2-11 Cryogenic ASU Developments in the Past 40 Years	20
Exhibit 2-12 Parameter Assumptions for Capital Charge Factors	29
Exhibit 2-13 Financial Structure for Investor Owned Utility High- and Low-Risk Projects.	31
Exhibit 2-14 Economic Parameters for COE Calculation	31
Exhibit 2-15 Deep Saline Formation Specification	33
Exhibit 3-1 Process Block Flow Diagram for Current Technology Case	38
Exhibit 3-2 Stream Table for Current Technology Case	39
Exhibit 3-3 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Current	
Technology Case	41
Exhibit 3-4 Heat and Mass Balance, Power Block Systems for Current Technology Case	42
Exhibit 3-5 Current Technology Case Energy Balance	43
Exhibit 3-6 Current Technology Case Carbon Balance	44
Exhibit 3-7 Current Technology Case Sulfur Balance	44
Exhibit 3-8 Current Technology Case Water Balance	44
Exhibit 3-9 Current Technology Performance Summary	45
Exhibit 3-10 Current Technology Base Case Capital Costs	46
Exhibit 3-11 Current Technology Base Case Owner's Costs	49
Exhibit 3-12 Current Technology Base Case O&M Costs	50
Exhibit 3-13 Process Block Flow Diagram for Case 3	53
Exhibit 3-14 Stream Table for Case 3.	54
Exhibit 3-15 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 3	56
Exhibit 3-16 Heat and Mass Balance, Power Block Systems for Case 3	57
Exhibit 3-17 Case 3 Energy Balance	58
Exhibit 3-18 Case 3 Carbon Balance	59
Exhibit 3-19 Case 3 Sulfur Balance	59
Exhibit 3-20 Case 3 Water Balance	59
Exhibit 3-21 Case 3 Performance Summary	60
Exhibit 3-22 Case 3 Capital Costs	61
Exhibit 3-23 Case 3 Owner's Costs	64
	65
Exhibit 3-24 Case 3 O&M Costs	65

Exhibit 3-25 Equipment List for Current Technology Case and Case 3	66
Exhibit 3-26 Process Block Flow Diagram for Case 1	80
Exhibit 3-27 Stream Table for Case 1	81
Exhibit 3-28 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 1	83
Exhibit 3-29 Heat and Mass Balance, Power Block Systems for Case 1	84
Exhibit 3-30 Case 1 Energy Balance	85
Exhibit 3-31 Case 1 Carbon Balance	86
Exhibit 3-32 Case 1 Sulfur Balance	86
Exhibit 3-33 Case 1 Water Balance	86
Exhibit 3-34 Case 1 Performance Summary	87
Exhibit 3-35 Case 1 Capital Costs	88
Exhibit 3-36 Case 1 Owner's Costs	91
Exhibit 3-37 Case 1 O&M Costs	92
Exhibit 3-38 Process Block Flow Diagram for Case 1a	94
Exhibit 3-39 Stream Table for Case 1a	95
Exhibit 3-40 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 1a	97
Exhibit 3-41 Heat and Mass Balance, Power Block Systems for Case 1a	98
Exhibit 3-42 Case 1a Energy Balance	99
Exhibit 3-43 Case 1a Carbon Balance	100
Exhibit 3-44 Case 1a Sulfur Balance	100
Exhibit 3-45 Case 1a Water Balance	100
Exhibit 3-46 Case 1A Performance Summary	101
Exhibit 3-47 Case 1A Capital Costs	102
Exhibit 3-48 Case 1A Owner's Costs	105
Exhibit 3-49 Case 1A O&M Costs	106
Exhibit 3-50 Equipment List for Case 1 and 1a	107
Exhibit 3-51 Process Block Flow Diagram for Case 4	122
Exhibit 3-52 Stream Table for Case 4	123
Exhibit 3-53 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 4	125
Exhibit 3-54 Heat and Mass Balance, Power Block Systems for Case 4	126
Exhibit 3-55 Cases 4 Energy Balance	127
Exhibit 3-56 Case 4 Carbon Balance	128
Exhibit 3-57 Case 4 Sulfur Balance	128
Exhibit 3-58 Case 4 Water Balance	128
Exhibit 3-59 Case 4 Performance Summary	129
Exhibit 3-60 Case 4 Capital Costs	130
Exhibit 3-61 Case 4 Owner's Costs	133
Exhibit 3-62 Case 4 O&M Costs	134
Exhibit 3-63 Process Block Flow Diagram for Case 5	136
Exhibit 3-64 Stream Table for Case 5	137
Exhibit 3-65 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 5	139
Exhibit 3-66 Heat and Mass Balance. Power Block Systems for Case 5	140
Exhibit 3-67 Cases 5 Energy Balance	141
Exhibit 3-68 Case 5 Carbon Balance	142
Exhibit 3-69 Case 5 Sulfur Balance	142
Exhibit 3-70 Case 5 Water Balance	142
Exhibit 3-71 Case 5 Performance Summary.	143
Exhibit 3-72 Case 5 Capital Costs	144
Exhibit 3-73 Case 5 Owner's Costs	147

Exhibit 3-74 Case 5 O&M Costs	148
Exhibit 3-75 Process Block Flow Diagram for Case 6	151
Exhibit 3-76 Stream Table for Case 6.	152
Exhibit 3-77 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 6	154
Exhibit 3-78 Heat and Mass Balance, Power Block Systems for Case 6	155
Exhibit 3-79 Cases 6 Energy Balance.	156
Exhibit 3-80 Case 6 Carbon Balance	157
Exhibit 3-81 Case 6 Sulfur Balance	157
Exhibit 3-82 Case 6 Water Balance	157
Exhibit 3-83 Case 6 Performance Summary	158
Exhibit 3-84 Case 6 Capital Costs	159
Exhibit 3-85 Case 6 Owner's Costs	162
Exhibit 3-86 Case 6 O&M Costs	163
Exhibit 3-87 Process Block Flow Diagram for Case 7	165
Exhibit 3-88 Stream Table for Case 7.	166
Exhibit 3-89 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 7	168
Exhibit 3-90 Heat and Mass Balance. Power Block Systems for Case 7	169
Exhibit 3-91 Cases 7 Energy Balance	170
Exhibit 3-92 Case 7 Carbon Balance	171
Exhibit 3-93 Case 7 Sulfur Balance	171
Exhibit 3-94 Case 7 Water Balance	171
Exhibit 3-95 Case 7 Performance Summary	172
Exhibit 3-96 Case 7 Capital Costs	173
Exhibit 3-97 Case 7 Owner's Costs	176
Exhibit 3-98 Case 7 O&M Costs	177
Exhibit 3-99 Equipment List for Case 4 5, 6, and 7	178
Exhibit 3-100 Process Block Flow Diagram for Cumulative Case	192
Exhibit 3-101 Stream Table for Cumulative Case	193
Exhibit 3-102 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Cumulative (Tase
Exhibit 5 102 fieur una muss Bulance, Boner una Gus Cleanap Systems for Camalante v	195
Exhibit 3-103 Heat and Mass Balance, Power Block Systems for Cumulative Case	196
Exhibit 3-104 Cases 10 Energy Balance	197
Exhibit 3-105 Cumulative Case Carbon Balance	198
Exhibit 3-106 Cumulative Case Sulfur Balance	198
Exhibit 3-107 Cumulative Case Water Balance	198
Exhibit 3-108 Cumulative Case Performance Summary	199
Exhibit 3-109 Cumulative Case Capital Costs	200
Exhibit 3-110 Cumulative Case Owner's Costs	200
Exhibit 3-111 Cumulative Case O&M Costs	203
Exhibit 3-112 Equipment List for Cumulative Case	204
Exhibit 3-112 Equipment Ensition Cumulative Case	205
Exhibit 3-11/ Case Efficiency Summary	217
Exhibit 3-115 Total Overnight Cost	210
Exhibit 3-116 First Vear Cost of Electricity	225
Exhibit 3-117 Increases in Cost of Electricity Over Non-Centure Reference Case	225
Exhibit 3-117 Increases in Cost of Electricity Over Non-Capture Reference Case	225
Exhibit 5 110 Cost of CO ₂ Avolued Over Mon-Capture Reference Case	0

Prepared by: Research and Development Solutions, LLC (RDS) <u>UPDATED BY</u>:

Energy Sector Planning and Analysis (ESPA)

Marc J. Turner, Booz Allen Hamilton Mark Woods, Booz Allen Hamilton Scott Chen, formerly Leonardo Technologies, Inc. Robert D. Brasington, formerly Parsons Corporation John L. Haslbeck, formerly Booz Allen Hamilton Charlie Zhang, formerly Booz Allen Hamilton

DOE Contract # DE-FE0004001

Acknowledgments

This report was initially prepared by **Research and Development Solutions, LLC (RDS)** for the United States Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under DOE NETL Contract Number DE-AM26-04NT41817; Subtask 41817-401.01.14A. The report was updated by Booz Allen Hamilton Inc. under DOE NETL Contract Number DE-FE0004001, Energy Sector Planning and Analysis.

The authors wish to acknowledge the excellent guidance, contributions, and cooperation of the NETL staff, particularly:

Michael Matuszewski, NETL Technical Project Manager James Black, Office of Program Planning and Analysis (OPPA) John Wimer, OPPA, Director

LIST OF ACRONYMS AND ABBREVIATIONS

AACE	American Association of Cost Engineering
acfm	Actual cubic feet per minute
ASU	Air separation unit
Ar	Argon
BFD	Block flow diagram
BFW	Boiler feed water
Bhp	Break horse power
Btu	British thermal unit
Btu/hr	British thermal unit per hour
Btu/kWh	British thermal unit per kilowatt hour
Btu/lb	British thermal unit per pound
Btu/lb _m	British thermal unit per pound-mass
B&W	Babcock and Wilcox
CAR	Ceramic auto-thermal recovery
CCF	Capital charge factor
CCFp	Capital charge factor for a levelization period of P years
CCS	Carbon capture and storage
CF	Capacity factor
CO_2	Carbon dioxide
COE	Cost of electricity
CPU	CO ₂ compression and purification unit
CWT	Cold water temperature
DCC	Direct contact cooler
DCS	Distributed control system
DOE	Department of Energy
ft	Foot, feet
ft ³	Cubic foot
EPRI	Electric Power Research Institute
ESPA	Energy Sector Planning and Analysis
FGD	Flue gas desulfurization
FGR	Flue gas recirculation
FWH	Feedwater heater
Gal	Gallon
GHG	Greenhouse gas
gpm	Gallons per minute
GJ	Gigajoule
h, hr	Hour
H ₂	Hydrogen
HHV	Higher heating value
hp	Horsepower

HP	High pressure					
HVAC	Heating, ventilating, and air conditioning					
HWT	Hot water temperature					
ICFM	Inlet cubic feet per minute					
IEA	International Energy Agency					
IEP	Innovations for existing plants					
ID	Induced draft					
ISO	International Standards Organization					
IOU	Investor-owned utility					
kg	Kilogram					
kg/hr	Kilogram per hour					
kg _{mol} /hr	Kilogram mole per hour					
kJ	Kilojoul					
kV	Kilovolts					
kW	Kilowatt					
kWh	Kilowatt-hour					
kW _{th}	Kilowatt-thermal					
lb	Pound					
lbm/hr	Pound per hour					
lb _{mol} /hr	Pound-mole per hour					
LCOE	Levelized cost of electricity					
LF	Levelization factor					
LHV	Lower heating value					
LP	Low pressure					
lpm	Liter per minute					
m	Meter					
MAC	Main air compressor					
md	millidarcy (a measure of permeability)					
MMBtu	Million British thermal units (also shown as 10 ⁶ Btu)					
MMBtu/hr	Million British thermal units per hour (also shown as 10 ⁶ Btu/hr)					
MPa	Megapascals					
MVA	Megavolt-amps					
MW	Megawatt					
MWe	Megawatt electric					
MWh	Megawatt-hour					
MW _{th}	Megawatt-thermal					
NETL	National Energy Technology Laboratory					
N_2	Nitrogen					
NG	Natural gas					
NO _x	Oxides of nitrogen					
O&M	Operations and maintenance					
OC	Operating cost					

OF	Oxyfuel
PC	Pulverized coal
p.f.	Power Factor
PM	Particulate matter
ppm	Parts per million
psi	Pounds per square inch
psia	Pounds per square inch absolute
psig	Pounds per square inch gage
RDS	Research and Development Solutions, LLC
rpm	Revolutions per minute
SC	Supercritical
scfm	Standard cubic feet per minute
SO_2	Sulfur dioxide
SOx	Sulfur oxides
TOC	Total overnight cost
TPC	Total plant cost
TPD	Tons per day
tph	Ton per hour
ton	2,000 pounds
tonne	1,000 kg
TS&M	Transport, storage, and monitoring
USC	Ultra-supercritical
V	Volts
V-L	Vapor and liquid portion of stream (excluding solids)
vol%	Percent by volume
VPSA	Vacuum pressure swing adsorption
WG	Water Gauge

This page intentionally left blank

EXECUTIVE SUMMARY

The National Energy Technology Laboratory (NETL) is funding research aimed at improving the performance and reducing the cost of oxycombustion. The objective of this study is to guide oxycombustion research in areas that can provide the largest benefits in electricity cost and plant performance. The advanced oxycombustion technologies evaluated in this study can be categorized into four major areas: advanced boiler design, advanced oxygen production, advanced flue gas treatment, and innovative CO₂ compression concepts. This report contains the results of a techno-economic study of eight advanced oxycombustion systems that were anticipated to improve oxycombustion performance. In all, the report covers nine cases: eight cases employing advanced oxycombustion technologies and a base case employing what is considered to be current oxycombustion technology. These cases are summarized in Exhibit ES-1.

Case	Boiler Technology psig/°F/°F	Advanced PC Concept	Advanced PCCoalConceptTypeOxidant		Sulfur Removal	CO ₂ Storage
Base	Supercritical PC 3500/1110/1150	Current Oxycombustion	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
1	Supercritical PC 3500/1110/1150	Advanced O ₂ Membrane with Boiler Integration	Illinois No. 6	$\sim 100\%$ Advanced O ₂ Membrane	Wet FGD	Remote Geologic
1a	Supercritical PC 3500/1110/1150	Advanced O ₂ Membrane with Illin Natural Gas No Preheater		~100% Advanced O ₂ Membrane	Wet FGD	Remote Geologic
2	Chemical Looping	Covered in a separate study				
3	Ultra-supercritical PC 4000/1350/1400	Advanced Materials for Ultra-supercritical Conditions	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
4	Supercritical PC 3500/1110/1150	Co-sequestration	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Co- capture	Remote Geologic
5	Supercritical PC 3500/1110/1150	Advanced Recycle	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
6	Supercritical PC 3500/1110/1150	Advanced CO ₂ Compression	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
7	Supercritical PC 3500/1110/1150	Oxycombustion Boiler	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
Cumulative	Ultra-supercritical PC 4000/1350/1400	Cumulative Case	Illinois No. 6	~100% Advanced O ₂ Membrane	Co- capture	Remote Geologic

Exhibit ES-1 Case Descriptions

Each of the advanced oxycombustion cases are modeled as new, commercial-scale plants projected to be designed and built in the 2030 timeframe. These advances are compared to what is considered to be current technology: a supercritical pulverized coal plant operated with flue

1

gas recycle and equipped with a state of the art cryogenic distillation ASU, a wet FGD sulfur removal unit, and a conventional CO₂ purification/compression system.

In order to meet the challenges of reducing greenhouse gas emissions, DOE/NETL has established carbon capture, utilization and storage (CCUS) goals for the Existing Plants, Emissions & Capture (EPEC) program. By 2020, advanced technologies will be demonstrated and best practices will be implemented to achieve the following goals:

- 90 percent CO₂ capture
- 99+ percent storage permanence
- For post- and oxy-combustion carbon capture, the increase in the cost of electricity (COE) should be less than 35 percent above that of an equivalent plant without carbon capture, excluding the cost of CO₂ transport, storage and monitoring.

The advanced oxycombustion technologies studied were evaluated to determine if they could meet the DOE goal. The first year electricity costs of the advanced technology cases were compared to the cost of electricity (COE) of an air-fired, supercritical boiler with no carbon capture. The results are shown in Exhibit ES-2 and Exhibit ES-3. None of the advanced technologies currently meet the DOE goal on their own, however the combined effect of including all advanced technologies in the same plant is shown here to exceed the DOE goal.

Exhibit ES-2 Cost of Electricity

	First Year Cost of Electricity (\$/MWh)							
Study Case	Capital	Fixed O&M	Variable O&M	Fuel	TS&M	Total (Less TS&M)	COE (%) ^a	
Non-Capture Reference, Air-fired SC w/o CCS	31.68	7.97	5.03	14.22	0.00	58.90	-	
Current OF Technology, O2-fired SC w/ASU & CCS	53.72	11.81	6.47	19.08	5.83	91.07	54.6	
Case 1, O ₂ -fired SC w/Boiler Adv. Membrane & CCS	52.35	11.53	5.99	17.32	5.60	87.19	48.0	
Case 1A, O ₂ -fired SC w/NG Adv. Membrane & CCS	50.45	11.23	5.63	23.81	5.25	91.12	54.7	
Case 3, O ₂ -fired USC w/ASU & CCS	54.15	11.81	6.10	17.25	5.58	89.31	51.6	
Case 4, O ₂ -fired SC w/ASU & Co-Sequestration	48.85	10.79	4.78	17.60	5.67	82.02	39.3	
Case 5, O ₂ -fired SC w/ASU, Wet Recycle & CCS	53.66	11.80	6.47	19.11	5.91	91.03	54.5	
Case 6 O ₂ -fired SC w/ASU & Shock Compression	52.59	11.60	6.34	18.81	5.87	89.34	51.7	
Case 7, O ₂ -fired SC w/ASU, Adv. Boiler & CCS	53.13	11.65	6.32	18.87	5.89	89.96	52.7	
Cumulative Technology Case	48.52	10.66	4.30	14.68	5.28	78.15	32.7	

Exhibit ES-3 Percent Increase in Cost of Electricity with CCS

While the Cumulative Case has been shown to meet the DOE carbon capture goal, none of the advanced technologies are yet ready for commercial implementation and require substantial research, development and demonstration before they can be considered viable solutions for carbon capture.

The results of this report suggest that both cost and performance improvements need to be made in multiple technologies applicable to the oxycombustion pathway for CO_2 capture in order to meet DOE's CO_2 capture goals.

The major conclusions of this study uncover how future research and development should focus on developing oxycombustion-specific technologies for the most beneficial improvements in performance and cost. Based on the results of this study, improvements in the following technologies should have the largest positive impact on oxycombustion:

- **Oxygen Supply**: Advanced membrane-based air separation technology shows promise due to its high temperature and high pressure operation, which allows for a relatively high amount of heat and power recovery. Membrane system integration, membrane performance enhancements, and capital cost reduction should be the main areas of focus for this technology area based on the results of this study.
- <u>Sulfur-Tolerant Materials</u>: Research should be conducted to develop sulfur-tolerant materials to handle the recycled flue gas in systems with reduced flue gas desulfurization. It is understood that completely eliminating the FGD may not be possible in the near-term because of materials constraints and potential restrictions on sequestration, however if continual progress is made in these areas, system efficiency will continue to increase in proportion.
- <u>Oxycombustion Boilers</u>: As sulfur-tolerant materials are developed, smaller oxycombustion-based boiler designs with enhanced heat transfer may become more effective. Sulfur-tolerant materials will allow less recycle, less flue gas desulfurization requirements, and therefore higher efficiencies all while decreasing the boiler size, and potentially cost depending on the premium for exotic material.
- <u>Advanced Steam Conditions</u>: While not specific to oxycombustion, raising steam conditions in the Rankine cycle also has a beneficial effect on oxycombustion systems. Advancing steam conditions in the Rankine cycle can maximize the benefit of the potentially high temperatures of the oxycombustion process and should be taken into consideration when designing oxycombustion-specific boiler designs.

The objective of this study was not to review the degree to which research and development in these areas is already progressing, nor was it to uncover any thermodynamic, physical or economic limitations on improvements in these areas. Instead, the main objective was to identify major performance bottlenecks and the effect of eliminating them. Therefore, it is possible that room for improvement in one or more of the targeted research areas is limited, which would limit the potential performance of oxycombustion as predicted by this study. Nevertheless, this study suggests that a diverse portfolio of oxycombustion-based technologies should be included in RD&D plans for government, industrial and academic entities as a means to drive down costs and improve the performance of carbon capture and sequestration.

The overall performance summary comparison is shown in Exhibit ES-4. This study was designed to incorporate advanced oxycombustion technologies anticipated to improve cost and/or performance over an oxycombustion system composed of currently available technologies. The Cumulative Case incorporates all concepts under the assumption that all advanced technologies will enhance performance in an integrated system as well. A decision was made to use the indirect fired, coal-integrated advanced membrane ASU system (represented in Case 1) in the cumulative case because it was the lower cost (COE) of the two advanced membrane systems analyzed. In addition, this case does not vent the CO₂ generated from the air preheat like the natural gas-integrated advanced membrane configuration (Case 1A) does. The amount of natural gas required to completely preheat the air feed would result in an excessive amount of vented CO_2 , decreasing overall CO_2 capture below 90%. Therefore, a regenerative heat exchanger immediately prior to the N₂ vent gas expander was used to perform a portion of the preheat.

6	Dava Cara	61	C 1A	C 2	C 4	C F	C C	C 7	C 10	
Case	Base Case	Case 1	Case IA	Case 3	Case 4	Case 5	Case 6	Case 7	Case 10	l
	Current	Advanced	Advanced	USC w/Advanced		Advanced	Advanced CO ₂			
	Technology	Membrane/Boiler	Membrane/NG	Material	Co-Sequestration	Recycle	Compression	Oxyfuel Boiler	Cumulative	
Description		Integration	Integration			,	compression			
				Plant Ou	itput					1
Steam Turbine Power	790,800	620,500	662,300	765,900	765,500	790,600	814,000	785,900	624,700	kW _e
Advanced Membrane Expander Power	N/A	345,200	272,400	N/A	N/A	N/A	N/A	N/A	295,500	kWe
Gross Power	790,800	965,700	934,700	765,900	765,500	790,600	814,000	785,900	920,200	kWe
				Auxiliary	Load					
Coal Handling and Conveying	500	480	440	480	480	500	500	500	440	kW _e
Limestone Handling & Reagent Preparation	1,210	1,100	930	1,090	0	1,210	1,190	1,200	0	kWe
Pulverizers	3,740	3,390	2,860	3,380	3,450	3,740	3,680	3,690	2,880	kWe
Ash Handling	720	650	550	650	660	720	710	710	550	kW _e
Primary Air Fans	1,010	910	770	910	1,410	980	1,010	790	860	kWe
Forced Draft Fans	1,280	1,150	990	1,150	1,800	1,240	1,270	1,010	1,080	kWe
Induced Draft Fans	7,080	6,330	5,390	6,380	3,610	6,610	7,010	6,030	2,380	kWe
Air Separation Unit Main Air Compressor	125,720	315,240	296,100	113,350	115,970	125,880	123,950	124,190	269,910	kW _e
ASU Auxiliaries	1,000	0	0	1,000	1,000	1,000	1,000	1,000	0	kWe
Baghouse	90	90	70	80	90	90	90	90	70	kWe
FGD Pumps and Agitators	4,050	3,680	3,230	3,650	0	4,050	3,990	4,000	0	kWe
CO ₂ Compression	73,410	64,170	55,550	65,070	67,770	73,620	98,700	72,520	76,250	kWe
Condensate Pumps	1,040	810	880	960	1,020	1,040	1,070	1,050	890	kW _e
Boiler Feedwater Booster Pumps	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	kWe
Miscellaneous Balance of Plant ^{2,3}	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	kW _e
Steam Turbine Auxiliaries	400	400	400	400	400	400	400	400	400	kWe
Circulating Water Pumps	9,160	7,730	7,310	7,990	8,170	9,180	8,930	9,010	6,030	kW _e
Cooling Tower Fans	5,340	4,510	4,270	4,670	4,770	5,360	5,220	5,260	3,520	kWe
Transformer Losses	3,030	3,000	3,040	2,880	2,880	3,030	3,160	3,000	2,880	kWe
Total	240,780	415,640	384,780	216,090	215,480	240,650	263,880	236,450	370,140	kW _e
				Plant Perfo	rmance					
Net Auxiliary Load	240,780	415,640	384,780	216,090	215,480	240,650	263,880	236,450	370,140	kWe
Net Plant Power	550,020	550,060	549,920	549,810	550,020	549,950	550,120	549,450	550,060	kWe
Net Plant Efficiency (HHV)	29.3%	32.2%	33.0%	32.4%	31.7%	29.2%	29.7%	29.6%	38.1%	
Net Plant Heat Rate (HHV)	12,300 (11,658)	11,167 (10,584)	10,904 (10,335)	11,120 (10,540)	11,347 (10,754)	12,317 (11,675)	12,124 (11,492)	12,163 (11,528)	9,461 (8,968)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	249,312 (549,638)	226,371 (499,062)	190,935 (420,941)	225,320 (496,745)	229,991 (507,043)	249,640 (550,361)	245,804 (541,905)	246,282 (542,960)	191,790 (422,825)	kg/hr (lb/hr)
Natural Gas	N/A	N/A	15,544 (34,268)	N/A	N/A	N/A	N/A	N/A	N/A	kg/hr (lb/hr)
Coal Thermal Input ¹	1,879,193	1,706,276	1,439,182	1,698,356	1,733,562	1,881,666	1,852,755	1,856,362	1,445,623	kW _{th}
Natural Gas Thermal Input ⁴	N/A	N/A	226,458	N/A	N/A	N/A	N/A	N/A	N/A	kW _{th}
Thermal Input (Coal + Natural Gas)	1,879,193	1,706,276	1,665,640	1,698,356	1,733,562	1,881,666	1,852,755	1,856,362	1,445,623	kW _{th}
Condenser Duty	3,079 (2,918)	2,831 (2,683)	2,821 (2,674)	2,648 (2,510)	3,160 (2,995)	3,088 (2,927)	3,398 (3,221)	3,062 (2,902)	2,618 (2,482)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	33.0 (8,729)	27.6 (7,304)	27.2 (7,186)	29.6 (7,822)	30.2 (7,976)	33.2 (8,777)	32.2 (8,499)	32.5 (8,587)	21.8 (5,771)	m ³ /min (gpm)
1 - HHV of as-received Illinois No. 6 coal is 2	7,135 kJ/kg(11,666 l	Btu/lb)								
2 - Boiler feed pumps are turbine driven										
3 - Includes plant control systems, lighting, I	HVAC, and miscellar	neous low voltage loa	ads							
4 - HHV of natural gas is 22,549 Btu/lb										

Exhibit ES-4 Performance Summary Comparison

1. INTRODUCTION

The rising concentration of carbon dioxide (CO₂) in the environment has been widely documented. Levels of CO₂ in the atmosphere have shown a steady rise from approximately 300 parts per million (ppm) in 1940 to more than 370 ppm today [1]. At the same time, various studies have documented noticeable changes in climate during recent years, and model predictions suggest that CO₂ levels play a role in these climate variations [2]. Given the potential implications surrounding global climate change and increasing concentrations of CO₂ in the atmosphere, technology and policy options are being investigated for mitigating CO₂ emissions.

Electric power generation represents one of the largest CO_2 contributors in the United States. Electricity consumption is expected to grow and fossil fuels are expected to continue to be the dominant fuel source. Therefore, fossil-fuel-based power generation can be expected to provide an even greater CO_2 contribution in the future. Coal fuels nearly half of this electric power generation capacity and typically produces the cheapest electricity among all fuel sources, however coal is generally more CO_2 -intensive. This creates a need for more aggressive and more cost effective CO_2 mitigation for coal-based power generation.

The U.S. Department of Energy (DOE) has adopted a goal of developing technology capable of capturing and sequestering 90 percent of the CO_2 produced in a pulverized coal (PC)-fired power plant with an increase in the cost of electricity (COE) of no more than 35 percent over that for a non-capture base plant. Systems studies have shown that this is an appropriate stretch goal that will encourage aggressive technology advances in CO_2 capture and compression as a means to stabilize atmospheric CO_2 concentrations.

Recent analyses carried out by ALSTOM Power [3], Air Liquide [4], IEA GHG [5] and the National Energy Technology Laboratory's (NETL's) Office of Systems, Analyses and Planning [7] have shown that oxycombustion with CO_2 capture is competitive with conventional air-based combustion utilizing amine scrubbing for CO_2 control. In addition, these studies identified potential areas for oxycombustion process improvements that have the potential to significantly decrease CO_2 mitigation costs and to approach the DOE carbon capture goal.

The main objectives of this study are to (1) identify performance bottlenecks in oxycombustion technology (2) assess how removing these barriers may contribute to achieving the DOE goal of no more than a 35 percent increase in COE for 90 percent CO_2 capture (excluding CO_2 transport, storage and monitoring [TS&M]).

1.1 OXYCOMBUSTION TECHNOLOGY

Oxycombustion is one of the pathways to implement CO_2 capture on coal-fired power plants. In an oxycombustion process, a pure or enriched oxygen gas stream is used instead of air as the oxidant for combustion. In this process, almost all of the nitrogen is removed from the air yielding a concentrated stream of oxygen (typically ~95 percent O_2). Oxycombustion technology involves three components: an oxygen production unit, a combustion (fuel conversion) unit, and a CO_2 purification and compression unit. Exhibit 1-1 shows these three components, along with different options for each.

Exhibit 1-1 Components of an Oxycombustion System

Compared to traditional air-fired plants, oxycombustion has many potential advantages. The main benefits of oxycombustion technology as a CO_2 capture and sequestration solution are:

- 1. Due to the removal of nitrogen in air, oxycombustion produces approximately 75 percent or less flue gas than air-fired combustion, and produces exhaust consisting of typically over 70 vol% CO₂[6]. Due to lower flue gas volumes, plant equipment sizes, and thus the capital cost, have the potential to be significantly reduced.
- 2. Oxycombustion produces high purity, near-sequestration-ready CO₂, which requires minimal purification.
- 3. As a result of the lower nitrogen levels in the oxidant, 60-70 percent reduction of NO_x versus air-fired combustion is possible. Some nitrogen is still available from the coal and from air infiltration, however, which may still contribute to NO_x formation.
- 4. Increased mercury ionization. With oxycombustion, there is potential for enhancement of Hg removal in the baghouse and flue gas desulfurization (FGD) unit based on Babcock & Wilcox (B&W) data during Small Boiler Simulator (~5 MMBtu/hr) tests, which showed an increase in the oxidized Hg/elemental Hg ratio during oxycombustion with bituminous coal. Oxidized Hg is more efficiently captured in the baghouse and FGD unit.
- 5. Oxycombustion technology can readily be applied to new and existing coal-fired power plants. Current oxycombustion technology uses conventional equipment already proven in the power generation industry; however it has not yet been demonstrated as a fully integrated system at commercial scale.

The above benefits position oxycombustion as a viable alternative to post-combustion CO_2 removal technology for conventional air-fired boilers. Like post-combustion technologies however, the appeal of oxycombustion is tempered by some challenges, as described below:

- 1. Since pure or enriched oxygen is used, oxygen separation is required, which is an energyand capital-intensive process.
- 2. Air infiltration into the boiler is an issue, as it dilutes the resulting flue gases. Various options are being investigated to minimize infiltration.
- 3. Single-pass combustion of coal in pure oxygen would occur at temperatures too high for existing burner designs and would have lower mass flows that would reduce convective heat transfer and create heat transfer problems in existing boiler designs. This issue is mitigated by diluting the oxygen with a cooled Flue Gas Recycle (FGR) stream; however this results in an increase of the parasitic power load.
- 4. Because of the oxygen separation, flue gas recycle, and CO₂ compression, an oxycombustion power plant is much less efficient than a traditional air-fired power plant without CO₂ removal.

The intent of this study is to examine how some or all of these challenges may be alleviated to improve the performance of an oxycombustion power plant. In the following sections, the current status and detail of conventional oxycombustion technology is briefly summarized, and the innovative technology concepts for advanced oxycombustion systems are evaluated.

2. <u>DESIGN BASIS</u>

Eight advanced oxycombustion cases were evaluated and are compared to a supercritical current technology case, which represents the current technology. The eight oxycombustion cases include two cases with supercritical configurations using advanced membrane-derived oxygen, one case with an ultra-supercritical configuration using cryogenic oxygen, and several cases with advanced technologies involving alternative flue gas cleaning/recycle configurations, advanced CO₂ compression, and advanced boiler configurations. The case descriptions are summarized in Exhibit 2-1 followed by more detailed explanations below. The general design basis used for the systems analyses is described in the following subsections.

Case	Boiler Technology psig/°F/°F	Advanced PC Concept Coal Type Oxidant		Oxidant	Sulfur Removal	CO ₂ Storage
Base	Supercritical PC 3500/1110/1150	Current Oxycombustion	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
1	Supercritical PC 3500/1110/1150	Advanced O ₂ Membrane with Boiler Integration	Illinois No. 6	~100% Oxygen/ Advanced Membrane	Wet FGD	Remote Geologic
1a	Supercritical PC 3500/1110/1150	Advanced O ₂ Membrane with Natural Gas Preheater	Illinois No. 6	~100% Oxygen/ Advanced Membrane	Wet FGD	Remote Geologic
2	Chemical Looping	Covered in a separate study				
3	Ultra-supercritical PC 4000/1350/1400	Advanced Materials for Ultra-supercritical Conditions	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
4	Supercritical PC 3500/1110/1150	Co-sequestration	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Co- capture	Remote Geologic
5	Supercritical PC 3500/1110/1150	Advanced Recycle	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
6	Supercritical PC 3500/1110/1150	Advanced CO ₂ Compression	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
7	Supercritical PC 3500/1110/1150	Oxycombustion Boiler	Illinois No. 6	95% Oxygen/ Cryogenic ASU	Wet FGD	Remote Geologic
Cumulative	Ultra-supercritical PC 4000/1350/1400	Cumulative Case	Illinois No. 6	~100% Oxygen/ Advanced Membrane	Co- capture	Remote Geologic

Exhibit 2-1 Case Descriptions

Current Technology Case – This case includes a supercritical pulverized coal (SC PC) oxycombustion plant with a wet FGD unit. The boiler design is based on bituminous coal airfired units. Consistent with current air-fired boiler designs, the theoretical adiabatic flame temperature of the boiler is controlled to 2,031°C (3,687°F) by varying the amount of flue gas recycled to the boiler. This adiabatic flame temperature is based on that of an air-fired bituminous PC plant as represented in a previous NETL report [7]. The oxidant is supplied by conventional cryogenic ASU technology that produces 95 vol% O₂. The recycled flue gas

stream is superheated to 9° C (15° F) before entering the primary and induced draft fans. The CO₂ compression is accomplished by eight stages of centrifugal compression (86 percent polytropic efficiency) with intercooling between each stage. This base plant is the "current" approach to oxycombustion. Illinois No. 6 coal is the fuel and the plant is located at a generic non-minemouth site in the Midwestern United States.

Case 1 – This case includes a SC PC oxycombustion plant with a wet FGD unit. This plant employs an advanced membrane air separation unit (ASU) to produce nearly 100 vol% purity O_2 for combustion. The high temperatures are generated through integration of the membrane feed stream with the PC boiler system. Due to the high temperatures generated in the process, the oxidant cooling scheme is integrated with both high- and low-pressure boiler feedwater. This reduces the amount of steam to be extracted from the steam cycle, which can increase the power output of the steam cycle.

Case 1a – This case also uses an advanced membrane ASU system to produce the oxygen necessary for combustion. Instead of pre-heating the air inlet stream by integration with the boiler, a natural gas-fired direct contact heater is used. An oxidant cooling scheme similar to that in Case 1 is employed.

Case 3 – This case is the same as the current technology case, except the oxycombustion boiler drives a USC steam cycle. The USC steam cycle conditions are 27.6 MPa/732°C/760°C (4,000 psig/1,350°F/1,400°F).

Case 4 – This case is the same as the current technology case, except the FGD unit is not employed. Co-sequestration of all sulfur constituents is assumed to be possible.

Case 5 – This case is the same as the current technology case, except the recycled flue gas is not superheated and enters the forced- and induced-draft fans at saturated conditions. This reduces the amount of steam to be extracted from the steam cycle, which can increase the power output of the steam cycle.

Case 6 – This case is the same as the current technology case, except the CO_2 compression system utilizes advanced shock wave compression technology with higher stage compression efficiency (90 percent polytropic). The interstage compression heat is recovered in the boiler feedwater system, which reduces the amount of steam to be extracted from the steam cycle and can increase the power output of the steam cycle.

Case 7 – This case is the same as the current technology case, except the adiabatic flame temperature is controlled to $2,310^{\circ}$ C ($4,190^{\circ}$ F) based on an oxycombustion boiler by reducing the recycle rate relative to the Current Technology Case. This enables a reduction in the amount of flue gas recycled to the boiler, which leads to lower parasitic load and improved system efficiency.

Cumulative Case – This case is intended to model the cumulative effect and any synergies of the proposed PC oxycombustion concepts.

2.1 SITE DESCRIPTION

All plants in this study are assumed to be located at a generic Midwestern U.S. plant site, with ambient conditions and site characteristics as presented in Exhibit 2-2 and Exhibit 2-3. The

ambient conditions are the same as International Standards Organization (ISO) conditions [8].

Elevation, ft	0
Barometric Pressure, psia	14.696
Design Ambient Temperature, Dry Bulb, °F	59
Design Ambient Temperature, Wet Bulb, °F	51.5
Design Ambient Relative Humidity, %	60

Exhibit 2-2 Site Ambient Conditions

Exhibit 2-3 Site Characteristics

Location	A Greenfield site in the Midwestern United States ^a	
Topography	Level	
Size, acres	300	
Transportation	Rail	
Ash Disposal	Off Site	
Water	Municipal (50%) / Groundwater (50%)	
Access	Land locked, having access by rail and highway	
CO ₂	Compressed to 15.3 MPa (2,215 psia), transported 50 miles, and sequestered in a saline formation at a depth of 4,055 feet	
^a Champaign County, Illinois, is assumed for assessment of construction costs.		

The following design parameters are considered site-specific, and are not quantified for this study. Allowances for normal conditions and construction are included in the cost estimates:

- Flood plain considerations
- Existing soil/site conditions
- Water discharges and reuse
- Rainfall/snowfall criteria
- Seismic design
- Buildings/enclosures
- Fire protection
- Local code height requirements
- Noise regulations (impact on site and surrounding area)

2.2 COAL CHARACTERISTICS

The design coal characteristics are presented in Exhibit 2-4. All cases in this study were modeled using Illinois No. 6 bituminous coal.

Coal seam nomenclature	Herrin (l	Vo. 6)
Coal name	Illinois I	Vo. 6
Mine	Old Ben No. 26	
ASTM D388 Rank	High Volatile A	Bituminous
Proximate Analysis	As-Received	Dry
Moisture	11.12%	0.00%
Volatile Matter	34.99%	39.37%
Ash	9.70%	10.91%
Fixed Carbon	<u>44.19%</u>	<u>49.72%</u>
Total	100.00%	100.00%
Ultimate Analysis	As-Received	Dry
Carbon	63.75%	71.73%
Hydrogen	4.50%	5.06%
Nitrogen	1.25%	1.41%
Sulfur	2.51%	2.82%
Chlorine	0.29%	0.33%
Ash	9.70%	10.91%
Moisture	11.12%	0.00%
Oxygen	6.88%	7.74%
Total	100.00%	100.00%
Reported Heating Value	As-Received	Dry
HHV* (Btu/lb)	11,666	13,126
LHV**(Btu/lb)	11,252	12,660
HHV (kJ/kg)	27,135	30,531
LHV (kJ/kg)	26,171	29,447

Exhibit 2-4 Design Coal

* HHV = higher heating value

**LHV = lower heating value

Typical Ash Mineral Analysis	•	•		
Silica	SiO ₂	4	5.0%	
Aluminum Oxide	AI_2O_3	1	8.0%	
Titanium Dioxide	TiO ₂		1.0%	
Iron Oxide	Fe ₂ O ₃	2	0.0%	
Calcium Oxide	CaO		7.0%	
Magnesium Oxide	MgO		1.0%	
Sodium Oxide	Na ₂ O		0.6%	
Potassium Oxide	K ₂ O		1.9%	
Phosphorus Pentoxide	P_2O_5		0.2%	
Sulfur Trioxide	SO ₃	3.5%		
Undetermined		1.8%		
Total		100.0%		
Typical Ash Fusion Temperatures (°F)				
Reducing				
Initial – Limited deformation			1,950 ⁰F	
Softening	oftening H=W 2,03		2,030 °F	
Hemispherical		H=1/2W	2,140 ⁰F	
Fluid			2,150 ⁰F	
Oxidizing				
Initial – Limited deformation			2,250 °F	
Softening		H=W	2,300 °F	
Hemispherical		H=1/2W	2,430 ⁰F	
Fluid			2,450 ⁰F	
Hardgrove Grindability Index 60 HGI		HGI		

Exhibit 2-4 Design Coal (continued)

Average Trace Element Composition of Coal Shipped by Illinois Mines, Dry basis, ppm			
Trace Element		Arithmetic Mean	Standard Deviation
Arsenic	As	7.5	8.1
Boron	В	90	45
Beryllium	Be	1.2	0.7
Cadmium	Cd	0.5	0.9
Chlorine	CI	1671	1189
Cobalt	Со	3.5	1.3
Chromium	Cr	14	6
Copper	Cu	9.2	2.5
Fluorine	F	93	36
Mercury	Hg	0.09	0.06
Lithium	Li	9.4	7.1
Manganese	Mn	38	32
Molybdenum	Мо	8.4	5.7
Nickel	Ni	14	5
Phosphorus	Ph	87	83
Lead	Pb	24	21
Tin	Sb	0.9	0.7
Selenium	Se	1.9	0.9
Thorium	Th	1.5	0.4
Uranium	Ur	2.2	1.9
Vanadium	V	31	16
Zinc	Zn	84.4	84.2

Exhibit 2-4 Design Coal (continued)

Note: Average trace element composition of coal shipped by Illinois mines is based on 34 samples [9]

The mercury content in the Illinois No. 6 coal is reported as an arithmetic mean value of 0.09 ppm (dry basis), with a standard deviation of 0.06. Hence, as illustrated in Exhibit 2-5, there is a 50 percent probability that the mercury content in the Illinois No. 6 coal would not exceed 0.09 ppm (dry basis), and 99.9 percent probability that the mercury content in the Illinois No. 6 coal would not exceed 0.28 ppm (dry basis).

Exhibit 2-5 Probability Distribution of Mercury Concentration in the Illinois No. 6 Coal

For the cases in this study, coal mercury content was assumed to be equal to the arithmetic mean mercury concentration plus one standard deviation, or 0.15 ppmd. About 84 percent of the coal samples represented in Exhibit 2-5 have a mercury concentration equal to or less than 0.15 ppmd.

2.3 NATURAL GAS CHARACTERISTICS

Natural gas is utilized as the main fuel in Case 1a (NG-fired advanced membrane ASU), and its composition is presented in Exhibit 2-6.

Component		Volume Percentage		
Methane	CH ₄	93.1		
Ethane	C_2H_6	3.2		
Propane	C_3H_8		0.7	
<i>n</i> -Butane	C_4H_{10}	0.4		
Carbon Dioxide	CO ₂	1.0		
Nitrogen	N_2	1.6		
	Total	1000		
	LHV		HHV	
kJ/kg	47,889		53,028	
MJ/scm	35.03		38.79	
Btu/lb	20,583		22,792	
Btu/scf	940		1,041	

Exhibit 2-6 Natural Gas Composition

Note: Fuel composition is normalized and heating values are calculated

2.4 STEAM CONDITIONS

Steam conditions for the Rankine cycle were selected based on the NETL Advanced Materials for Supercritical Boilers program. The program is a collaborative effort of NETL, EPRI, and Industry Partners (Babcock & Wilcox, Foster Wheeler, Alstom, and Babcock Borsig). The goals of the program dictated the steam conditions selected for the study:

- For supercritical cycle cases 24.1MPa/599°C/621°C (3,500 psig/1,110°F/1,150°F)
- For ultra-supercritical cases 27.6 MPa/732°C/760°C (4,000 psig/1,350°F/1,400°F)

2.5 TECHNOLOGY REVIEW AND SIMULATION ASSUMPTIONS

This section will provide a brief overview of the current status of conventional oxycombustion technology. This section will also present the merit behind the innovative technology concepts identified here as advanced oxycombustion systems and how they are implemented in the system studies.

2.5.1 <u>Current Status of Oxycombustion Technology</u>

NETL has conducted several comprehensive studies on oxycombustion technology for state of the art SC PC power plants. Extensive details on the design basis and process configuration of state of the art oxycombustion plants were covered in the earlier report and so will not be reiterated here [10]. Of interest to this study however, is the cost breakdown for a SC PC plant with and without oxycombustion technology listed in Exhibit 2-7. Both the air-based reference plant (without CO_2 capture) and the oxycombustion plant (with CO_2 capture) have a net output of 550 MWe.

Study Case		Ref Case, Air- fired SC w/o CO ₂ Capture	O ₂ -fired SC w/ASU & CO ₂ Capture	COE Difference
	Capital	31.68	53.72	22.04
Cost of Electricity (\$/MWh)	Fixed O&M	7.97	11.81	3.84
	Variable O&M	5.03	6.47	1.44
	Fuel	14.22	19.08	4.86
	CO ₂ TS&M	0.00	5.83	5.83
	Total	58.90	91.07 ¹	32.17

Exhibit 2-7 Cost Breakdown of a SC PC Plant with and without Oxycombustion

¹ Excluding TS&M (NETL goals for carbon capture do not include TS&M costs)

While Exhibit 2-7 does not explicitly list energy consumption, the large auxiliary loads associated with the ASU and CO_2 compression indirectly result in increased costs [11]. The additional auxiliary loads that must be overcome to maintain a target net output (in this case 550 MW) require a larger overall plant size, which raises capital costs considerably. This additional capital cost would not be required otherwise and so can be attributed to the need for a larger plant to meet the same electricity demand without carbon capture; the additional capital costs of the larger plant can be assigned to the ASU and compression systems according to their relative contribution to incremental auxiliary loads. A similar redistribution can be done with the fuel cost; the increased fuel consumption results from the energy consumption of the oxycombustion system and CO_2 compression system and so can be reassigned to those systems accordingly.

As mentioned, nearly 100% of the incremental COE required for carbon capture can be attributed to the installation and operation of the carbon capture equipment, namely the ASU and CO_2 compression/purification systems. To capture the effect that the cost and auxiliary loads of these systems have on the incremental COE, the cost items in Exhibit 2-7 are shown redistributed as the five major categories responsible for increasing COE. Based on the results of a previous oxycombustion study, these categories are listed in Exhibit 2-8 [12].

Cost Item	Percentage Contribution to COE [%]
ASU capital	29.5
ASU power	35.8
CO ₂ Compressor Capital	8.6
CO ₂ Compressor Power	19.1
TS&M	7.0
Total COE Increase	100%

Exhibit 2-8 Cost Breakdown for Oxycombustion Power Plant

Exhibit 2-8 clearly shows that the parasitic loads of the ASU and compression required for oxycombustion are the major contributors to the total incremental COE. Reducing ASU capital costs can also provide large economic benefits to the oxycombustion carbon capture pathway. This type of information is useful because it shows the major impacts of oxycombustion technology and where there is a need for future research and development. For example, provided there is room for improvement, Exhibit 2-8 suggests that providing low cost and efficient oxygen production should be major focus areas for oxycombustion research and development. Comparisons such as this were responsible for inspiring the examinations of the advanced oxycombustion technologies that are detailed in the following sub-sections.

2.5.2 Oxygen Separation (Cases 1 and 1A)

Exhibit 2-9 lists the most common oxygen separation technologies currently available [11]. Adsorption (mostly vacuum pressure swing adsorption, VPSA) and polymeric membrane processes are only suitable for small-scale applications, mainly due to the nature of these two processes. Adsorption processes are more economic when the plant scale is < 200 ton O₂/day. The economic scale for membrane processes is even smaller (< 20 TPD). The cryogenic process is a mature technology and is the only option currently available at production scale that can meet typical power plant demands. Advanced membrane technology, on the other hand, is relatively new. It offers very attractive features, but more research and development is needed before it can be commercialized and before it can perform at the levels required to satisfy DOE carbon capture goals [13].

Process	Economic Scale (TPD)	Purity Limit (vol%)	Start-up Time
Adsorption	< 200	95	minutes
Cryogenic	> 200	99+	hours
Membrane	< 20	~40	minutes
Advanced Membrane	undetermined	99+	hours

Exhibit 2-9 Oxygen Separation Technology Comparison Table

Exhibit 2-10 depicts oxygen production cost for the three selected oxygen separation technologies at different scales [14]. At a larger scale (e.g., over 200 tons/day), the cryogenic process becomes more competitive. For oxycombustion application, oxygen consumption is around 12,000 tons/day for a 500 MWe PC power plant. This scale is actually beyond the largest scale in Exhibit 2-10. At the scale in this study, only cryogenic and advanced oxygen membrane processes are economically feasible technologies. For this reason, adsorption and the polymeric membrane processes were omitted from consideration here.

Exhibit 2-10 Oxygen Production Cost of Three Different Technologies

The cryogenic process has been in existence for over a hundred years. It is a mature and wellunderstood technology. Exhibit 2-11 shows the improvement of its energy efficiency in the past 40 years. The units of the y axis and x axis are normalized energy efficiency and O_2 productivity. The theoretical minimum work, W_{min} , required to separate 1 mol of air into 0.21 mol O₂ and 0.79 mol of N₂ can be calculated as follows [15]. (In practice, 100 percent O₂ separation with 100 percent purity is never done. However, when the purity is above 95 percent and recovery rate is above 90 percent, the minimum work will be very close to 100 percent purity and 100 percent separation. For simplicity, we assume 100 percent oxygen with 100 percent purity):

$$W_{\min} = -RT[\ln(x_{o2}) + \frac{(1 - x_{o2})}{x_{o2}}\ln(1 - x_{o2})] = -8.314 \times 298.15 \times 2.447$$
$$= 6.067(kJ / molO_2) = 47.82 (kWh / tonO_2)$$

The current state-of-the-art cryogenic separation process consumes over 200 kWh/ton O_2 produced, which is almost 4-5 times the theoretical minimum [16], indicating that there is significant room for future improvement. However, due to the nature of the cryogenic distillation process (which involves mostly mechanical processes, such as compression/expansion for refrigeration), the potential efficiency improvement will be relatively limited.

Exhibit 2-11 Cryogenic ASU Developments in the Past 40 Years

2.5.2.1 Advanced Oxygen Membranes

Cases 1 and 1A explore the benefit of using an advanced membrane as the oxygen supply technology. Advanced membranes are relatively new oxygen separation technologies that have only been demonstrated at the pilot scale. The principle of advanced membrane technology is based on the fact that some mixed metal oxides can conduct oxygen ions through their crystal lattice. The ceramic materials used for this application have a high flux and selectivity to oxygen. The selectivity of oxygen diffusing through these dense oxide materials is almost 100

percent. Oxygen molecules are converted to oxygen ions at the surface of the membrane on the oxygen-rich side and transported through the membrane by an applied electric voltage or oxygen partial pressure difference; they then reform oxygen molecules on the oxygen-lean side of the membrane. Impurities, such as nitrogen and argon, are rejected by the membrane at pressure.

Membrane materials can be fabricated into flat sheets or tubes. However, it is necessary to have the operating temperature generally above 600° C in order to activate the ion transport process. In practice, the membrane process is envisioned to be integrated into the power plant design to minimize energy consumption. Multiple options are available for such integrations; however this study examines only two.

High temperature air (~ 1,500°F) is introduced into the membrane module (wafer stack), and the oxygen in the air is ionized on the surface of the ceramic and diffuses through the membrane as oxygen ions, forming oxygen molecules on the other side [17]. Impurities, such as nitrogen and argon, are rejected by the membrane. The hot oxygen product stream is nearly 100 percent pure, and for modeling purposes in this study was assumed to be 100 percent pure. The remaining gas is a pressurized, oxygen-depleted stream from which significant amounts of energy can be recovered.

Integration of the advanced membrane oxygen plant to generate the high temperatures necessary for ionization is critical to an optimized oxycombustion process. *The membrane operating parameters used in this study are aspirational goals and not necessarily reflective of the current state-of-the-art.* In the membrane cases modeled for this study (Cases 1, 1a and the cumulative case) ambient air is compressed to 1.5 MPa (215 psia).

For Case 1, the air stream exiting the main air compressor at 391° C (735° F) is further heated to 802° C ($1,475^{\circ}$ F) by integrating the membrane feed stream with the boiler system. The membrane produces oxygen at ~100 percent purity to be used for coal combustion. The pure oxygen product is recovered at 802° C ($1,475^{\circ}$ F) and 0.17 MPa (25 psia). Approximately 70 percent of the incoming oxygen can be recovered for the given configuration.

To heat the membrane inlet stream to 802°C (1,475°F), approximately 24 percent of the total heat input to the boiler is required. The oxidant and off-gas stream, composed of vitiated air, are integrated with the boiler feedwater system to recover heat. The vitiated air stream at 1.34 MPa (195 psia) is expanded through a turbine to 0.10 MPa (15 psia) thereby recovering approximately 345 MW of power for Case 1 and 272 MW of power for Case 1A, which uses natural gas to perform the membrane inlet feed air heating. Both the pure oxygen product and vitiated air stream are cooled to 66°C (150°F) in a recuperator that is integrated with the boiler feedwater system. Heat from the oxidant stream supplements the steam superheating system and the high and low pressure feedwater system. The vitiated air stream exits the expansion turbine at 329°C (625°F), and this stream is subsequently cooled in the recuperator that supplements the low and high pressure boiler feedwater systems.

This process configuration differs from the one utilized in the NETL report, *Pulverized Coal Oxycombustion Plants Volume 1: Bituminous Coal to Electricity*. In the previous study, the compressed air from the main air compressor was intercooled, which draws heat out of the gas (and the system) before it can be recovered in the downstream expansion turbine and heat exchangers. This study eliminates intercooling and allows the air feed to the membrane to warm up during compression so that the compression power that went into heating the air can be partially recovered in the expansion turbine. The remainder of the available heat is recovered in

the boiler feedwater system. Like in Case 1A of this report, the air stream in the earlier report is further heated to the target temperature of 802°C (1,475°F) using a natural gas-fired direct contact heater. However, instead of recovering the sensible heat of the oxidant prior to combination with fuel and injection into the boiler as is done in this study, the previous process concept uses a direct contact cooler (DCC) to reduce the oxidant temperature which reduces the availability and usefulness of the heat in the oxidant stream.

It is hypothesized that the membrane arrangements proposed here are mor thermodynamically favorable than in prior studies because 1) the vitiated air stream retains energy that is recovered, and 2) the oxidant heat availability is retained and recovered at a higher temperature in the boiler feedwater system.

2.5.3 <u>High Temperature Materials – Ultrasupercritical Steam Conditions (Case 3)</u>

Case 3 adopts a set of USC steam conditions identified as an industry target in a previous NETL/DOE oxycombustion report [7]. Main steam conditions of 27.6 MPa /732°C /760°C (4,000 psig/1,350°F/1,400°F) are used for the cases in this study. These USC steam cycle conditions are considered advanced or next generation, and were chosen to be consistent with the goals of an industry consortium for advanced material development. Depending on actual steam conditions, USC plant efficiencies are generally 3 to 4 percentage points higher than comparable supercritical (SC) plant designs. This results in a direct reduction of CO_2 emissions per net MW of power generated, reducing the penalty of carbon capture. However, advanced steam conditions are limited by the availability and/or cost of materials that can withstand increasingly aggressive conditions. Due to the fact that many of these advanced materials and coatings that support USC conditions are still in the R&D stage of development (and at varying levels of maturity), the future costs are unknown at this time. Therefore, as part of the advanced materials R&D target, a 10 percent incremental cost above current boiler materials is assumed for the high temperature boiler sections—not 10 percent of the entire boiler.

2.5.4 <u>Sulfur-Tolerant Materials – Co-Sequestration (Case 4)</u>

Case 4 does not employ an FGD system. This system is theoretically possible in an oxycombustion configuration if future regulations allow co-sequestering of all flue gas constituents. However, since oxycombustion does not have large amounts of nitrogen diluent in the oxidant, the concentration of constituents in the flue gas stream increases. For once-through air-fired cases that utilize the same design fuel as this study, the boiler SO₂ concentrations are approximately 2,500 ppm. For the cases in this study that employ a FGD system (98% SO₂ removal) within the recycle loop, the sulfur concentration in the boiler is approximately 3,100 ppm. For Case 4, which has no FGD the sulfur concentration in the boiler is approximately 8,400 ppm (a 3.36 fold increase in sulfur concentration from the air-fired case). Since this sulfur concentration exceeds current practical design limits for boiler materials to avoid excess corrosion [17], sulfur-tolerant materials would be required for the boiler system; induced, forced, and primary air fans; the baghouse; and potentially the compression train for Case 4 of this study.

Because there is no FGD in this case, a condensing heat exchanger can cool the flue gas stream entering the CO₂ compression section to 57° C (135°F) using low pressure boiler feedwater. This strategy enables approximately 30 percent of the low pressure boiler feedwater to bypass the
feedwater system. By utilizing this configuration, less low pressure steam is extracted from the system, which can increase the power output of the steam cycle and can have a positive effect on overall system efficiency. However, the flue gas condensate will be be quite acidic because of the presence of high SO_2 concentrations and will require additional treatment steps prior to recycle to the cooling tower.

The design of this case is subject to development of advanced materials, specifically sulfurtolerant materials for most sections of the oxycombustion plant. If these materials are developed, cost premiums have the potential to negatively impact the cost of electricity despite the efficiency improvements shown in this study.

2.5.5 <u>Advanced Recycle (Case 5)</u>

The advanced recycle system as specified here eliminates the FGR superheating system used in the current technology case. The current technology case uses boiler feedwater to superheat the recycle stream by $8^{\circ}C$ ($15^{\circ}F$). The primary reason the recycle stream is superheated is to ensure that the primary or secondary air streams do not produce condensate in the ducts or enter the air fans at saturated conditions. This case assumes that these problems can be mitigated with new technologies without the need for a superheating system and upgraded fan, and that advanced burner and other necessary equipment designs will not be affected by the saturated conditions of the FGR stream.

2.5.6 <u>Advanced CO₂ Compression (Case 6)</u>

 CO_2 compression is one of the two major subsystems of oxycombustion technology. The CO_2 needs to be compressed to supercritical conditions suitable for transport to and injection into an appropriate storage site. Conventional compression technology results in auxiliary loads comprising ~30% of all auxiliary loads in an oxycombustion system.

Supersonic shock wave compression (or shock compression) technology, using the concept of an aircraft's engine, is being developed for CO_2 capture applications with the hopes of decreasing the overall cost and performance impact of CO_2 compression [18]. The shock compressor design features a rotating disk that operates at high peripheral speeds to generate shock waves that compress the CO_2 . Compared to conventional compressor technologies, shock compression offers several potential advantages: high compression efficiency; high single-stage compression ratios; opportunity for waste heat recovery; and lower capital cost [19].

For example, shock compression has the potential to develop compression ratios from 8:1 to 15:1 per stage with an adiabatic efficiency of 85 to 90 percent. The assumption used in this study was that the shock compression can achieve 90 percent polytropic efficiency for both the low and high compression stages. For comparison, the conventional compression methodology in the current technology case uses eight stages of compression with compression ratios ranging from 1.5 to 2.4 and operates with a polytropic efficiency of 86 percent. For CO_2 applications, it is anticipated that two stages can meet a ~100:1 compression ratio requirement. As mentioned, a conventional compression configuration typically utilizes 8 to 10 stages of compression with inter-cooling for the same total compression ratio.

A shock compressor uses fewer stages and has a simpler design, and with the same output it will have a smaller size. It is therefore expected that shock compression will be able to reduce the capital cost of compression.

Due to fewer stages, the compressed CO_2 will have a higher interstage temperature (500°F to 620°F, depending on the efficiency), providing an opportunity for heat recovery through integration into either the power plant steam cycle or CO_2 capture process. It is expected that some savings in compression capital cost may be offset by the cost to install additional heat recovery equipment.

Because of the reduced stages required by shock wave technology, the size of a CO_2 compressor can be reduced to ~1/5 of that of a conventional compressor, and the cost per compression ratio is about 1/2 to 1/3 of that of a similar conventional compression system [20]. However, the two-stage configuration of shock compression may not allow the use of multiple interstage cooling points and therefore may have the disadvantage of higher normalized compression loads. The shock compression technology has a normalized compression load of 135 kWh/ton CO_2 , while conventional compression has a compression load of 108 kWh/ton CO_2 . These figures do not incorporate the auxiliary load associated with cooling water demand and the benefits of integration with the boiler feedwater system.

In Case 6, because of the high compression ratios for shock compression, the CO_2 stream is discharged at a temperature of 321°C (609°F) in the low pressure stage and 274°C (525°F) at the high pressure stage. This provides an opportunity to integrate interstage compression heat with the boiler feedwater system. This increases power output of the steam cycle because of the reduction in steam extraction and helps to compensate for the increased compression power requirements.

Developers of shock compression technology indicate that, because of the simple nature of the design and smaller equipment sizing, the shock compression technology can offer a significant reduction in the capital cost of compression, compared to conventional compression, to compensate for the increased operating cost. Although it is feasible that shock wave compression has the potential to reduce capital costs for CO_2 compression, like other technologies in this report, the shock compression technology is still at an early development stage and there is a lack of reliable information on its cost and performance at commercial scale.

2.5.7 Oxycombustion Boiler Design (Case 7)

Conceptually, an oxycombustion-specific boiler is designed to accommodate a smaller flue gas flow, which results in reduced equipment size. It is also designed to accommodate increased temperatures by increasing heat transfer rates above those of conventional boilers. The current technology case oxycombustion boiler operates with a theoretical adiabatic flame temperature of 2,031°C (3,687°F), while the advanced oxycombustion boiler accommodates a theoretical adiabatic flame temperature of 2,308°C (4,187°F). The increase in boiler adiabatic flame temperature is a result of reducing the flue gas recycle from approximately 69 percent to 63 percent of the flue gas exiting the FGD system. This reduction in recycle gas increases the oxygen concentration in the boiler, which enables the adiabatic flame temperature to rise [21]. The reduced volumetric flow through the boiler system also allows for a decrease in the size of the associated equipment. Furthermore, fan loads required for flue gas recycle are reduced, increasing system efficiency.

The benefit of smaller oxycombustion boilers may be limited due to the need for advanced materials that can handle the high temperatures that result with decreasing levels of flue gas recycle. Furthermore, as FGR is reduced, dilution of sulfur constituents by de-sulfurized flue gas

will be reduced. This will create an additional demand for high sulfur materials independent of the desire for co-sequestration.

2.5.8 <u>Cumulative Case</u>

The Cumulative Case combines all of the above-mentioned technological advancements including, advanced membrane ASU, USC steam cycle, co-sequestration, advanced recycle concept, advanced materials, oxycombustion boiler, and advanced compression to quantify the cumulative effect these advances have on the performance and cost of the oxycombustion system.

2.6 COST ESTIMATING METHODOLOGY

The estimates in this study carry an accuracy of ± 30 percent, consistent with the screening study level of information available for the various power technologies.

The cost estimating methodology is explained in more detail in "Cost and Performance Baseline for Fossil Energy Power Plants" (Baseline Study) [22]. This reference is the basis for the costs for the air-fired cases and the balance of plant costs for the oxycombustion cases in this study. Some particulars from the study are described below.

2.6.1 <u>Capital, Operation, and Maintenance Costs</u>

This study reports capital cost at four levels: Bare Erected Cost (BEC), Total Plant Cost (TPC), Total Overnight Cost (TOC) and Total As-spent Capital (TASC). BEC, TPC and TOC are "overnight" costs and are expressed in "base-year" dollars. The base year is the first year of capital expenditure, which for this study is assumed to be 2007. TASC is expressed in mixed-year, current-year dollars over the entire capital expenditure period, which is assumed to last five years (2007 to 2012).

The <u>BEC</u> comprises the cost of process equipment, on-site facilities and infrastructure that support the plant (e.g., shops, offices, labs, road), and the direct and indirect labor required for its construction and/or installation. The cost of EPC services and contingencies is not included in BEC. BEC is an overnight cost expressed in base-year (2007) dollars.

The <u>TPC</u> comprises the BEC plus the cost of services provided by the engineering, procurement and construction (EPC) contractor and project and process contingencies. EPC services include: detailed design, contractor permitting (i.e., those permits that individual contractors must obtain to perform their scopes of work, as opposed to project permitting, which is not included here), and project/construction management costs. TPC is an overnight cost expressed in base-year (2007) dollars.

The <u>TOC</u> comprises the TPC plus owner's costs. TOC is an "overnight" cost, expressed in baseyear (2007) dollars and as such does not include escalation during construction or interest during construction. TOC is an overnight cost expressed in base-year (2007) dollars.

The <u>TASC</u> is the sum of all capital expenditures as they are incurred during the capital expenditure period including their escalation. TASC also includes interest during construction. Accordingly, TASC is expressed in mixed, current-year dollars over the capital expenditure period.

For the cases in the Baseline Study, capital cost and operating and maintenance cost estimates were developed for each plant based on adjusted vendor-furnished and actual cost data from recent design/build projects, and resulted in determination of a revenue requirement COE based on the power plant costs and assumed financing structure. The boiler and ancillary equipment (baghouse, FGD unit, and condensing heat exchanger) cost estimates were scaled from previous, related studies. The original cost estimates were provided by B&W. The cryogenic air separation unit and CO_2 purification unit cost estimates were also scaled and originally provided by Air Liquide. The balance of plant capital cost estimates were calculated using a factored estimate approach. Each cost account was adjusted using the appropriate process parameter and a scaling exponent derived from the baseline study. The SC PC cases from the Baseline study were used as the reference costs.

Quantities for major consumables such as fuel and sorbent were taken from technology-specific heat and mass balance diagrams developed for each plant application. Other consumables were evaluated on the basis of the quantity required using reference data. Operation costs were determined on the basis of the number of operators. Maintenance costs were evaluated on the basis of requirements for each major plant section. The cost results are presented for each case.

System Code of Accounts

The costs are grouped according to a process/system oriented code of accounts. This type of code-of-account structure has the advantage of grouping all reasonably allocable components of a system or process so they are included in the specific system account. (This would not be the case had a facility, area, or commodity account structure been chosen instead).

CO2 Technology Maturity

The cost estimates provided include technologies at different commercial maturity levels. The estimates for the non-CO₂-capture PC cases represent well-developed, commercial technology or "nth plants." The estimates for the CO₂-capture cases represent developing technology, since the post-combustion CO₂ removal technology remains unproven at commercial scale power generation applications where more than 12,000 tons/day of CO₂ would need to be captured.

Contingency

Process and project contingencies are included in estimates to account for unknown costs that are omitted or unforeseen due to a lack of complete project definition and engineering. Contingencies are added because experience has shown that such costs are likely, and expected, to be incurred even though they cannot be explicitly determined at the time the estimate is prepared.

Capital cost contingencies do not cover uncertainties or risks associated with

- scope changes
- changes in labor availability or productivity
- delays in equipment deliveries
- changes in regulatory requirements
- unexpected cost escalation
- performance of the plant after startup (e.g., availability, efficiency)

Project Contingency

AACE 16R-90 states that project contingency for a "budget-type" estimate (AACE Class 4 or 5) should be 15 to 30 percent of the sum of BEC, EPC fees and process contingency. This was used as a general guideline, but some project contingency values outside of this range occur based on WorleyParsons' in-house experience.

Process Contingency

Process contingency is intended to compensate for uncertainties arising as a result of the state of technology development. Process contingencies have been applied to the estimates as follows:

- Standard SC PC Boiler in Oxycombustion mode with FGD 0 percent of the total boiler; this is a standard boiler design with possible minimal changes required to burners and heat transfer surface areas.
- SC Oxycombustion-Specific Boiler with FGD 10 percent of the total boiler account, of which heat transfer areas and advanced materials are a fraction; majority of the boiler is conceptually the same as an air-fired design but contingencies allow for possible risk in advances required for increased heat transfer (advanced materials, increased heat transfer surface areas, etc.) to fully support a smaller boiler design.
- Standard SC PC Boiler in Oxycombustion mode w/o FGD 15 percent of the total boiler account, of which the advanced materials are a fraction; this is a standard boiler design requiring major advancements in materials for the increased sulfur concentrations produced in a high temperature atmosphere with the high sulfur bituminous coal assumed in this oxycombustion configuration.
- SC Oxycombustion-Specific Boiler w/o FGD 25 percent of the total boiler account, of which the advanced materials are a fraction; majority of the boiler is conceptually the same as an air-fired design but contingencies allow for possible risk in advances required for increased heat transfer (advanced materials, increased heat transfer surface areas, etc.) in all sections of the boiler (hence the higher contingency than for the standard boiler design w/o FGD) to fully support a smaller boiler design in addition to high temperature, sulfur-tolerant material requirements due to lack of FGD.
- USC PC Boiler 10 percent of the total boiler; only the superheater and reheater components of the boiler have not been proven commercially at the elevated temperatures. This 10 percent contingency is added to the base contingency of a boiler upgraded from SC to USC conditions. In cases where contingencies have already been applied to the boiler for cost uncertainties with high temperature materials, such as in the Cumulative Case, the contingency here will not be re-applied.
- USC Steam Turbine 15 percent of the steam turbine; elevated temperature and pressure in HP section of the turbine.
- Advanced Membrane ASU no explicit process contingency is applied to the advanced membrane process. The capital cost of the membrane-based ASU is based on an nth-plant R&D target of 30 percent less capital cost than a current state-of-the-

art cryogenic ASU [23]. This target includes all process contingencies associated with the advanced membrane technology.

• Boiler with Advanced Membrane Integration – in boilers without contingency already applied for heat transfer surface modification, 10 percent. Case 1 requires modifications to boiler heat transfer surface areas so that membrane feed gas may be preheated. In cases where contingencies have already been applied due to uncertainties in heat transfer configurations, such as in the Cumulative Case, the contingency here will not be re-applied.

AACE International provides standards for process contingency relative to technology status; from commercial technology at 0 to 5 percent to new technology with little or no test data at 40 percent. The process contingencies as applied in this study are consistent with the AACE International standards [24].

Price Fluctuations

During the course of this study and through the recent updates, the prices of equipment and bulk materials fluctuated quite substantially. Some reference quotes pre-dated the 2007 year cost basis while others were received post-2007. All vendor quotes used to develop these estimates were adjusted to June 2007 dollars accounting for the price fluctuations. Adjustments of costs pre-dating 2007 benefitted from a vendor survey of actual and projected pricing increases from 2004 through mid-2007. The results of that survey were used to validate/recalibrate the corresponding escalation factors used in the conceptual estimating models. The more recent economic down turn has resulted in a reduction of commodity prices such that many price indices have similar values in January 2010 compared to June 2007. For example, the Chemical Engineering Plant Cost Index was 532.7 in June 2007 and 532.9 in January 2010, and the Gross Domestic Product Chain-type Price Index was 106.7 on July 1, 2007 and 110.0 on January 1, 2010. While these overall indices are nearly constant, it should be noted that the cost of individual equipment types may still deviate from the June 2007 reference point.

2.6.2 Cost of Electricity

For scenarios that adhere to the global economic assumptions listed in Exhibit 2-12 and utilize one of the finance structures listed in Exhibit 2-13, the following simplified equation can be used to estimate COE as a function of TOC^1 , fixed O&M, variable O&M (including fuel), capacity factor and net output. The equation requires the application of one of the capital charge factors (CCF) listed in Exhibit 2-14. These CCFs are valid only for the global economic assumptions listed in Exhibit 2-12, the stated finance structure, and the stated capital expenditure period.

All factors in the COE equation are expressed in base-year dollars. The base year is the first year of capital expenditure, which for this study is assumed to be 2007. All factors (COE, O&M and fuel) are assumed to escalate at a nominal annual general inflation rate of 3.0 percent.

¹ Although TOC is used in the simplified COE equation, the CCF that multiplies it accounts for escalation during construction and interest during construction (along with other factors related to the recovery of capital costs).

Accordingly, all first-year costs (COE and O&M) are equivalent to base-year costs when expressed in base-year (2007) dollars.

$$COE = \frac{ \begin{array}{c} first \ year \\ capital \ charge \\ capital \ charge \\ \hline fixed \ operating \\ costs \\ cos$$

$$COE = \frac{(OCF)(FOC)(FOC)}{(CF)(MWH)}$$

where:

COE =	revenue received by the generator (\$/MWh, equivalent to mills/kWh) during the power plant's first year of operation (<i>but expressed in base-</i> <i>year dollars</i>), assuming that the COE escalates thereafter at a nominal annual rate equal to the general inflation rate, i.e., that it remains constant in real terms over the operational period of the power plant.
CCF =	capital charge factor taken from Exhibit 2-14 that matches the applicable finance structure and capital expenditure period
TOC =	total overnight capital, expressed in base-year dollars
$OC_{FIX} =$	the sum of all fixed annual operating costs, expressed in base-year dollars
OC _{VAR} =	the sum of all variable annual operating costs, including fuel at 100 percent capacity factor, <i>expressed in base-year dollars</i>
CF =	plant capacity factor, assumed to be constant over the operational period
MWH =	annual net megawatt-hours of power generated at 100 percent capacity factor

The technologies modeled in this study were divided into one of two categories for calculating COE: investor-owned utility (IOU) high risk and IOU low risk. All oxycombustion cases with CO_2 capture are considered high risk. The non-capture SC PC case is considered low risk. The parameters used are shown in exhibits following the cost exhibits for each case. The difference between the high-risk and low-risk categories is manifested in the debt-to-equity ratio and the weighted cost of capital. The values used to generate the capital charge factors in this study are shown in Exhibit 2-12 and Exhibit 2-13.

Parameter	Value
TAXES	
Income Tax Rate	38% (Effective 34% Federal, 6% State)

Exhibit 2-12 Parameter Assumptions for Capital Charge Factors

Parameter	Value			
Capital Depreciation	20 years, 150% declining balance			
Investment Tax Credit	0%			
Tax Holiday	0 years			
CONTRACTING AND FINANCING TERMS				
Contracting Strategy	Engineering Procurement Construction Management (owner assumes project risks for performance, schedule and cost)			
Type of Debt Financing	Non-Recourse (collateral that secures debt is limited to the real assets of the project)			
Repayment Term of Debt	15 years			
Grace Period on Debt Repayment	0 years			
Debt Reserve Fund	None			
ANALYSIS TIME PERIODS				
Capital Expenditure Period	5 Years			
Operational Period	30 years			
Economic Analysis Period (used for IRROE)	35 Years (capital expenditure period plus operational period)			
TREATMENT OF CAPITAL COSTS				
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6% ²			
Distribution of Total Overnight Capital over the Capital Expenditure Period (before escalation)	10%, 30%, 25%, 20%, 15%			
Working Capital	zero for all parameters			
% of Total Overnight Capital that is Depreciated	100% (this assumption introduces a very small error even if a substantial amount of TOC is actually non-depreciable)			
ESCALATION OF OPERATING REVENUES	AND COSTS			
Escalation of COE (revenue), O&M Costs, and Fuel Costs (nominal annual rate)	3.0% ³			

 $^{^{2}}$ A nominal average annual rate of 3.6 percent is assumed for escalation of capital costs during construction. This rate is equivalent to the nominal average annual escalation rate for process plant construction costs between 1947 and 2008 according to the *Chemical Engineering* Plant Cost Index.

³ An average annual inflation rate of 3.0 percent is assumed. This rate is equivalent to the average annual escalation rate between 1947 and 2008 for the U.S. Department of Labor's Producer Price Index for Finished Goods, the so-called "headline" index of the various Producer Price Indices. (The Producer Price Index for the Electric Power Generation Industry may be more applicable, but that data does not provide a long-term historical perspective since it only dates back to December 2003.)

Type of Security	% of Total	Current (Nominal) Dollar Cost	Weighted Current (Nominal) Cost	After Tax Weighted Cost of Capital					
Low Risk									
Debt	50	4.5%	2.25%	-					
Equity	50	12%	6%	-					
		8.25%		7.39%					
		High R	isk						
Debt	45	5.5%	2.475%	-					
Equity	55	12%	6.6%	-					
			9.075%	8.13%					

Exhibit 2-13 Financial Structure for Investor Owned Utility High- and Low-Risk Projects

Exhibit 2-14	Economic Parameters f	for COE	Calculation
--------------	------------------------------	---------	-------------

	High Risk	Low Risk
Capital Charge Factor	0.158	0.148

2.6.3 Costs of CO₂ Avoided

 CO_2 is not currently regulated. However, the possibility exists that carbon limits will be imposed in the future, and this study examines cases that include a reduction in CO_2 emissions.

The equation used to calculate the Cost of CO_2 Avoided in \$/ton is as follows:

Where,

 $COE = cost of electricity (\$/MWh_{net})$

Emissions = CO_2 emissions for case (tons/MWh_{net})

2.6.4 Costs of CO₂ Transport, Storage, and Monitoring

Transport, storage and monitoring costs were calculated for each case, but were not included in the assessment of whether a technology can help meet the DOE carbon capture goal. TS&M cost reduction targets are governed under DOE programs separate from the program governing capture goals. For those cases that ultimately require carbon sequestration in this report, the

capital and operating costs for CO_2 TS&M were independently estimated by NETL for purposes of providing perspective. Those costs were converted to a TS&M COE increment that was added to the plant COE.

CO₂ TS&M costs were estimated based on the following assumptions:

- CO₂ is supplied to the pipeline at the plant fence line at a pressure of 15.3 MPa (2,215 psia). The CO₂ product gas composition varies in each case depending on the level of oxygen purity used (95 versus 99 percent oxygen) and the level of CO₂ purification required. However, in all cases the CO₂ product stream was dried to <0.015 vol% water.
- Excess oxygen: The oxygen flow was regulated in all oxycombustion cases to achieve 2.7 percent oxygen flue gas concentration (on a dry basis) at the boiler exit. This study assumes that extensive dehydration of the CO₂ product stream would minimize pipeline corrosion and allow up to 3 percent excess oxygen in the CO₂ product stream transported—this is considered a "best-case" or "low-cost" CO₂ purification/compression option. In addition, it was assumed that up to 3 percent oxygen would not prohibit storage in a saline formation. This assumption is supported by two recently completed IEA Reports titled "Impact of Impurities on CO₂ Capture, Transport and Storage" [25] and "Oxy Combustion Processes for CO₂ Capture from Power Plant" [26]. Additional engineering designs which focus on extensive flue gas purification from oxycombustion processes (such as the multi-pollutant control processes proposed by Air Products) where deep oxygen removal (< 100 ppm) is required for enhanced oil recovery applications is beyond the scope of this study.
- The CO₂ is transported 80 kilometers (50 miles) via pipeline to a geologic sequestration field for injection into a saline formation.
- The CO₂ is transported and injected as a supercritical fluid in order to avoid two-phase flow and achieve maximum efficiency [27]. The pipeline is assumed to have an outlet pressure (above the supercritical pressure) of 8.3 MPa (1,200 psia) with no recompression along the way. Accordingly, CO₂ flow in the pipeline was modeled to determine the pipe diameter that results in a pressure drop of 6.9 MPa (1,000 psi) over an 80 kilometer (50 mile) pipeline length [28]. (Although not explored in this study, the use of boost compressors and a smaller pipeline diameter could possibly reduce capital costs for sufficiently long pipelines.) The diameter of the injection pipe will be of sufficient size that frictional losses during injection are minimal and no booster compression is required at the well-head in order to achieve an appropriate down-hole pressure, with hydrostatic head making up the difference between the injection and reservoir pressure.
- The saline formation is at a depth of 1,236 meters (4,055 ft) and has a permeability of 22 millidarcy (a measure of permeability defined as roughly 10⁻³ Darcy) and formation pressure of 8.4 MPa (1,220 psig) [29]. This is considered an average storage site and requires roughly one injection well for each 9,360 tonnes (10,320 short tons) of CO₂ injected per day [29]. The assumed aquifer characteristics are tabulated in Exhibit 2-15.

Parameter	Units	Current Technology Case
Pressure	MPa (psi)	8.4 (1,220)
Thickness	m (ft)	161 (530)
Depth	m (ft)	1,236 (4,055)
Permeability	md	22
Pipeline Distance	km (miles)	80 (50)
Injection Rate per Well	tonne (ton) CO ₂ /day	9,360 (10,320)

Exhibit 2-15 Deep Saline Formation Specification

The cost metrics utilized in this study provide a best estimate of TS&M costs for a "favorable" sequestration project, and may vary significantly based on variables such as terrain to be crossed by the pipeline, reservoir characteristics, and number of land owners from which sub-surface rights must be acquired. Raw capital and operating costs are derived from detailed cost metrics found in the literature, escalated to June 2007-year dollars using appropriate price indices. These costs were then verified against values quoted by industrial sources where possible. Where regulatory uncertainty exists or costs are undefined, such as liability costs and the acquisition of underground pore volume, analogous existing policies were used for representative cost scenarios.

The following sections describe the sources and methodology used for each metric.

TS&M Capital Costs

TS&M capital costs include both a 20 percent process contingency and 30 percent project contingency.

In several areas, such as Pore Volume Acquisition, Monitoring, and Liability, cost outlays occur over a longer time period, up to 100 years. In these cases a capital fund is established based on the net present value of the cost outlay, and this fund is then levelized similar to the other costs.

Transport Costs

 CO_2 transport costs are broken down into three categories: pipeline costs, related capital expenditures, and O&M costs.

Pipeline costs are derived from data published in the Oil and Gas Journal's (O&GJ) annual Pipeline Economics Report for existing natural gas, oil, and petroleum pipeline project costs from 1991 to 2003. These costs are expected to be analogous to the cost of building a CO₂ pipeline, as noted in various studies [27, 29, 30]. The University of California performed a regression analysis to generate the following cost curves from the O&GJ data: (1) Pipeline Materials, (2) Direct Labor, (3) Indirect Costs, and (4) Right-of-way acquisition, with each represented as a function of pipeline length and diameter [30]. These cost curves were escalated to the June 2007 year dollars used in this study.

Related capital expenditures were based on the findings of a previous study funded by DOE/NETL, Carbon Dioxide Sequestration in Saline Formations – Engineering and Economic Assessment [29]. This study utilized a similar basis for pipeline costs (O&GJ Pipeline cost data up to the year 2000) but added a CO₂ surge tank and pipeline control system to the project.

Transport O&M costs were assessed using metrics published in a second DOE/NETL sponsored report entitled Economic Evaluation of CO_2 Storage and Sink Enhancement Options [27]. This study was chosen due to the reporting of O&M costs in terms of pipeline length, whereas the other studies mentioned above either (a) do not report operating costs, or (b) report them in absolute terms for one pipeline, as opposed to as a length- or diameter-based metric.

Storage Costs

Storage costs were broken down into five categories: (1) Site Screening and Evaluation, (2) Injection Wells, (3) Injection Equipment, (4) O&M Costs, and (5) Pore Volume Acquisition. With the exception of Pore Volume Acquisition, all of the costs were obtained from Economic Evaluation of CO_2 Storage and Sink Enhancement Options [27]. These costs include all of the costs associated with determining, developing, and maintaining a CO_2 storage location, including site evaluation, well drilling, and the capital equipment required for distributing and injecting CO_2 .

Pore Volume Acquisition costs are the costs associated with acquiring rights to use the subsurface volume where the CO_2 will be stored, i.e., the pore space in the geologic formation. These costs were based on recent research by Carnegie Mellon University, (CMU) which examined existing sub-surface rights acquisition as it pertains to natural gas storage [31]. The regulatory uncertainty in this area combined with unknowns regarding the number and type (private or government) of property owners, require a number of "best engineering judgment" decisions to be made. In this study it was assumed that long-term lease rights were acquired from the property owners in the projected CO_2 plume growth region for a nominal fee, and that an annual "rent" was paid when the plume reached each individual acre of their property for a period of up to 100 years from the injection start date. The present value of the life cycle pore volume costs are assessed at a 10% discount rate and a capital fund is set up to pay for these costs over the 100 year rent scenario.

Liability Protection

Liability Protection addresses the fact that if damages are caused by injection and long-term storage of CO₂, the injecting party may bear financial liability. Several types of liability protection schemes have been suggested for CO₂ storage, including Bonding, Insurance, and Federal Compensation Systems combined with either tort law (as with the Trans-Alaska Pipeline Fund), or with damage caps and preemption, as is used for nuclear energy under the Price Anderson Act [32]. However, at present, a specific liability regime has yet to be dictated either at a Federal or (to our knowledge) State level. However, certain state governments have enacted legislation, which assigns liability to the injecting party, either in perpetuity (Wyoming) or until ten years after the cessation of injection operations, pending reservoir integrity certification, at which time liability is turned over to the state (North Dakota and Louisiana) [33,34,35]. In the case of Louisiana, a trust fund totaling five million dollars is established over the first ten years

(120 months) of injection operations for each injector. This fund is then used by the state for CO_2 monitoring and, in the event of an at-fault incident, damage payments.

Liability costs assume that a bond must be purchased before injection operations are permitted in order to establish the ability and good will of an injector to address damages where they are deemed liable. A figure of five million dollars was used for the bond based on the Louisiana fund level. This bond level may be conservatively high, in that the Louisiana fund covers both liability and monitoring, but that fund also pertains to a certified reservoir where injection operations have ceased, having a reduced risk compared to active operations. The bond cost was not escalated.

Monitoring Costs

Monitoring costs were evaluated based on the methodology set forth in the International Energy Agency (IEA) Greenhouse Gas (GHG) R&D Programme's Overview of Monitoring Projects for Geologic Storage Projects report [36]. In this scenario, operational monitoring of the CO₂ plume occurs over 30 years (during plant operation) and closure monitoring occurs for the following fifty years (for a total of eighty years). Monitoring is via electromagnetic (EM) survey, gravity survey, and periodic seismic survey; EM and gravity surveys are ongoing while seismic survey occurs in years 1, 2, 5, 10, 15, 20, 25, and 30 during the operational period, then in years 40, 50, 60, 70, and 80 after injection ceases.

3. <u>COST AND PERFORMANCE EVALUATION</u>

All eight advanced oxycombustion plants with various technological improvements are described in this section and are compared to the current technology case. The technological improvements can be categorized in four major areas: advanced steam cycle, alternative oxygen production, advanced flue gas treatment, and innovative CO_2 compression. All nine cases, including the current technology case, are described in the following sections:

- Current Technology Case and Advanced Steam Cycle USC Technology (Current Technology Case and Case 3)
- Advanced Oxygen Separation Technology (Case 1 and 1a)
- Advanced Flue Gas Treatment Technologies (Case 4, 5, and 7)
- Advanced CO₂ Compression (Case 6)
- Cumulative Case

3.1 CURRENT TECHNOLOGY USING SC STEAM CYCLE

The current oxycombustion plant is equipped with a cryogenic distillation ASU, a wet FGD sulfur removal unit, and a conventional CO₂ purification/compression system. The plant employs supercritical single-reheat 24.13MPa/599°C/621°C (3,500 psig/1,110°F/1,150°F) Rankine cycle with a state-of-the art PC steam generator firing bituminous Illinois No. 6 coal and a steam turbine. The CO₂ is captured and compressed to 2,215 psia and sent to a remote geologic location for storage. This case is identical in configuration to the oxycombustion case, Case 5, described in an earlier NETL/DOE report "Pulverized Coal Oxycombustion Power Plants" [37].

Process highlights:

- The amount of flue gas recycled to the boiler is controlled by targeting a theoretical adiabatic flame temperature of 2,031°C (3,678°F), which is equivalent to the adiabatic flame temperature produced in conventional boiler operation [11].
- The oxidant is supplied by conventional ASU technology that produces 95 percent O₂.
- The recycled flue gas stream is superheated $9^{\circ}C$ (15°F).
- The CO₂ compression is accomplished by eight stages of centrifugal compression (86 percent polytropic efficiency) with intercooling.

This base plant represents the current oxycombustion technology. Illinois No. 6 coal is the fuel and the plant is located at a generic non-minemouth site in the Midwestern United States.

Major components for a current oxycombustion power plant include the following:

- 1. Conventional cryogenic ASU
- 2. Regular PC boiler operating at supercritical steam conditions
- 3. Baghouse to remove particulates
- 4. Wet FGD to reduce sulfur emission

- 5. CPU with compression to 15.3 MPa (2,215 psia)
- 6. Flue gas recycle superheater
- 7. Steam turbine/generator

Block Flow Diagram and Stream Table

A process block flow diagram (BFD) for a current oxycombustion power plant is shown in Exhibit 3-1, and the corresponding stream tables are shown in Exhibit 3-2.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-3 and Exhibit 3-4:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-5. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-6 through Exhibit 3-8.

Performance Summary

A performance summary is provided in Exhibit 3-9.

Cost Tables

Capital costs, owner's costs, and O&M costs are provided in Exhibit 3-10 through Exhibit 3-12, respectively.

Equipment List

The combined equipment list for the current oxycombustion technology and Case 3 is shown in Exhibit 3-25.

Exhibit 3-1 Process Block Flow Diagram for Current Technology Case

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0308	0.0308	0.0317	0.0317	0.0000	0.0092	0.0000	0.0287	0.0000	0.0000	0.0287
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.7090	0.7090	0.5076	0.5076	0.0000	0.0005	0.0000	0.6612	0.0000	0.0000	0.6612
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.1514	0.1514	0.1084	0.1084	0.0000	0.0101	0.0000	0.2072	1.0000	0.0000	0.2072
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0856	0.0856	0.0659	0.0659	0.0000	0.7729	0.0000	0.0801	0.0000	0.0000	0.0801
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0231	0.0231	0.2863	0.2863	0.0000	0.2074	0.0000	0.0197	0.0000	0.0000	0.0197
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0031	0.0000	0.0000	0.0031
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	78,641	78,641	61,879	16,761	3,884	12,643	9,788	31,863	13,672	44,506	0	1,573	0	64,723	123,078	0	64,723
V-L Flowrate (kg/hr)	2,269,256	2,269,256	1,729,457	539,798	125,079	407,171	374,900	1,220,420	499,979	1,627,592	0	45,385	0	2,398,035	2,217,286	0	2,398,035
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	249,312	0	4,846	19,386	0	19,386	0
Temperature (°C)	15	24	17	13	13	13	75	69	60	56	15	15	15	177	599	15	177
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	24.23	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	247.49	241.88	188.45	184.24		30.57		495.60	3,493.92		428.51
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	1.5	1.4	1.5	1.4		1.2		1.0	68.5		1.0
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	38.303	38.303	36.570	36.570		28.856		37.051	18.015	-	37.051
V-L Flowrate (lb _{mol} /hr)	173,373	173,373	136,420	36,953	8,562	27,873	21,579	70,245	30,141	98,119	0	3,467	0	142,690	271,341	0	142,690
V-L Flowrate (lb/hr)	5,002,853	5,002,853	3,812,801	1,190,052	275,752	897,659	826,514	2,690,566	1,102,265	3,588,226	0	100,057	0	5,286,763	4,888,279	0	5,286,763
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	549,638	0	10,685	42,739	0	42,739	0
Temperature (°F)	59	75	63	55	56	56	167	157	141	133	59	59	59	350	1,110	59	350
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	3,514.7	14.7	14.2
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	106.4	104.0	81.0	79.2		13.1		213.1	1,502.1		184.2
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.092	0.089	0.092	0.088		0.076		0.061	4.274		0.061
	A - Refere	nce condit	ions are 32	.02 F & 0.0	89 PSIA												

Exhibit 3-2 Stream Table for Current Technology Case

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
V-L Mole Fraction																
Ar	0.0287	0.0000	0.0000	0.0340	0.0340	0.0099	0.0308	0.0308	0.0308	0.0308	0.0308	0.0308	0.0362	0.0000	0.0363	0.0363
CO ₂	0.6612	0.0000	0.0000	0.0000	0.0000	0.9704	0.7090	0.7090	0.7090	0.7090	0.7090	0.7090	0.8338	0.0000	0.8354	0.8354
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2072	1.0000	1.0000	0.0000	0.0000	0.0028	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	0.0021	1.0000	0.0001	0.0001
N ₂	0.0801	0.0000	0.0000	0.0162	0.0162	0.0019	0.0856	0.0856	0.0856	0.0856	0.0856	0.0856	0.1007	0.0000	0.1009	0.1009
O ₂	0.0197	0.0000	0.0000	0.9498	0.9498	0.0086	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0272	0.0000	0.0272	0.0272
SO ₂	0.0031	0.0000	0.0000	0.0000	0.0000	0.0063	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	64,723	3,245	1,618	234	234	0	60,634	41,651	41,651	9,788	31,863	18,984	16,143	2,875	16,111	16,111
V-L Flowrate (kg/hr)	2,398,035	58,468	29,148	7,548	7,548	11	2,322,445	1,595,325	1,595,321	374,900	1,220,420	727,145	675,961	51,799	675,389	675,389
Solids Flowrate (kg/hr)	0	25,197	0	0	0	39,188	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	186	15	15	13	95	57	57	57	66	66	66	58	104	22	104	21
Pressure (MPa, abs)	0.11	0.11	0.10	0.16	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.35	0.24	3.35	15.27
Enthalpy (kJ/kg) ^A	438.76		62.80	11.49	85.68		230.24	230.24	238.24	238.24	238.24	230.77	74.45	93.20	72.32	-188.93
Density (kg/m ³)	1.0		1,003.1	2.2	3.3		1.4	1.4	1.4	1.4	1.4	1.4	47.9	996.0	47.9	691.2
V-L Molecular Weight	37.051		18.015	32.205	32.205		38.302	38.302	38.303	38.303	38.303	38.303	41.873	18.016	41.920	41.920
							•									
V-L Flowrate (lb _{mol} /hr)	142,690	7,155	3,567	517	517	1	133,676	91,824	91,824	21,579	70,245	41,853	35,590	6,339	35,520	35,520
V-L Flowrate (lb/hr)	5,286,763	128,899	64,260	16,641	16,641	24	5,120,116	3,517,090	3,517,080	826,514	2,690,566	1,603,081	1,490,238	114,198	1,488,978	1,488,978
Solids Flowrate (lb/hr)	0	55,549	0	0	0	86,394	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	367	59	59	56	203	135	135	135	150	150	150	136	219	72	219	70
Pressure (psia)	15.3	15.5	14.7	23.2	45.0	14.8	14.8	14.8	14.7	14.7	14.7	14.8	485.8	35.2	485.8	2,214.7
Enthalpy (Btu/lb) ^A	188.6		27.0	4.9	36.8		99.0	99.0	102.4	102.4	102.4	99.2	32.0	40.1	31.1	-81.2
Density (lb/ft ³)	0.064		62.622	0.135	0.204		0.089	0.089	0.087	0.087	0.087	0.089	2.989	62.179	2.992	43.147

Exhibit 3-2 Stream Table for Current Technology Case (continued)

Exhibit 3-4 Heat and Mass Balance, Power Block Systems for Current Technology Case

	HHV	Sensible + Latent	Power	Total
	Heat In G	J/hr (MMBtu/hr)		
Coal	6,765 (6,412)	5.7 (5.4)		6,771 (6,417)
Combustion Air		70.8 (67.1)		70.8 (67.1)
Raw Water Makeup		124.3 (117.8)		124.3 (117.8)
Limestone		0.55 (0.52)		0.55 (0.52)
Auxiliary Power			867 (822)	867 (822)
Totals	6,754 (6,402)	201.3 (190.8)	867 (822)	7,833 (7,424)
	Heat Out (GJ/hr (MMBtu/hr)		
Boiler Loss		61.0 (57.8)		61.0 (57.8)
Bottom Ash		0.6 (0.6)		0.6 (0.6)
Fly Ash + FGD Ash		2.5 (2.3)		2.5 (2.3)
MAC Cooling		435.3 (412.6)		435.3 (412.6)
ASU Vent		66.8 (63.3)		66.8 (63.3)
Condenser		3,079 (2,918)		3,079 (2,918)
CO ₂ Cooling		546 (518)		546 (518)
CO ₂		-128 (-121)		-128 (-121)
Wet FGD Cooling		511 (484)		511 (484)
Process Condensate		42 (40)		42 (40)
Cooling Tower Blowdown		59.6 (56.5)		59.6 (56.5)
Process Losses*		310.3 (294.1)		310.3 (294.1)
Power			2,847 (2,698)	2,847 (2,698)
Totals		4,986 (4,726)	2,847 (2,698)	7,833 (7,424)

Note: Italicized numbers are estimated.

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling

Car	bon In	Carbon Out				
kg/h	r (lb/hr)	kg/hr (lb/hr)				
Coal	159,321 (351,242)	CO ₂ Product	161,662 (356,403)			
Air (CO ₂)	442 (975)	FGD Product	228 (504)			
FGD Reagent	2,557 (5,637)	Separated Air	434 (956)			
		Convergence Tolerance*	-4 (-9)			
Total	162,320 (357,853)	Total	162,320 (357,853)			

Erchihit 2 6	Cummont	Technology	Cono	Carbon	Dolomoo
EXHIDIT 3-0	Current	rechnology	Case	Carbon	Dalance

*by difference

Exhibit 3-7	Current	Techno	logy Ca	se Sulfur	Balance
-------------	---------	--------	---------	-----------	---------

Sult	fur In	Sulfur Out						
kg/hr	(lb/hr)	kg/hr (lb/hr)						
Coal	6,264 (13,809)	Gypsum	6,224 (13,721)					
		CO ₂ Product	40 (88)					
		Convergence Tolerance*	0 (0)					
Total	6,264 (13,809)	Total	6,264 (13,809)					

*by difference

Exhibit 3-8	Current	Technology	Case	Water	Balance
-------------	---------	------------	------	-------	---------

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m³/min (gpm)	m³/min (gpm)	m³/min (gpm)	m³/min (gpm)	m ³ /min (gpm)
FGD Makeup	0.49 (129)	0.0 (0)	0.49 (129)	0.00 (0)	0.49 (129)
BFW Makeup	0.37 (98)	0.0 (0)	0.37 (98)	0.00 (0)	0.37 (98)
Cooling Tower	35.7 (9,422)	3.48 (920)	32.2 (8,503)	8.02 (2119)	24.17 (6384)
Total	36.5 (9,649)	3.48 (920)	33.0 (8,729)	8.02 (2,119)	25.02 (6,610)

Plant Outp	ut	
Steam Turbine Power	790,800	kW _e
Expander Power	N/A	kW _e
Gross Power	790,800	kWe
Auxiliary Lo	ad	
Coal Handling and Conveying	500	kWe
Limestone Handling & Reagent Preparation	1,210	kWe
Pulverizers	3,740	kW _e
Ash Handling	720	kW _e
Primary Air Fans	1,010	kWe
Forced Draft Fans	1,280	kWe
Induced Draft Fans	7,080	kWe
Air Separation Unit Main Air Compressor	125,720	kW _e
ASU Auxiliaries	1,000	kW _e
Baghouse	90	kW _e
FGD Pumps and Agitators	4,050	kWe
CO ₂ Compression	73,410	kWe
Condensate Pumps	1,040	kWe
Boiler Feedwater Booster Pumps ²	N/A	kW _e
Miscellaneous Balance of Plant ³	2,000	kW _e
Steam Turbine Auxiliaries	400	kWe
Circulating Water Pumps	9,160	kWe
Cooling Tower Fans	5,340	kWe
Transformer Losses	3,030	kW _e
Total	240,780	kW _e
Plant Perform	ance	
Net Auxiliary Load	240,780	kWe
Net Plant Power	550,020	kWe
Net Plant Efficiency (HHV)	29.3%	
Net Plant Heat Rate (HHV)	12,300 (11,658)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	249,312 (549,638)	kg/hr (lb/hr)
Thermal Input ¹	1,879,193	kW _{th}
Condenser Duty	3,079 (2,918)	GJ/hr (MMBtu/hr)
Raw Water Usage	33.0 (8,729)	m°/min (gpm)
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)
2 - Boller feed pumps are turbine driven		

Exhibit 3-9 Current Technology Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

		Department:	NETL Office of	Program Planr	ing and Ana	lysis							Cost Base:	June 2007	
		Project:	Advancing Oxy	combustion Te	chnology								Prepared:	13-Apr-12	
		Case:	Base Case - Cu	urrent Technolo	ogy Oxycom	bustion Sup	ercritical PC							x \$1, 000	
		Plant Size:	550	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
			Equipment	Material	Lab	or	Bare	Eng'g	CM H.O. &	Proce	ess Cont.	Proj	ect Cont.	TOTAL PLA	NT COST
Aco	t No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM													
	1.1	Coal Receive & Unload	3,952	0	1,805	0	5,757	8.9%	514	0%	0	15.0%	941	7,212	13
	1.2	Coal Stackout & Reclaim	5,108	0	1,157	0	6,265	8.8%	548	0%	0	15.0%	1,022	7,835	14
	1.3	Coal Conveyors & Yd Crus	4,749	0	1,145	0	5,894	8.8%	517	0%	0	15.0%	962	7,372	13
	1.4	Other Coal Handling	1,242	0	265	0	1,507	8.7%	132	0%	0	15.0%	246	1,885	3
	1.5	Sorbent Receive & Unload	163	0	49	0	212	8.8%	19	0%	0	15.0%	35	266	0
	1.6	Sorbent Stackout & Reclaim	2,633	0	483	0	3,116	8.7%	271	0%	0	15.0%	508	3,896	7
	1.7	Sorbent Conveyors	940	203	230	0	1,373	8.7%	119	0%	0	15.0%	224	1,716	3
	1.8	Other Sorbent Handling	568	133	298	0	998	8.8%	88	0%	0	15.0%	163	1,250	2
	1.9	Coal & Sorbent Hnd.Foundations	0	4,860	6,131	0	10,990	9.3%	1,027	0%	0	15.0%	1,803	13,820	25
		SUBTOTAL 1.	\$19,355	\$5,196	\$11,563	\$0	\$36,114		\$3,236		\$0		\$5,902	\$45,252	\$82
2		COAL PREP & FEED SYSTEMS													
	2.1	Coal Crushing & Drying	2,287	0	446	0	2,733	8.7%	238	0%	0	15.0%	446	3,417	6
	2.2	Prepared Coal Storage & Feed	5,856	0	1,278	0	7,134	8.7%	624	0%	0	15.0%	1,164	8,922	16
	2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment	4,486	193	932	0	5,611	8.7%	489	0%	0	15.0%	915	7,015	13
	2.6	Sorbent Storage & Feed	540	0	207	0	748	8.9%	66	0%	0	15.0%	122	936	2
	2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation	0	573	481	0	1,055	9.2%	97	0%	0	15.0%	173	1,325	2
		SUBTOTAL 2.	\$13,170	\$767	\$3,344	\$0	\$17,281		\$1,515		\$0		\$2,819	\$21,615	\$39
3		FEEDWATER & MISC. BOP SYSTEMS													
	3.1	Feedwater System	21,788	0	7,038	0	28,826	8.8%	2,524	0%	0	15.0%	4,702	36,052	66
	3.2	Water Makeup & Pretreating	5,530	0	1,780	0	7,310	9.4%	685	0%	0	20.0%	1,599	9,594	17
	3.3	Other Feedwater Subsystems	6,670	0	2,819	0	9,489	8.9%	846	0%	0	15.0%	1,550	11,885	22
	3.4	Service Water Systems	1,084	0	590	0	1,674	9.3%	155	0%	0	20.0%	366	2,195	4
	3.5	Other Boiler Plant Systems	8,234	0	8,129	0	16,363	9.4%	1,535	0%	0	15.0%	2,685	20,582	37
	3.6	FO Supply Sys & Nat Gas	271	0	339	0	611	9.3%	57	0%	0	15.0%	100	768	1
	3.7	Waste Treatment Equipment	2,976	0	1,696	0	4,672	9.7%	453	0%	0	20.0%	1,025	6,150	11
	3.8	Misc. Power Plant Equipment	2,882	0	881	0	3,763	9.6%	361	0%	0	20.0%	825	4,949	9
		SUBTOTAL 3.	\$49,435	\$0	\$23,272	\$0	\$72,708		\$6,616		\$0		\$12,852	\$92,176	\$168
4		PC BOILER & ACCESSORIES													
	4.1	PC Boiler	186,648	0	104,729	0	291,377	9.7%	28,223	0%	0	10.0%	31,960	351,560	639
	4.2	ASU/Oxidant Compression	115,897	0	94,825	0	210,723	9.7%	20,411	0%	0	10.0%	23,113	254,247	462
	4.3	Open	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.4	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.5	Primary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.7	Major Component Rigging	0	w/4.1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 4.	\$302.546	\$0	\$199.554	\$0	\$502.100		\$48.634		\$0		\$55.073	\$605.807	\$1,101

Exhibit 3-10 Current Technology Base Case Capital Costs

		Equipment	Material	Lat	or	Bare	Ena'a	CM H.O. &	Proce	ess Cont.	Pro	iect Cont.	TOTAL PL	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A	FLUE GAS CLEANUP							*					·	•-
5.1	Absorber Vessels & Accessories	60.310	0	12.983	0	73.294	9.5%	6.937	0%	0	10.0%	8.023	88.254	160
5.2	Other FGD	3,150	0	3,569	0	6,719	9.6%	647	0%	0	10.0%	737	8,102	15
5.3	Bag House & Accessories	15.077	0	9,568	0	24.645	9.6%	2.357	0%	0	10.0%	2.700	29.703	54
5.4	Other Particulate Removal Materials	995	0	1.064	0	2.059	9.6%	198	0%	0	10.0%	226	2,483	5
5.5	Gypsum Dewatering System	5,465	0	928	0	6,394	9.4%	604	0%	0	10.0%	700	7,698	14
5.6	Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.7	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 5A.	\$84,997	\$0	\$28,114	\$0	\$113,111		\$10,744		\$0		\$12,385	\$136,240	\$248
5B	CO2 REMOVAL & COMPRESSION					. ,								
5B.1	CO2 Condensing Heat Exchanger	6,045	0	505	0	6,549	10%	655	0%	0	15.0%	1,081	8,285	15
5B.2	CO2 Compression & Drying	43,007	0	35,187	0	78,194	10%	7,819	0%	0	20.0%	17,203	103,216	188
5B.3	CO2 Pipeline							/				0	0	0
5B.4	CO2 Storage											0	0	0
5B.5	CO2 Monitoring											0	0	0
	SUBTOTAL 5B.	\$49.051	\$0	\$35.692	\$0	\$84.744		\$8.474		\$0		\$18.283	\$111.501	\$203
6	NITROGEN EXPANDER/GENERATOR				,								. , ,	
6.1	Nitrogen Expander/Generator	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.2	Nitrogen Expander/Generator Accessories	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.3	Compressed Air Pining	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.4		\$0	0\$	\$0	\$0	0	1070	0 \$0	070	\$0	0.070	\$0	0\$	02
7	HRSG DUCTING & STACK	ψυ	ψυ	ψυ	ψŪ	ψυ		ψυ		ψU		ψυ	ψυ	ψυ
, 71	Flue Gas Recycle Heat Exchanger	1 402	0	117	0	1 519	10%	152	0%	0	15.0%	251	1 921	3
7.2	SCR System	1,102	0	0	0	1,010	0%	102	0%	0	0.0%	0	0	0
7.2	Ductwork	0 344	0	6.003	0	15 3/7	8 7%	1 340	0%	0	15.0%	2 503	10 101	35
7.3	Stack	1 667	0	0,003	0	2 642	0.7 /0	252	0%	0	10.0%	2,303	3 18/	
7.4	UPSG Duct & Stock Foundations	1,007	961	079	0	1 920	0.20/	171	070	0	20.0%	203	2,104	0
1.9		\$12,412	¢961	\$9 074	0 ¢0	¢21 247	9.370	\$1.016	0 /0	0 ¢0	20.076	402 \$2.445	\$26 700	\$40
8	STEAM TURRINE GENERATOR	φ12,412	\$00 I	φ0,074	φU	φ21,347		\$1,910		φU		\$3,44 5	\$20,709	
0 0 1	Steam TC & Accessories	62 522	0	9 207	0	70 910	0.6%	6 791	00/	0	10.0%	7 760	95 260	165
0.1	Turbine Plant Auxiliaries	02,322	0	0,297	0	1 323	9.0%	128	0%	0	10.0%	1,700	1 507	100
0.2	Condensor & Auxiliaries	7 169	0	2 642	0	0.910	0.5%	022	070	0	10.0%	143	1,007	21
0.3	Steem Dining	7,100	0	2,042	0	9,010	9.070	932	0%	0	10.0%	1,074	29.040	21
0.4	Steam Piping	20,440	1 219	10,082	0	30,530	0.3%	2,540	0%	0	15.0%	4,902	30,040	09
0.9		¢00.550	1,310 ¢4 349	\$24,005	0	5,399 ¢115 001	9.4%	\$10,700	0%	0	20.0%	144 \$14 COE	4,403	0 \$257
0	SUBTOTAL 6.	\$90,559	\$1,310	\$24,005	\$ 0	\$115,001		\$10,709		φU		\$14,000	\$141,275	\$Z01
9 0.1		12.072	0	4.074	0	17 140	0.50/	1 607	00/		10.00/	1 977	20.646	20
9.1	Circulating Water Pumps	13,072	0	4,071	0	17,142	9.5%	1,027	0%	0	10.0%	1,8/7	20,646	38
9.2	Circulating Water Pumps	2,314	0	178	0	2,492	0.0%	213	0%	0	10.0%	2/1	2,976	5
9.3	Circ. Water Dising	014	4 804	4 74 4	0	0.570	9.4%	00	0%	0	15.0%	/6	12 000	2
9.4	Make we Wrater Swater	0	4,864	4,714	0	9,579	9.2%	882	0%	0	15.0%	1,569	12,030	22
9.5	Make-up water System	526	0	702	0	1,228	9.5%	116	0%	0	15.0%	202	1,546	3
9.6	Component Cooling Water System	486	0	387	0	8/3	9.4%	82	0%	0	15.0%	143	1,098	2
9.9	Circ. vvater System Foundations	0	2,938	4,668	0	7,605	9.4%	/16	0%	0	20.0%	1,664	9,985	18
	SUBTOTAL 9.	\$17,011	\$7,802	\$14,801	I \$0	\$39,614		\$3,702		\$0		\$5,802	\$49,118	\$89

Exhibit 3-10 Current Technology Base Case Capital Costs (continued)

			F	Madautal			D	E		<u> </u>				TOTAL DIA	
			Equipment	Material	Lac	or	Bare	Engig		Proce	ess Cont.	Proj	ect Cont.		
Acc	t No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	lotal	%	Total	%	Total	\$	\$/kW
10		ASH/SPENT SORBENT HANDLING SYS						00/				0.00/			
	10.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.2	Cyclone Ash Letdown	N/A	0	<u>N/A</u>	0	0	0%	0	0%	0	0.0%	0	0	0
	10.3	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.4	High Temperature Ash Piping	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.5	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.6	Ash Storage Silos	681	0	2,098	0	2,778	9.7%	271	0%	0	10.0%	305	3,354	6
	10.7	Ash Transport & Feed Equipment	4,407	0	4,514	0	8,921	9.5%	844	0%	0	10.0%	976	10,741	20
	10.8	Misc. Ash Handling Equipment	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	10.9	Ash/Spent Sorbent Foundation	0	162	190	0	352	9.3%	33	0%	0	20.0%	77	462	1
		SUBTOTAL 10.	\$5,088	\$162	\$6,802	\$0	\$12,051		\$1,147		\$0		\$1,358	\$14,557	\$26
11		ACCESSORY ELECTRIC PLANT			• • • • •		, , , , , , , , , , , , , , , , , , , ,								
	11 1	Generator Equipment	1 863	0	302	0	2 165	9.3%	201	0%	0	7 5%	177	2 543	5
	11.2	Station Service Equipment	6 761	0	2 222	0	8 983	9.6%	859	0%	0	7 5%	738	10 580	19
	11.2	Switchgear & Motor Control	7 773	0	1 321	0	9.094	9.3%	842	0%	0	10.0%	994	10,000	20
	11.0	Conduit & Cable Tray	1,115	4 873	16 851	0	21 724	0.6%	2 070	0%	0	15.0%	3 571	27 374	50
	11.4	Wire & Cable	0	4,073	17,051	0	21,724	9.070	2,073	070	0	15.0%	4 202	27,374	50
	11.5	Distanting Equipment	0	9,190	17,752	0	20,940	0.4%	2,270	0%	0	10.0%	4,303	33,001	10
	11.6		261	0	888	0	1,149	9.8%	112	0%	0	10.0%	126	1,388	3
	11.7	Standby Equipment	1,447	0	33	0	1,480	9.5%	140	0%	0	10.0%	162	1,782	3
	11.8	Main Power Transformers	8,293	0	140	0	8,432	7.6%	641	0%	0	10.0%	907	9,980	18
	11.9	Electrical Foundations	0	375	919	0	1,294	9.5%	123	0%	0	20.0%	283	1,701	3
		SUBTOTAL 11.	\$26,398	\$14,444	\$40,428	\$0	\$81,270		\$7,267		\$0		\$11,341	\$99,879	\$182
12		INSTRUMENTATION & CONTROL													
	12.1	PC Control Equipment	w/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
	12.2	Combustion Turbine Control	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	12.3	Steam Turbine Control	w/8.1	0	w/8.1	0	0	0%	0	0%	0	0.0%	0	0	0
	12.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	12.5	Signal Processing Equipment	W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
	12.6	Control Boards, Panels & Racks	565	0	339	0	904	9.6%	87	0%	0	15.0%	149	1,140	2
	12.7	Computer Accessories	5,708	0	998	0	6,705	9.5%	639	0%	0	10.0%	734	8.078	15
	12.8	Instrument Wiring & Tubing	3 095	0	6 139	0	9 234	8.5%	787	0%	0	15.0%	1 503	11 523	21
	12.9	Other I & C Equipment	1 613	0	3 660	0	5 273	9.7%	514	0%	0	10.0%	579	6,365	12
			\$10,981	\$0	\$11 135	\$0	\$22 116	070	\$2 026	0,0	\$0	101070	\$2 965	\$27,106	\$49
13			\$10,001	4 0	\$ 11,100	ţ.	+-- , •		<i>4</i> _, 6 _6		ţ.		<i>4</i> <u></u> ,000	+=-,	*
	13.1	Site Preparation	0	55	1 106	0	1 161	9.9%	114	0%	٥	20.0%	255	1 531	3
	13.1	Site Improvements	0	1 926	2 200	0	1,101	0.8%	404	0%	0	20.0%	200	5.424	10
	10.2	Site Englities	2 200	1,030	2,200	0	4,110	9.070	644	0%	0	20.0%	904	0,424	10
	13.3		\$,290	¢4.004	5,240	0	0,000	9.070	041 ¢4.400	0 /0	0	20.076	1,433	645 507	01
			\$3,290	\$1,891	\$0,031	۵ ۵	\$11,812		\$1,160		ŞU		\$2,594	\$15,567	\$28
14		BUILDINGS & STRUCTURES		0.004	7 700		40.500	0.00/	4 400	00/	0	45.00/	0.740	00.000	00
	14.1	Boller Building	0	8,831	7,766	0	16,596	9.0%	1,490	0%	0	15.0%	2,713	20,800	38
	14.2	Turbine Building	0	12,761	11,894	0	24,655	9.0%	2,220	0%	0	15.0%	4,031	30,906	56
	14.3	Administration Building	0	640	677	0	1,317	9.1%	119	0%	0	15.0%	216	1,652	3
	14.4	Circulation Water Pumphouse	0	139	111	0	250	8.9%	22	0%	0	15.0%	41	313	1
	14.5	Water Treatment Buildings	0	713	650	0	1,363	9.0%	122	0%	0	15.0%	223	1,708	3
	14.6	Machine Shop	0	428	288	0	716	8.9%	64	0%	0	15.0%	117	896	2
	14.7	Warehouse	0	290	291	0	581	9.0%	53	0%	0	15.0%	95	729	1
	14.8	Other Buildings & Structures	0	237	202	0	439	9.0%	39	0%	0	15.0%	72	550	1
	14.9	Waste Treating Building & Str.	0	446	1,352	0	1,798	9.4%	170	0%	0	15.0%	295	2,263	4
		SUBTOTAL 14.	\$0	\$24,486	\$23,231	\$0	\$47,717		\$4,299		\$0		\$7,802	\$59,819	\$109
		Total Cost	\$684,293	\$56,927	\$436,645	\$0	\$1,177,865		\$111,445		\$0		\$157,309	\$1,446,620	\$2,630

Exhibit 3-10 Current Technology Base Case Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,719	\$18
1 Month Maintenance Materials	\$1,474	\$3
1 Month Non-fuel Consumables	\$806	\$1
1 Month Waste Disposal	\$316	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,915	\$3
2% of TPC	\$28,932	\$53
Total	\$43,163	\$78
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$16,519	\$30
0.5% of TPC (spare parts)	\$7,233	\$13
Total	\$23,752	\$43
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$216,993	\$395
Financing Costs	\$39,059	\$71
Total Overnight Costs (TOC)	\$1,770,486	\$3,219
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$2,007,732	\$3,650

		INITIAL	. & ANNUAL	O&M EXPE	ENSES		
Case:	Base Case - Curre	nt Technolog	y Oxycombu	stion Super	critical PC		
Plant Size	(MWe):	550.02			Heat Rate (B	tu/kWh):	11,658
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Co	al	Fuel Cost (\$/I	MM Btu):	1.64
Design/Cor	struction	5 vears			Book Life (vr	s):	30
TPC (Plant	Cost) Year:	June 2007			TPI Year:		2012
Capacity F	actor (%):	85			CO2 Captured	(TPD)·	15.671
capacity :						(,
OPERATIN	G & MAINTENANCE	LABOR					
Operating	l abor						
Operating	Labor Rate (base)		\$34.65	\$/hour			
Operating	Labor Rurden:		30.00	% of base			
	rhood Chargo:		25.00	% of labor			
Labor Ove	illeau Charge.		23.00	76 01 18001			
Operating	Labor Poquiromont	s por Shift	unite/mod		Total Plant		
Operating		s per Shint.					
	Skilled Operator		2.0		2.0		
	Operator		9.0		9.0		
	Foreman		1.0		1.0		
	Lab Tech's etc.	<u> </u>	2.0		2.0		
	TOTAL Operating	Jobs	14.0		14.0		
						\$	\$/kW-net
Annual Op	perating Labor Cost	(calc'd)				5,524,319	10.04
Maintenar	nce Labor Cost (calc	;'d)				10,026,462	18.23
Administr	ative & Support Labo	or (calc'd)				3,887,695	7.07
Property 7	Taxes and Insurance	3				28,932,399	52.60
TOTAL F	IXED OPERATING	COSTS				48,370,875	87.94
VARIABLE	OPERATING COST	<u>s</u>					
						\$	\$/kWh-net
Maintenar	nce Material Costs (calc'd)				\$15,039,811	0.00367
Consuma	ibles	Consu	mption	Unit	Initial		
		Initial	/Day	Cost	Cost	\$	\$/kWh-net
Water (/10	000 gallons)	0	6,285	1.08	\$0	\$2,109,142	0.00051
Chemical	s ,		, , ,			,	
MU & W	T Chem. (lb)	0	30,423	0.17	\$0	\$1,633,536	0.00040
Limesto	ne (ton)	0	667	21.63	\$0	\$4 474 003	0.00109
Carbon	(Ha Removal) (lb)	0	001	21.00	φ0 Φ0	φ1, 11 1,000	0.00100
MEA So		0		1 05	\$0	\$0	0 00000
WILA OU		0	0	22/0.80	\$0 \$0	\$0 \$0	0.00000
Countin	Soda NoOH (top)	0	0	1.05	\$0 \$0	\$0 \$0	0.00000
Caustic	Soda, NaOH (ton)	0	0	1.05 2249.89 433.68	\$0 \$0 \$0	\$0 \$0 \$0	0.00000
Caustic Sulfuric	Soda, NaOH (ton) acid, H2SO4 (ton)	0		1.05 2249.89 433.68 138.78	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	0.00000
Caustic Sulfuric Corrosio	Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor	0 0 0	000000000000000000000000000000000000000	1.05 2249.89 433.68 138.78 0.00	\$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric Corrosio Activated	Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb)	0 0 0 0 0		1.05 2249.89 433.68 138.78 0.00 1.05	\$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric Corrosio Activated Ammoni	Noent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton)		0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
Caustic Sulfuric : Corrosio Activated Ammoni	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	0 0 0 0 0 0 als	0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149
Caustic Sulfuric a Corrosio Activated Ammoni	Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	0 0 0 0 0 0 als		1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic:	0 0 0 0 0 0 0 als		1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149
Caustic Sulfuric a Corrosio Activated Ammoni Other Supplem SCR Cat	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: iental Fuel (MMBtu) talyst Replacement	0 0 0 0 0 0 als 0 w/equip.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emissio	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties	0 0 0 0 0 0 als 0 w/equip. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emissio	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Subtotal Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other	0 0 0 0 0 0 als 0 w/equip. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric i Corrosio Activated Ammoni Other Supplem SCR Cai Emissio	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Subtotal Chemic n Penalties Subtotal Other sposal	0 0 0 0 0 0 als 0 w/equip. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00149 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emission Waste Dis Spent M	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Dental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalvst (lb)	0 0 0 0 0 0 als 0 w/equip. 0		1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emission Waste Dis Spent M Flyash ()	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Dental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton)	0 0 0 0 0 0 als 0 w/equip. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 0.42	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emissio Waste Dis Spent M Flyash (Bottom	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton) Ash (ton)	0 0 0 0 0 0 als 0 w/equip. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$0 \$2,581,699 \$645 440	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emissio Waste Dis Spent M Flyash (1 Bottom /	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W	0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227 139	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Ca Emission Waste Dis Spent M Flyash (Bottom /	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W	0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 aste Disposa	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emissio Waste Dis Spent M Flyash (Bottom / By-produc	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W xts & Emissions	0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum	Norm (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W its & Emissions (tons)	0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum Sulfur (to	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W tts & Emissions (tons) pns)	0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Ca Emission Waste Dis Spent M Flyash (Bottom / By-produc Gypsum Sulfur (to	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W :ts & Emissions (tons) pns) Subtotal By-Prod	0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emission Waste Dis Spent M Flyash (i Bottom / By-produc Gypsum Sulfur (to	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W tts & Emissions (tons) ons) Subtotal By-Prod	0 0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emission Waste Dis Spent M Flyash (i Bottom / By-produc Gypsum Sulfur (to	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W xts & Emissions (tons) Dns) Subtotal By-Prod RIABLE OPERATIN	0 0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.000000 0.000000 0.00000000
Caustic Sulfuric : Corrosio Activated Ammoni Other Supplem SCR Cai Emission Waste Dis Spent M Flyash (Bottom / By-produc Gypsum Sulfur (to TOTAL VAI Coal FUEL	Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic. ental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal iercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W xts & Emissions (tons) Dns) Subtotal By-Prod RIABLE OPERATIN (tons)	0 0 0 0 0 0 0 als 0 w/equip. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$0 \$0 \$0 \$0 \$0 \$0 \$6,107,540 \$0 \$0 \$0 \$0 \$2,581,699 \$645,440 \$3,227,139 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00000 0.00000

Exhibit 3-12 Current Technology Base Case O&M Costs

3.2 CASE 3: ULTRASUPERCRITICAL (USC) OXYCOMBUSTION

Because of the similarities between the current technology case and Case 3, they are presented in adjacent sections in order to logically condense the content of the report, specifically the equipment accounts.

The USC oxycombustion power plant is similar to the current technology power plant, except that it is operating under ultrasupercritical steam conditions. The plant is equipped with a cryogenic distillation ASU, a wet FGD, and a conventional CO₂ purification/compression system. The plant employs an ultrasupercritical single-reheat 27.6 MPa/732°C/760°C (4,000 psig/1,350°F/1,400°F) Rankine cycle with a state-of-the art pulverized coal steam generator firing bituminous Illinois No. 6 coal and a steam turbine. The CO₂ is captured and compressed to 2,215 psia and sent to a remote geologic location for storage.

- The adiabatic flame temperature of the boiler is controlled to 2,031°C (3,678°F) by varying the amount of flue gas recycled to the boiler.
- The oxidant is supplied by conventional ASU technology that produces 95 percent O₂.
- The recycled flue gas stream is superheated 9°C (15°F).
- The CO₂ compression is accomplished by eight stages of centrifugal compression (86 percent polytropic efficiency) with intercooling.

This base plant represents the current oxycombustion technology. Illinois No. 6 coal is the fuel and the plant is located at a generic non-minemouth site in the Midwestern United States.

Block Flow Diagram and Stream Table

Process BFD and stream tables for the current technology case are displayed in Exhibit 3-13 and Exhibit 3-14.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-15 and Exhibit 3-16:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-17. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-18 through Exhibit 3-20.

Performance Summary

A performance summary is provided in Exhibit 3-21.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-22 through Exhibit 3-24, respectively.

Equipment List

The combined equipment list for the current technology case and Case 3 is shown in Exhibit 3-25.

Exhibit 3-13 Process Block Flow Diagram for Case 3

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0308	0.0308	0.0317	0.0317	0.0000	0.0092	0.0000	0.0287	0.0000	0.0000	0.0287
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.7090	0.7090	0.5073	0.5073	0.0000	0.0005	0.0000	0.6608	0.0000	0.0000	0.6608
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.1514	0.1514	0.1084	0.1084	0.0000	0.0101	0.0000	0.2076	1.0000	0.0000	0.2076
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0856	0.0856	0.0659	0.0659	0.0000	0.7729	0.0000	0.0801	0.0000	0.0000	0.0801
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0231	0.0231	0.2867	0.2867	0.0000	0.2074	0.0000	0.0197	0.0000	0.0000	0.0197
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0031	0.0000	0.0000	0.0031
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	70,905	70,905	55,793	15,113	3,502	11,399	8,809	28,675	12,310	40,074	0	1,418	0	58,315	108,630	0	58,315
V-L Flowrate (kg/hr)	2,046,048	2,046,048	1,559,345	486,703	112,770	367,103	337,388	1,098,306	450,158	1,465,409	0	40,921	0	2,159,960	1,956,993	0	2,159,960
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	225,320	0	4,370	17,479	0	17,479	0
Temperature (°C)	15	24	17	13	13	13	75	69	60	56	15	15	15	177	732	15	177
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	27.68	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	247.49	241.88	188.37	184.16		30.57		496.37	3,844.30		429.20
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	1.5	1.4	1.5	1.4		1.2		1.0	64.1		1.0
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	38.302	38.302	36.568	36.568		28.856		37.040	18.015		37.040
V-L Flowrate (lb _{mol} /hr)	156,320	156,320	123,002	33,318	7,720	25,131	19,419	63,217	27,139	88,347	0	3,126	0	128,562	239,487	0	128,562
V-L Flowrate (lb/hr)	4,510,763	4,510,764	3,437,768	1,072,996	248,616	809,324	743,814	2,421,351	992,430	3,230,675	0	90,215	0	4,761,896	4,314,431	0	4,761,896
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	496,745	0	9,634	38,535	0	38,535	0
Temperature (°F)	59	75	63	55	56	56	167	157	141	133	59	59	59	350	1,350	59	350
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	4,014.7	14.7	14.2
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	106.4	104.0	81.0	79.2		13.1		213.4	1,652.7		184.5
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.092	0.089	0.092	0.088		0.076		0.061	4.004		0.061
	A - Refere	nce conditi	ons are 32	.02 F & 0.0	89 PSIA												

Exhibit 3-14 Stream Table for Case 3

	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
V-L Mole Fraction																
Ar	0.0287	0.0000	0.0000	0.0340	0.0340	0.0000	0.0308	0.0308	0.0308	0.0308	0.0308	0.0308	0.0362	0.0000	0.0363	0.0363
CO ₂	0.6608	0.0000	0.0000	0.0000	0.0000	0.0014	0.7090	0.7090	0.7090	0.7090	0.7090	0.7090	0.8337	0.0000	0.8354	0.8354
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2076	1.0000	1.0000	0.0000	0.0000	0.9986	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	0.0021	1.0000	0.0001	0.0001
N ₂	0.0801	0.0000	0.0000	0.0162	0.0162	0.0000	0.0856	0.0856	0.0856	0.0856	0.0856	0.0856	0.1007	0.0000	0.1009	0.1009
O ₂	0.0197	0.0000	0.0000	0.9498	0.9498	0.0000	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0272	0.0000	0.0272	0.0272
SO ₂	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	58,315	3,022	1,329	212	212	218	54,599	37,483	37,483	8,809	28,675	17,116	14,555	2,592	14,526	14,526
V-L Flowrate (kg/hr)	2,159,960	54,434	23,942	6,829	6,829	3,936	2,091,294	1,435,690	1,435,690	337,388	1,098,306	655,604	609,455	46,703	608,940	608,940
Solids Flowrate (kg/hr)	0	22,696	0	0	0	35,311	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	186	15	15	13	95	57	57	57	66	66	66	58	104	22	104	21
Pressure (MPa, abs)	0.11	0.11	0.10	0.16	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.35	0.24	3.35	15.27
Enthalpy (kJ/kg) ^A	439.46		62.80	11.49	85.68		230.24	230.24	238.24	238.24	238.24	230.77	74.45	93.20	72.32	-188.93
Density (kg/m ³)	1.0		1,003.1	2.2	3.3		1.4	1.4	1.4	1.4	1.4	1.4	47.9	996.0	47.9	691.1
V-L Molecular Weight	37.040		18.015	32.205	32.205		38.302	38.302	38.302	38.302	38.302	38.302	41.873	18.016	41.920	41.920
V-L Flowrate (lb _{mol} /hr)	128,562	6,661	2,930	468	468	481	120,371	82,636	82,636	19,419	63,217	37,735	32,088	5,715	32,025	32,025
V-L Flowrate (lb/hr)	4,761,896	120,006	52,782	15,056	15,056	8,678	4,610,514	3,165,156	3,165,156	743,814	2,421,351	1,445,359	1,343,619	102,963	1,342,483	1,342,483
Solids Flowrate (lb/hr)	0	50,036	0	0	0	77,847	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	367	59	59	56	203	135	135	135	150	150	150	136	219	72	219	70
Pressure (psia)	15.3	15.5	14.7	23.2	45.0	14.8	14.8	14.8	14.7	14.7	14.7	14.8	485.8	35.2	485.8	2,214.7
Enthalpy (Btu/lb) ^A	188.9		27.0	4.9	36.8		99.0	99.0	102.4	102.4	102.4	99.2	32.0	40.1	31.1	-81.2
Density (lb/ft ³)	0.064		62.622	0.135	0.204		0.089	0.089	0.087	0.087	0.087	0.089	2.989	62.179	2.992	43.147

Exhibit 3-14 Stream Table for Case 3 (continued)

Exhibit 3-15 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 3

Exhibit 3-16 Heat and Mass Balance, Power Block Systems for Case 3

	HHV	Sensible + Latent	Power	Total						
Heat In GJ/hr (MMBtu/hr)										
Coal	6,114 (5,795)	5.1 (4.8)		6,119 (5,800)						
Combustion Air		63.8 (60.5)		63.8 (60.5)						
Raw Water Makeup		111.4 (105.6)		111.4 (105.6)						
Limestone		0.49 (0.47)		0.49 (0.47)						
Auxiliary Power			778 (737)	778 (737)						
Totals	6,114 (5,795)	180.8 (171.4)	778 (737)	7,073 (6,704)						
Heat Out GJ/hr (MMBtu/hr)										
Boiler Loss		55.0 (52.2)		55.0 (52.2)						
Bottom Ash		0.6 (0.5)		0.6 (0.5)						
Fly Ash + FGD Ash		2.2 (2.1)		2.2 (2.1)						
MAC Cooling		392.5 (372.0)		392.5 (372.0)						
ASU Vent		60.3 (57.1)		60.3 (57.1)						
Condenser		2,648.1 (2,509.9)		2,648.1 (2,509.9)						
CO ₂ Cooling		488.5 (463.0)		488.5 (463.0)						
CO ₂		-115.0 (-109.0)		-115.0 (-109.0)						
Wet FGD Cooling		462.7 (438.5)		462.7 (438.5)						
Process Condensate		37.3 (35.3)		37.3 (35.3)						
Cooling Tower Blowdown		52.0 (49.3)		52.0 (49.3)						
Process Losses*		286.6 (271.6)		286.6 (271.6)						
Power			2,757 (2,613)	2,757 (2,613)						
Totals		4,316 (4,090)	2,757 (2,613)	7,073 (6,704)						

Exhibit 3-17	/ Case 3 Ener	gy Balance
L'AMOR J-1	Case 5 Ener	gy Dalance

Note: Italicized numbers are estimated.

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.
| Ca | rbon In | Carbon Out | | | | | |
|------------------------|----------------------|---------------------------|----------------------|--|--|--|--|
| kg/ł | nr (lb/hr) | kg/hr (lb/hr) | | | | | |
| Coal | 143,650
(316,693) | CO ₂ Product | 145,756
(321,336) | | | | |
| Air (CO ₂) | 399 (879) | FGD Product | 201 (443) | | | | |
| FGD Reagent | 2,303 (5,077) | Separated Air | 391 (862) | | | | |
| | | | | | | | |
| | | Convergence
Tolerance* | 4 (8) | | | | |
| Total | 146,351
(322,649) | Total | 146,351
(322,649) | | | | |

Exhibit 3-18 Case 3 Carbon Balance

*by difference

Exhibit 3-19 Case 3 Sulfur Balance

Sulfur	In	Sulfur Out					
kg/hr (lb	/hr)	kg/hr (lb/hr)					
Coal	5,647 (12,451)	Gypsum	5,612 (12,371)				
		CO ₂ Product	36 (79)				
		Convergence Tolerance*	0 (0)				
Total	5,647 (12,451)	Total	5,647 (12,451)				

*by difference

Exhibit 3-20 Case 3 Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m ³ /min (gpm)	m ³ /min (gpm)	m³/min (gpm)	m ³ /min (gpm)
FGD Makeup	1.31 (346)	0.0 (0)	1.31 (346)	0.00 (0)	1.31 (346)
BFW Makeup	0.23 (61)	0.0 (0)	0.23 (61)	0.00 (0)	0.23 (61)
Cooling Tower	31.1 (8,227)	2.29 (605)	28.1 (7,415)	7.00 (1850)	21.07 (5565)
Total	32.7 (8,633)	2.29 (605)	29.6 (7,822)	7.00 (1,850)	22.61 (5,972)

Plant Outp	ut	
Steam Turbine Power	765,900	kW _e
Gross Power	765,900	kWe
Auxiliary Lo	ad	
Coal Handling and Conveying	480	kW _e
Limestone Handling & Reagent Preparation	1,090	kW _e
Pulverizers	3,380	kW _e
Ash Handling	650	kWe
Primary Air Fans	910	kWe
Forced Draft Fans	1,150	kWe
Induced Draft Fans	6,380	kW _e
Air Separation Unit Main Air Compressor	113,350	kW _e
ASU Auxiliaries	1,000	kW _e
Baghouse	80	kW _e
FGD Pumps and Agitators	3,650	kWe
CO ₂ Compression	65,070	kWe
Condensate Pumps	960	kW _e
Boiler Feedwater Booster Pumps ²	N/A	kW _e
Miscellaneous Balance of Plant ³	2,000	kW _e
Steam Turbine Auxiliaries	400	kW _e
Circulating Water Pumps	7,990	kWe
Cooling Tower Fans	4,670	kWe
Transformer Losses	2,880	kWe
Total	216,090	kW _e
Plant Perform	ance	
Net Auxiliary Load	216,090	kW _e
Net Plant Power	549,810	kWe
Net Plant Efficiency (HHV)	32.4%	
Net Plant Heat Rate (HHV)	11,120 (10,540)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	225,320 (496,745)	kg/hr (lb/hr)
Thermal Input ¹	1,698,356	kW _{th}
Condenser Duty	2,648 (2,510)	GJ/hr (MMBtu/hr)
Raw Water Usage	29.6 (7,822)	m ³ /min (gpm)
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)
2 - Boiler feed pumps are turbine driven		

Exhibit 3-21 Case 3 Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

		Department:	NETL Office of	Program Plann	ing and Ana	lysis							Cost Base:	June 2007	
		Project:	Advancing Oxy	combustion Te	chnology								Prepared:	13-Apr-12	
		Case:	Case 3 - Advan	ced Materials f	for USC Con	ditions								x \$1, 000	
		Plant Size:	549.81	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
			Equipment	Material	Lab	or	Bare	Eng'g	CM H.O. &	Proce	ss Cont.	Pro	ect Cont.	TOTAL PL	ANT COST
Acct I	No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM													
	1.1	Coal Receive & Unload	3,712	0	1,695	0	5,407	8.9%	483	0%	0	15.0%	884	6,774	12
	1.2	Coal Stackout & Reclaim	4,797	0	1,087	0	5,884	8.8%	515	0%	0	15.0%	960	7,359	13
	1.3	Coal Conveyors & Yd Crus	4,460	0	1,075	0	5,536	8.8%	485	0%	0	15.0%	903	6,924	13
	1.4	Other Coal Handling	1,167	0	249	0	1,416	8.7%	124	0%	0	15.0%	231	1,770	3
	1.5	Sorbent Receive & Unload	152	0	46	0	198	8.8%	18	0%	0	15.0%	32	248	0
	1.6	Sorbent Stackout & Reclaim	2,463	0	451	0	2,914	8.7%	254	0%	0	15.0%	475	3,644	7
	1.7	Sorbent Conveyors	879	190	216	0	1,284	8.7%	111	0%	0	15.0%	209	1,605	3
	1.8	Other Sorbent Handling	531	124	278	0	934	8.8%	83	0%	0	15.0%	152	1,169	2
	1.9	Coal & Sorbent Hnd.Foundations	0	4,563	5,757	0	10,320	9.3%	965	0%	0	15.0%	1,693	12,977	24
		SUBTOTAL 1	. \$18,161	\$4,878	\$10,855	\$0	\$33,894		\$3,037		\$0		\$5,540	\$42,470	\$77
2		COAL PREP & FEED SYSTEMS		- 1		-									
	2.1	Coal Crushing & Drying	2,139	0	417	0	2,556	8.7%	223	0%	0	15.0%	417	3,196	6
	2.2	Prepared Coal Storage & Feed	5,478	0	1,196	0	6,673	8.7%	584	0%	0	15.0%	1,089	8,346	15
	2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment	4,191	181	871	0	5,243	8.7%	457	0%	0	15.0%	855	6,554	12
	2.6	Sorbent Storage & Feed	505	0	193	0	698	8.9%	62	0%	0	15.0%	114	874	2
	2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation	0	538	451	0	989	9.2%	91	0%	0	15.0%	162	1,242	2
	_	SUBTOTAL 2	. \$12,313	\$718	\$3,128	\$0	\$16,160		\$1,416		\$0		\$2,636	\$20,212	\$37
3		FEEDWATER & MISC. BOP SYSTEMS	10.000		0.457			0.00(0.040	00/		45.004		00.070	
	3.1	Feedwater System	19,989	0	6,457	0	26,446	8.8%	2,316	0%	0	15.0%	4,314	33,076	60
	3.2	Water Makeup & Pretreating	5,115	0	1,647	0	6,762	9.4%	634	0%	0	20.0%	1,479	8,875	16
	3.3	Other Feedwater Subsystems	6,120	0	2,586	0	8,706	8.9%	//6	0%	0	15.0%	1,422	10,904	20
	3.4 2.5	Other Beiler Digst Systems	1,003	0	546	0	1,548	9.3%	144	0%	0	20.0%	338	2,031	4
	3.5		7,498	0	7,402	0	14,900	9.4%	1,398	0%	0	15.0%	2,445	18,742	34
	3.0	Norto Trootmont Equipmont	265	0	331	0	596	9.3%	55	0%	0	20.0%	98	749 5 940	1
	3.1	Miss. Dower Dignt Equipment	2,015	0	1,005	0	4,420	9.7%	420	0%	0	20.0%	970	3,010	
	3.0		\$45,615	0	¢00 ¢01 422	0 \$0	5,009 \$67.047	9.0%	002 \$6 102	0%	0 ¢0	20.0%	004 ¢11 970	4,020 \$95,020	9 ¢155
4	-		. \$45,015	4 0	φ 21,4 32	φU	\$07,047		φ0,103		φU		\$11,070	\$65,020	\$100
-	41	USC PC Boiler	209 417	0	105 169	0	314 586	9.7%	30 471	10%	31 459	10.0%	37 652	414 167	753
	4.2	ASU/Oxidant Compression	108 915	0	89 112	0	198 027	9.7%	19 181	0%	01, - 09 0	10.0%	21 721	238 020	435
	42	Onen	100,913	0	00,112	0	130,027	0%	13,101	0%	0	0.0%		200,929	+55
	4.0	Boiler BoP (w/ID Eans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4 5	Primary Air System	w/4 1	0	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	47	Major Component Rigging	0	w/4 1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14_1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 4	\$318.332	\$0	\$194.281	\$0	\$512.613	070	\$49.652	0,0	\$31,459	0.070	\$59.372	\$653.096	\$1,188

Exhibit 3-22 Case 3 Capital Costs

		Equipment	Material	Lab	oor	Bare	Ena'a	CM H.O. &	Proce	ss Cont.	Pro	iect Cont.	TOTAL PL	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A	FLUE GAS CLEANUP							*						
5.1	Absorber Vessels & Accessories	55,913	0	12,037	0	67,950	9.5%	6,431	0%	0	10.0%	7,438	81,819	149
5.2	Other FGD	2,920	0	3,309	0	6,229	9.6%	600	0%	0	10.0%	683	7,512	14
5.3	Bag House & Accessories	13,899	0	8,821	0	22,720	9.6%	2,173	0%	0	10.0%	2,489	27,383	50
5.4	Other Particulate Removal Materials	918	0	982	0	1,900	9.6%	183	0%	0	10.0%	208	2,292	4
5.5	Gypsum Dewatering System	5,123	0	870	0	5,993	9.4%	566	0%	0	10.0%	656	7,215	13
5.6	Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.7	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 5A.	\$78,773	\$0	\$26,019	\$0	\$104,793	6	\$9,954		\$0		\$11,475	\$126,221	\$230
5B	CO2 REMOVAL & COMPRESSION													
5B.1	CO2 Condensing Heat Exchanger	5,448	0	455	0	5,903	10%	590	0%	0	15.0%	974	7,467	14
5B.2	CO2 Compression & Drying	40,376	0	33,035	0	73,411	10%	7,341	0%	0	20.0%	16,150	96,902	176
5B.3	CO2 Pipeline											0	0	0
5B.4	CO2 Storage											0	0	0
5B.5	CO2 Monitoring											0	0	0
	SUBTOTAL 5B.	\$45,824	\$0	\$33,490	\$0	\$79,313		\$7,931		\$0		\$17,124	\$104,369	\$190
6	NITROGEN EXPANDER/GENERATOR													
6.1	Nitrogen Expander/Generator	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.2	Nitrogen Expander/Generator Accessories	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.3	Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0)	\$0		\$0		\$0	\$0	\$0
7	HRSG, DUCTING & STACK						•							
7.1	Flue Gas Recycle Heat Exchanger	1,289	0	108	0	1,397	10%	140	0%	0	15.0%	231	1,767	3
7.2	SCR System	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
7.3	Ductwork	8,991	0	5,777	0	14,768	8.7%	1,290	0%	0	15.0%	2,409	18,467	34
7.4	Stack	1,517	0	887	0	2,404	9.6%	230	0%	0	10.0%	263	2,897	5
7.9	HRSG, Duct & Stack Foundations	0	849	965	0	1,814	9.3%	169	0%	0	20.0%	397	2,380	4
	SUBTOTAL 7.	\$11,797	\$849	\$7,737	\$0	\$20,383	i	\$1,828		\$0		\$3,299	\$25,511	\$46
8	STEAM TURBINE GENERATOR													
8.1	Steam TG & Accessories	61,131	0	8,112	0	69,244	9.6%	6,630	15%	10,387	10.0%	8,626	94,886	173
8.2	Turbine Plant Auxiliaries	412	0	882	0	1,294	9.7%	126	0%	0	10.0%	142	1,561	3
8.3	Condenser & Auxiliaries	6,480	0	2,388	0	8,868	9.5%	843	0%	0	10.0%	971	10,682	19
8.4	Steam Piping	18,737	0	9,238	0	27,975	8.3%	2,335	0%	0	15.0%	4,546	34,856	63
8.9	TG Foundations	0	1,289	2,036	0	3,326	9.4%	313	0%	0	20.0%	728	4,366	8
	SUBTOTAL 8.	\$86,759	\$1,289	\$22,658	\$0	\$110,706	i	\$10,246		\$10,387		\$15,013	\$146,352	\$266
9	COOLING WATER SYSTEM													
9.1	Cooling Towers	11,882	0	3,700	0	15,582	9.5%	1,479	0%	0	10.0%	1,706	18,767	34
9.2	Circulating Water Pumps	2,059	0	158	0	2,218	8.6%	190	0%	0	10.0%	241	2,648	5
9.3	Circ. Water System Auxiliaries	562	0	75	0	637	9.4%	60	0%	0	10.0%	70	766	1
9.4	Circ. Water Piping	0	4,454	4,316	0	8,770	9.2%	808	0%	0	15.0%	1,437	11,015	20
9.5	Make-up Water System	492	0	657	0	1,150	9.5%	109	0%	0	15.0%	189	1,447	3
9.6	Component Cooling Water System	445	0	354	0	799	9.4%	75	0%	0	15.0%	131	1,005	2
9.9	Circ. Water System Foundations	0	2,708	4,303	0	7,011	9.4%	660	0%	0	20.0%	1,534	9,204	17
	SUBTOTAL 9.	\$15,440	\$7,162	\$13,564	\$0	\$36,165		\$3,381		\$0		\$5,307	\$44,853	\$82

Exhibit 3-22 Case 3 Capital Costs (continued)

[Equipment	Material	Lab	or	Bare	Ena'a	CM H.O. &	Proce	ss Cont.	Proi	ect Cont.	TOTAL PL	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
10	ASH/SPENT SORBENT HANDLING SYS												· · · · ·	
10.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.2	Cvclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.3	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.4	High Temperature Ash Piping	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.5	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.6	Ash Storage Silos	642	0	1.979	0	2.622	9.7%	255	0%	0	10.0%	288	3,165	6
10.7	Ash Transport & Feed Equipment	4 159	0	4 260	0	8 418	9.5%	796	0%	0	10.0%	921	10 136	18
10.8	Misc. Ash Handling Equipment	0	0	.,200	0	0,110	0.0%	0	0%	0	0.0%	0	0	.0
10.0	Ash/Spent Sorbent Foundation	0	153	180	0	332	9.3%	31	0%	0	20.0%	73	436	1
10.0	SUBTOTAL 10.	\$4,801	\$153	\$6,419	\$0	\$11.373	0.070	\$1.082	070	\$0	20.070	\$1,282	\$13,737	\$25
11	ACCESSORY ELECTRIC PLANT	\$ 4,001	\$100	4 0,410	ψŪ	<i></i>		\$1,002		ΨŬ		<i><i>ψ</i></i> 1,202	\$10,101	\$20
11 1	Generator Equipment	1 830	0	207	0	2 127	0.3%	197	0%	0	7.5%	174	2 498	5
11 3	Station Service Equipment	6.452	0	2 120	0	8 572	9.6%	820	0%	0	7.5%	704	10,096	18
11.2	Switchgear & Motor Control	7 /18	0	1 261	0	8 670	0.3%	803	0%	0	10.0%	0/8	10,030	10
11.0	Conduit & Cable Tray	1,410	4 651	16.081	0	20 731	0.6%	1 08/	0%	0	15.0%	3 407	26 123	/19
11.4	Wire & Cable	0	8 776	16 941	0	20,731	9.0%	2 167	0%	0	15.0%	3,407	20,123	40
11.0		261	0,770	10,341	0	23,710	0.470	2,107	0%	0	10.0%	4,102	1 200	30
11.0	Stondby Equipment	1 400	0	000	0	1,149	9.0 /0	112	0%	0	10.0%	120	1,300	3 0
11.7	Main Dowar Transformara	1,420	0	33 129	0	1,400	9.5%	130	0%	0	10.0%	100	1,750	ى 10
11.0		0,200	0	130	0	0,340	7.0%	634	0%	0	10.0%	090	9,079	10
11.8		0	307	899	0	1,200	9.5%	120	0%	0	20.0%	277	1,664	3
40	SUBIDIAL 11.	\$25,595	\$13,793	\$38,658	\$0	\$78,046		\$6,976		\$ 0		\$10,878	\$95,900	\$174
12	INSTRUMENTATION & CONTROL		0	40.7			00/		004	0	0.00/	0	0	-
12.1		W/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.2		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
12.3	Steam Turbine Control	w/8.1	0	w/8.1	0	0	0%	0	0%	0	0.0%	0	0	0
12.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
12.5	Signal Processing Equipment	W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.6	Control Boards, Panels & Racks	558	0	334	0	892	9.6%	86	0%	0	15.0%	147	1,124	2
12.7	Computer Accessories	5,629	0	984	0	6,613	9.5%	630	0%	0	10.0%	724	7,967	14
12.8	Instrument Wiring & Tubing	3,052	0	6,054	0	9,107	8.5%	776	0%	0	15.0%	1,482	11,365	21
12.9	Other I & C Equipment	1,591	0	3,610	0	5,200	9.7%	506	0%	0	10.0%	571	6,277	11
	SUBTOTAL 12.	\$10,830	\$0	\$10,982	\$0	\$21,812		\$1,998		\$0		\$2,924	\$26,733	\$49
13	IMPROVEMENTS TO SITE													
13.1	Site Preparation	0	55	1,101	0	1,156	9.9%	114	0%	0	20.0%	254	1,524	3
13.2	2 Site Improvements	0	1,827	2,269	0	4,097	9.8%	402	0%	0	20.0%	900	5,399	10
13.3	3 Site Facilities	3,275	0	3,229	0	6,504	9.8%	638	0%	0	20.0%	1,428	8,571	16
	SUBTOTAL 13.	\$3,275	\$1,882	\$6,600	\$0	\$11,757		\$1,155		\$0		\$2,582	\$15,493	\$28
14	BUILDINGS & STRUCTURES													
14.1	Boiler Building	0	8,820	7,757	0	16,577	9.0%	1,489	0%	0	15.0%	2,710	20,775	38
14.2	2 Turbine Building	0	12,737	11,871	0	24,609	9.0%	2,216	0%	0	15.0%	4,024	30,848	56
14.3	Administration Building	0	639	675	0	1,314	9.1%	119	0%	0	15.0%	215	1,648	3
14.4	Circulation Water Pumphouse	0	129	102	0	231	8.9%	21	0%	0	15.0%	38	289	1
14.5	Water Treatment Buildings	0	663	605	0	1,268	9.0%	114	0%	0	15.0%	207	1,589	3
14.6	Machine Shop	0	427	287	0	714	8.9%	63	0%	0	15.0%	117	894	2
14.7	Warehouse	0	290	290	0	580	9.0%	52	0%	0	15.0%	95	727	1
14.8	Other Buildings & Structures	0	237	201	0	438	9.0%	39	0%	0	15.0%	72	549	1
14.9	Waste Treating Building & Str.	0	442	1,342	0	1.784	9.4%	169	0%	0	15.0%	293	2,246	4
	SUBTOTAL 14.	\$0	\$24,384	\$23,131	\$0	\$47,515		\$4.281	2.5	\$0		\$7,769	\$59,566	\$108
	Total Cost	\$677.516	\$55,108	\$418,952	\$0	\$1.151.577		\$109.039		\$41.845		\$157.073	\$1,459,534	\$2.655

Exhibit 3-22 Case 3 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,579	\$17
1 Month Maintenance Materials	\$1,442	\$3
1 Month Non-fuel Consumables	\$724	\$1
1 Month Waste Disposal	\$285	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,731	\$3
2% of TPC	\$29,191	\$53
Total	\$42,952	\$78
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$14,924	\$27
0.5% of TPC (spare parts)	\$7,298	\$13
Total	\$22,221	\$40
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$218,930	\$398
Financing Costs	\$39,407	\$72
Total Overnight Costs (TOC)	\$1,783,944	\$3,245
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$2,022,993	\$3,679

Exhibit 3-23 Case 3 Owner's Costs

		INITIAL	& ANNUAL	O&M EXPE	ENSES		
Case:	Case 3 - Advanced	Materials fo	r USC Condit	tions			
Plant Size	(MWe):	549.81			Heat Rate (B	tu/kWh):	10,540
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Co	al	Fuel Cost (\$/I	MM Btu):	1.64
Design/Con	struction	5 years			Book Life (yr	s):	30
TPC (Plant	Cost) Year:	June 2007			TPI Year:		2012
Capacity Fa	actor (%):	85			CO2 Captured	I (TPD):	14,129
OPERATING	<u>s & MAINTENANCE</u>	<u>= LABOR</u>					
Operating L	Labor Pote (base):		¢24.65	¢/hour			
Operating	Labor Rurdon:			φ/ποui ⁰/ of boco			
	rboad Charge:		25.00	% of labor			
Labor Ove	meau Charge.		25.00	76 01 14001			
Operating	Labor Requirement	s ner Shift	units/mod		Total Plant		
opolating	Skilled Operator		2.0		2.0		
	Operator		9.0		9.0		
	Foreman		1.0		1.0		
	Lab Tech's etc.		2.0		2.0		
	TOTAL Operating	Jobs	14.0		14.0		
						\$	\$/kW-net
Annual Op	perating Labor Cost	(calc'd)				5,524,319	10.05
Maintenan	ice Labor Cost (cald	:'d)				9,802,680	17.83
Administra	ative & Support Lab	or (calc'd)				3,831,750	6.97
Property T	axes and Insurance	9				29,190,671	53.09
TOTAL FI	XED OPERATING	COSTS				48,349,420	87.94
VARIABLE	OPERATING COST	<u>'S</u>					
						\$	\$/kWh-net
Maintenan	ice Material Costs (calc'd)				\$14,704,135	0.00359
		•					
A							
<u>Consuma</u>	<u>bles</u>	Consu	mption (Dev	Unit	Initial	¢	¢/l/Mh not
Consuma	bles	Consul Initial	/Day	Unit Cost	Initial Cost	\$ \$1,880,088	\$/kWh-net
Water (/10	bles 000 gallons)	Consul Initial	mption /Day <u>5,632</u>	Unit Cost 1.08	Initial Cost \$0	\$ \$1,889,988	\$/kWh-net 0.00046
Water (/10 Chemicals	bles 000 gallons) 5 T Chem. (lb)	Consul Initial	mption /Day 5,632	Unit Cost 1.08	Initial Cost \$0	\$ \$1,889,988	\$/kWh-net
Consuma Water (/10 Chemicals MU & W	bles 000 gallons) s T Chem. (lb) ne (ton)	Consul Initial 0	mption /Day 5,632 27,262 600	0.17 21.63	Initial Cost \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978	\$/kWh-net 0.00046 0.00036 0.00098
Consuma Water (/10 Chemicals MU & W Limestor	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb)	Consul Initial 0 0 0	mption /Day 5,632 27,262 600 0	Unit Cost 1.08 0.17 21.63 1.05	Initial <u>Cost</u> \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton)	Consul Initial 0 0 0 0 0	mption /Day 5,632 27,262 600 0	0.17 0.17 21.63 1.05 2249.89	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton)	Consul Initial 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	bles 000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior	bles bles blog	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t	bles bles blog comparison of the second blog blog blog comparison blog comparison comparison blog comparison comp	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limeston (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Ma Flyash (t Bottom A	bles bles blog gallons) T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Ma Flyash (t Bottom A	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A By-produc Gypsum	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Hyent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) mail (lb) Subtotal Solid W	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000071 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A By-produc Gypsum Sulfur (to	bles bles blog gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Hg Removal) (lb) Nent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) ons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A By-produc Gypsum Sulfur (to	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) ons) Subtotal By-Prod	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W' Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A By-produc Gypsum Sulfur (to	bles 000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement h Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) Subtotal By-Prod	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.000000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Ma Flyash (t Bottom A By-produc Gypsum Sulfur (to Caustic S Consol Fuel By-produc	bles bles blog gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Hg Removal) (lb) Nent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement h Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) Subtotal By-Prod RIABLE OPERATIN (fons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,632 27,262 600 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,889,988 \$1,463,801 \$4,029,978 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00046 0.00036 0.00098 0.000000 0.000000 0.000000 0.000000 0.00000000

Exhibit 3-24 Case 3 O&M Costs

Exhibit 3-25 Equipment List for Current Technology Case and Case 3

ACCOUNT 1

FUEL AND SORBENT HANDLING

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	181 tonne (200 ton)	181 tonne (200 ton)	2 (0)
2	Feeder	Belt	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)	2 (0)
3	Conveyor No. 1	Belt	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
4	Transfer Tower No. 1	Enclosed	N/A	N/A	1 (0)
5	Conveyor No. 2	Belt	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
6	As-Received Coal Sampling System	Two-stage	N/A	N/A	1 (0)
7	Stacker/Reclaimer	Traveling, linear	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
8	Reclaim Hopper	N/A	54 tonne (60 ton)	45 tonne (50 ton)	2 (1)
9	Feeder	Vibratory	209 tonne/hr (230 tph)	181 tonne/hr (200 tph)	2 (1)
10	Conveyor No. 3	Belt w/ tripper	408 tonne/hr (450 tph)	372 tonne/hr (410 tph)	1 (0)
11	Crusher Tower	N/A	N/A	N/A	1 (0)
12	Coal Surge Bin w/ Vent Filter	Dual outlet	209 tonne (230 ton)	181 tonne (200 ton)	2 (0)
13	Crusher	Impactor reduction	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	2 (0)
14	As-Fired Coal Sampling System	Swing hammer	N/A	N/A	1 (1)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
15	Conveyor No. 4	Belt w/tripper	408 tonne/hr (450 tph)	372 tonne/hr (410 tph)	1 (0)
16	Transfer Tower No. 2	Enclosed	N/A	N/A	1 (0)
17	Conveyor No. 5	Belt w/ tripper	408 tonne/hr (450 tph)	372 tonne/hr (410 tph)	1 (0)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	907 tonne (1,000 ton)	816 tonne (900 ton)	3 (0)
19	Limestone Truck Unloading Hopper	N/A	36 tonne (40 ton)	36 tonne (40 ton)	1 (0)
20	Limestone Feeder	Belt	109 tonne/hr (120 tph)	100 tonne/hr (110 tph)	1 (0)
21	Limestone Conveyor No. L1	Belt	109 tonne/hr (120 tph)	100 tonne/hr (110 tph)	1 (0)
22	Limestone Reclaim Hopper	N/A	18 tonne (20 ton)	18 tonne (20 ton)	1 (0)
23	Limestone Reclaim Feeder	Belt	82 tonne/hr (90 tph)	73 tonne/hr (80 tph)	1 (0)
24	Limestone Conveyor No. L2	Belt	82 tonne/hr (90 tph)	73 tonne/hr (80 tph)	1 (0)
25	Limestone Day Bin	w/ actuator	336 tonne (370 ton)	299 tonne (330 ton)	2 (0)

ACCOUNT 2

COAL AND SORBENT PREPARATION AND FEED

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Coal Feeder	Gravimetric	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	6 (0)
2	Coal Pulverizer	Ball type or equivalent	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	6 (0)
3	Limestone Weigh Feeder	Gravimetric	28 tonne/hr (31 tph)	25 tonne/hr (28 tph)	1 (1)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
4	Limestone Ball Mill	Rotary	28 tonne/hr (31 tph)	25 tonne/hr (28 tph)	1 (1)
5	Limestone Mill Slurry Tank with Agitator	N/A	105,992 liters (28,000 gal)	98,421 liters (26,000 gal)	1 (1)
6	Limestone Mill Recycle Pumps	Horizontal centrifugal	1,779 lpm @ 12m H ₂ O (470 gpm @ 40 ft H ₂ O)	1,628 lpm @ 12m H ₂ O (430 gpm @ 40 ft H ₂ O)	1 (1)
7	Hydroclone Classifier	4 active cyclones in a 5 cyclone bank	454 lpm (120 gpm) per cyclone	416 lpm (110 gpm) per cyclone	1 (1)
8	Distribution Box	2-way	N/A	N/A	1 (1)
9	Limestone Slurry Storage Tank with Agitator	Field erected	598,095 liters (158,000 gal)	541,314 liters (143,000 gal)	1 (1)
10	Limestone Slurry Feed Pumps	Horizontal centrifugal	1,249 lpm @ 9m H ₂ O (330 gpm @ 30 ft H ₂ O)	1,136 lpm @ 9m H ₂ O (300 gpm @ 30 ft H ₂ O)	1 (1)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Current Technology Case Design Condition	Operating Qty. (Spares)	Case 3 Design Condition	Operating Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	1,464,954 liters (387,000 gal)	2 (0)	916,070 liters (242,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	31,040 lpm @ 213 m H ₂ O (8,200 gpm @ 700 ft H ₂ O)	1 (1)	22,334 lpm @ 91 m H ₂ O (5,900 gpm @ 300 ft H ₂ O)	1 (1)
3	Deaerators and Storage Tank	Horizontal spray type	2,438,059 kg/hr (5,375,000 lb/hr), 5 min. tank	2 (0)	3,675,005 kg/hr (8,102,000 lb/hr), 5 min. tank	1 (0)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Operating Qty. (Spares)	Case 3 Design Condition	Operating Qty. (Spares)
4	Boiler Feed Pump/Turbine	Barrel type, multi- stage, centrifugal	40,882 lpm @ 3,444 m H ₂ O (10,800 gpm @ 11,300 ft H ₂ O)	1 (1)	25,362 lpm @ 122 m H ₂ O (6,700 gpm @ 400 ft H ₂ O)	1 (1)
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi- stage, centrifugal	12,113 lpm @ 3,444 m H ₂ O (3,200 gpm @ 11,300 ft H ₂ O)	1 (0)	7,571 lpm @ 122 m H ₂ O (2,000 gpm @ 400 ft H ₂ O)	1 (0)
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	920,793 kg/hr (2,030,000 lb/hr)	2 (0)	662,245 kg/hr (1,460,000 lb/hr)	2 (0)
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	920,793 kg/hr (2,030,000 lb/hr)	2 (0)	662,245 kg/hr (1,460,000 lb/hr)	2 (0)
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	920,793 kg/hr (2,030,000 lb/hr)	2 (0)	662,245 kg/hr (1,460,000 lb/hr)	2 (0)
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	920,793 kg/hr (2,030,000 lb/hr)	2 (0)	662,245 kg/hr (1,460,000 lb/hr)	2 (0)
10	HP Feedwater Heater 6	Horizontal U-tube	2,435,791 kg/hr (5,370,000 lb/hr)	1 (0)	1,524,070 kg/hr (3,360,000 lb/hr)	1 (0)
11	HP Feedwater Heater 7	Horizontal U-tube	2,435,791 kg/hr (5,370,000 lb/hr)	1 (0)	1,524,070 kg/hr (3,360,000 lb/hr)	1 (0)
12	HP Feedwater heater 8	Horizontal U-tube	2,435,791 kg/hr (5,370,000 lb/hr)	1 (0)	1,524,070 kg/hr (3,360,000 lb/hr)	1 (0)
13	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1 (0)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1 (0)
14	Fuel Oil System	No. 2 fuel oil for light off	1,135,624 liter (300,000 gal)	1 (0)	1,135,624 liter (300,000 gal)	1 (0)
15	Service Air Compressors	Flooded Screw	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2 (1)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2 (1)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Operating Qty. (Spares)	Case 3 Design Condition	Operating Qty. (Spares)
16	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1,000 scfm)	2 (1)	28 m ³ /min (1,000 scfm)	2 (1)
17	Closed Cycle Cooling Heat Exchangers	Shell and tube	53 GJ/hr (50 MMBtu/hr) each	2 (0)	53 GJ/hr (50 MMBtu/hr) each	2 (0)
18	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	2 (1)	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	2 (1)
19	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1 (1)	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1 (1)
20	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	1 (1)	$\begin{array}{c} 2,650 \ \text{lpm} @ \ 64 \ \text{m} \ \text{H}_2\text{O} \\ \text{gpm} @ \ 210 \ \text{ft} \ \text{H}_2\text{O} \end{array} (700$	1 (1)
21	Raw Water Pumps	Stainless steel, single suction	20,176 lpm @ 43 m H ₂ O (5,330 gpm @ 140 ft H ₂ O)	2 (1)	17,526 lpm @ 43 m H ₂ O (4,630 gpm @ 140 ft H ₂ O)	2 (1)
22	Filtered Water Pumps	Stainless steel, single suction	757 lpm @ 49 m H ₂ O (200 gpm @ 160 ft H ₂ O)	2 (1)	530 lpm @ 49 m H ₂ O (140 gpm @ 160 ft H ₂ O)	2 (1)
23	Filtered Water Tank	Vertical, cylindrical	719,228 liter (190,000 gal)	1 (0)	518,601 liter (137,000 gal)	1 (0)
24	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionization unit	984 lpm (260 gpm)	1 (1)	644 lpm (170 gpm)	1 (1)
25	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)	10 years, 24-hour storm	1 (0)

110000111					
Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Boiler	Supercritical, drum, wall-fired, low NOx burners, overfire air	2,440,327 kg/hr steam @ 25.5 MPa/607°C/629°C (5,380,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	2,154,564 kg/hr steam @ 29.0 MPa/741°C/768°C (4,750,000 lb/hr steam @ 4,200 psig/1,365°F/1,415°F)	1 (0)
2	Primary Air Fan	Centrifugal	206,385 kg/hr, 2,475 m ³ /min @ 47 cm WG (455,000 lb/hr, 87,400 acfm @ 19 in. WG)	185,519 kg/hr, 2,229 m ³ /min @ 47 cm WG (409,000 lb/hr, 78,700 acfm @ 19 in. WG)	2 (0)
3	Forced Draft Fan	Centrifugal	671,317 kg/hr, 8,062 m ³ /min @ 123 cm WG (1,480,000 lb/hr, 284,700 acfm @ 48 in. WG)	604,185 kg/hr, 7,255 m ³ /min @ 123 cm WG (1,332,000 lb/hr, 256,200 acfm @ 48 in. WG)	2 (0)
4	Induced Draft Fan	Centrifugal	1,319,047 kg/hr, 22,628 m ³ /min @ 95 cm WG (2,908,000 lb/hr, 799,100 acfm @ 37 in. WG)	1,187,958 kg/hr, 20,388 m ³ /min @ 95 cm WG (2,619,000 lb/hr, 720,000 acfm @ 37 in. WG)	2 (0)
5	ASU Main Air Compressor	Centrifugal, multi- stage	17,075 m ³ /min @ 0.6 MPa (603,000 scfm @ 086 psia)	15,404 m ³ /min @ 0.6 MPa (544,000 scfm @ 086 psia)	2 (0)
6	Cold Box	Vendor design	7,167 tonne/day (7,900 tpd) of 95% purity oxygen	6,441 tonne/day (7,100 tpd) of 95% purity oxygen	2 (0)

ACCOUNT 4 BOILER AND ACCESSORIES

ACCOUN	NT 5 FLUE GAS	5 CLEANUP			
Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Fabric Filter	Single stage, high- ratio with pulse-jet online cleaning system	1,319,047 kg/hr (2,908,000 lb/hr) 99.8% efficiency	1,187,958 kg/hr (2,619,000 lb/hr) 99.8% efficiency	2 (0)
2	Absorber Module	Counter-current open spray	44,627 m ³ /min (1,576,000 acfm)	40,210 m ³ /min (1,420,000 acfm)	1 (0)
3	Recirculation Pumps	Horizontal centrifugal	155,202 lpm @ 64 m H ₂ O (41,000 gpm @ 210 ft H ₂ O)	140,060 lpm @ 64 m H ₂ O (37,000 gpm @ 210 ft H ₂ O)	5 (1)
4	Bleed Pumps	Horizontal centrifugal	5,451 lpm (1,440 gpm) at 20 wt% solids	4,921 lpm (1,300 gpm) at 20 wt% solids	2 (1)
5	Oxidation Air Blowers	Centrifugal	21 m ³ /min @ 0.3 MPa (750 acfm @ 42 psia)	19 m ³ /min @ 0.3 MPa (680 acfm @ 42 psia)	2 (1)
6	Agitators	Side entering	50 hp	50 hp	5 (1)
7	Dewatering Cyclones	Radial assembly, 5 units each	1,363 lpm (360 gpm) per cyclone	1,249 lpm (330 gpm) per cyclone	2 (0)
8	Vacuum Filter Belt	Horizontal belt	44 tonne/hr (48 tph) of 50 wt % slurry	39 tonne/hr (43 tph) of 50 wt % slurry	2 (1)
9	Filtrate Water Return Pumps	Horizontal centrifugal	833 lpm @ 12 m H ₂ O (220 gpm @ 40 ft H ₂ O)	757 lpm @ 12 m H ₂ O (200 gpm @ 40 ft H ₂ O)	1 (1)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
10	Filtrate Water Return Storage Tank	Vertical, lined	529,958 lpm (140,000 gal)	492,104 lpm (130,000 gal)	1 (0)
11	Process Makeup Water Pumps	Horizontal centrifugal	530 lpm @ 21 m H ₂ O (140 gpm @ 70 ft H ₂ O)	454 lpm @ 21 m H ₂ O (120 gpm @ 70 ft H ₂ O)	1 (1)

ACCOUNT 5B CARBON DIOXIDE RECOVERY

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	CO ₂ Compressor	Centrifugal	325,792 kg/h @ 15.3 MPa (718,248 lb/h @ 2,215 psia)	293,737 kg/h @ 15.3 MPa (647,579 lb/h @ 2,215 psia)	2 (0)

ACCOUNT 7 HRSG, DUCTING & STACK

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Stack	Reinforced concrete with FRP liner	46 m (150 ft) high x 3.6 m (12 ft) diameter	46 m (150 ft) high x 3.4 m (11 ft) diameter	1 (0)

ACCOUNT 8

STEAM TURBINE GENERATOR AND AUXILIARIES

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Conditions	Operating Qty. (Spares)
1	Steam Turbine	Commercially available advanced steam turbine	832 MW 24.1 MPa/599°C/621°C (3500 psig/ 1110°F/1150°F)	806 MW 27.6 MPa/732°C/760°C (4000 psig/ 1350°F/1400°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	920 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	900 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	3,387 GJ/hr (3,210 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	2,912 GJ/hr (2,760 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

ACCOUNT 9 CC

COOLING WATER SYSTEM

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	919,900 lpm @ 30 m (243,000 gpm @ 100 ft)	802,500 lpm @ 30 m (212,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 5,128 GJ/hr (4,860 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 4,473 GJ/hr (4,240 MMBtu/hr) heat duty	1 (0)

Equipment No.	Description Type		Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	Economizer Hopper (part of boiler scope of supply)	-			4 (0)
2	Bottom Ash Hopper (part of boiler scope of supply)				2 (0)
3	Clinker Grinder		5.4 tonne/hr (6 tph)	4.5 tonne/hr (5 tph)	1 (1)
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)	-			6 (0)
5	Hydroejectors				12 (1)
6	Economizer /Pyrites Transfer Tank				1 (0)
7	Ash Sluice Pumps	Vertical, wet pit	227 lpm @ 17 m H ₂ O (60 gpm @ 56 ft H ₂ O)	189 lpm @ 17 m H ₂ O (50 gpm @ 56 ft H ₂ O)	1 (1)
8	Ash Seal Water Pumps	Vertical, wet pit	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	1 (1)
9	Hydrobins		227 lpm (60 gpm)	189 lpm (50 gpm)	1 (1)
10	Baghouse Hopper (part of baghouse scope of supply)				24 (0)

ACCOUNT 10 ASH/SPENT SORBENT RECOVERY AND HANDLING

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
11	Air Heater Hopper (part of boiler scope of supply)				10 (0)
12	Air Blower		20 m ³ /min @ 0.2 MPa (690 scfm @ 24 psi)	18 m ³ /min @ 0.2 MPa (620 scfm @ 24 psi)	1 (1)
13	Fly Ash Silo	Reinforced concrete	635 tonne (1,400 ton)	590 tonne (1,300 ton)	2 (0)
14	Slide Gate Valves				2 (0)
15	Unloader				1 (0)
16	Telescoping Unloading Chute		118 tonne/hr (130 tph)	109 tonne/hr (120 tph)	1 (0)

ACCOUNT 11 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	STG Transformer	Oil-filled	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	1 (0)
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 264 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 237 MVA, 3-ph, 60 Hz	1 (1)
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 40 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 36 MVA, 3-ph, 60 Hz	1 (1)
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz	1 (0)
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz	1 (1)

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz	1 (1)
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

ACCOUNT 12 INSTRUME

INSTRUMENTATION AND CONTROL

Equipment No.	Description	Туре	Current Technology Case Design Condition	Case 3 Design Condition	Operating Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	nd engineering rs Operator stations/printers and engineering stations/printers	
2	DCS - Processor	Microprocessor with redundant input/output	N/A	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	Fully redundant, 25% spare	1 (0)

3.3 CASES 1 - ADVANCED OXYGEN SEPARATION/MEMBRANE TECHNOLOGY

Advanced membrane air separation technology shows promise due to its high temperature and high pressure operation, which allows for a relatively high amount of heat and power recovery. Membrane system integration, performance enhancements, and capital cost reduction should be the main areas of focus based on the results of this study.

Two different system integration approaches are explored in this study. Results are presented below. Refer to Section 2.5.2.1 for more details on this technology.

3.3.1 Case 1 – Advanced Membrane Oxycombustion Process with PC Boiler Integration

This case includes a SC PC oxycombustion plant with a wet FGD unit. This plant employs an advanced membrane to produce nearly 100 vol% purity O_2 for combustion. The high temperatures are generated through integration of the membrane feed stream with the PC boiler system. Optimizing the integration of the advanced membrane oxygen plant with low cost process heat to achieve ionization temperatures is anticipated to increase efficiency and therefore drive down the cost of the oxy-fired power generation. Due to the high temperatures generated in the membrane separation process, the oxidant cooling scheme is integrated with both the high-and low-pressure boiler feed water heating system. This reduces the amount of steam extracted from the steam cycle for boiler feed water heating, which can increase the power output of the steam cycle.

For Case 1, the air stream exiting the main air compressor at 391° C (735° F) is further heated to 802° C ($1,475^{\circ}$ F) by integrating the membrane feed stream with the boiler system. The pure oxygen product is recovered at 802° C ($1,475^{\circ}$ F) and 0.17 MPa (25 psia). Approximately 70 percent of the incoming oxygen can be recovered in the process for the given configuration.

To heat the membrane inlet stream to 802°C (1,475°F), approximately 24 percent of the total heat input to the boiler is required. The recovered oxygen and the off-gas stream, composed of vitiated air, are integrated with the boiler feedwater system to recover heat. The vitiated air stream at 1.34 MPa (195 psia) is expanded through a turbine to 0.10 MPa (15 psia) and recovers approximately 345 MW of power.

The oxidant stream supplements the steam superheating system and the high and low pressure feedwater system. The vitiated air stream exits the expansion turbine at $329^{\circ}C$ ($625^{\circ}F$) and this stream is subsequently cooled in the recuperator that supplements the low and high pressure boiler feedwater systems.

Block Flow Diagram and Stream Table

BFD and stream tables for Case 1 are displayed in Exhibit 3-26 and Exhibit 3-27.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-28 and Exhibit 3-29:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-30. The power out is the steam turbine power after generator losses.

Carbon, sulfur and water balances are shown in Exhibit 3-31 through Exhibit 3-33.

Performance Summary

A performance summary is provided in Exhibit 3-34.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-35 through Exhibit 3-37, respectively.

Equipment List

The combined equipment list for Case 1 and Case 1a is shown in Exhibit 3-50.

Exhibit 3-26 Process Block Flow Diagram for Case 1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
V-L Mole Fraction																			
Ar	0.0092	0.0092	0.0092	0.0107	0.0107	0.0107	0.0000	0.0000	0.0000	0.0000	0.0011	0.0011	0.0008	0.0008	0.0000	0.0092	0.0000	0.0010	0.0000
CO ₂	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0000	0.0000	0.0000	0.0000	0.7311	0.7311	0.5315	0.5315	0.0000	0.0005	0.0000	0.6800	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0101	0.0118	0.0118	0.0118	0.0000	0.0000	0.0000	0.0000	0.1515	0.1515	0.1101	0.1101	0.0000	0.0101	0.0000	0.2092	1.0000
N ₂	0.7729	0.7729	0.7729	0.9041	0.9041	0.9041	0.0000	0.0000	0.0000	0.0000	0.0982	0.0982	0.0714	0.0714	0.0000	0.7729	0.0000	0.0918	0.0000
O ₂	0.2074	0.2074	0.2074	0.0728	0.0728	0.0728	1.0000	1.0000	1.0000	1.0000	0.0181	0.0181	0.2861	0.2861	0.0000	0.2074	0.0000	0.0149	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0031	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	98,131	98,131	98,131	83,884	83,884	83,884	14,247	14,247	3,300	10,744	8,790	28,615	12,091	39,359	0	1,963	0	57,927	90,182
V-L Flowrate (kg/hr)	2,831,675	2,831,674	2,831,674	2,375,775	2,375,775	2,375,775	455,900	455,900	105,610	343,793	336,500	1,095,414	442,109	1,439,207	0	56,633	0	2,142,317	1,624,654
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	226,371	0	4,401	17,602	0
Temperature (°C)	15	391	802	802	330	66	802	66	66	66	75	69	73	68	15	15	15	177	599
Pressure (MPa, abs)	0.10	1.48	1.48	1.34	0.10	0.10	0.17	0.12	0.12	0.12	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	24.23
Enthalpy (kJ/kg) ^A	30.57	419.33	880.54	893.11	362.11	85.95	814.14	59.93	59.93	59.93	248.36	242.74	203.35	199.07		30.57		503.89	3,493.92
Density (kg/m ³)	1.2	7.7	4.8	4.2	0.6	1.0	0.6	1.4	1.4	1.4	1.5	1.4	1.4	1.4		1.2		1.0	68.5
V-L Molecular Weight	28.856	28.856	28.856	28.322	28.322	28.322	31.999	31.999	31.999	31.999	38.282	38.282	36.567	36.567		28.856		36.983	18.015
V-L Flowrate (lb _{mol} /hr)	216,342	216,342	216,342	184,932	184,932	184,932	31,410	31,410	7,276	23,686	19,379	63,084	26,655	86,771	0	4,327	0	127,707	198,817
V-L Flowrate (lb/hr)	6,242,774	6,242,773	6,242,773	5,237,686	5,237,686	5,237,686	1,005,086	1,005,086	232,829	757,933	741,855	2,414,974	974,684	3,172,908	0	124,855	0	4,723,001	3,581,749
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	499,062	0	9,701	38,806	0
Temperature (°F)	59	735	1,475	1,475	625	150	1,475	150	150	150	167	157	163	155	59	59	59	350	1,110
Pressure (psia)	14.7	215.0	215.0	195.0	15.2	15.0	25.0	17.5	17.5	17.5	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	3,514.7
Enthalpy (Btu/lb) ^A	13.1	180.3	378.6	384.0	155.7	37.0	350.0	25.8	25.8	25.8	106.8	104.4	87.4	85.6		13.1		216.6	1,502.1
Density (lb/ft ³)	0.076	0.482	0.298	0.265	0.037	0.065	0.039	0.086	0.086	0.086	0.092	0.089	0.089	0.085		0.076		0.061	4.274
	A - Refere	nce conditi	ions are 32	.02 F & 0.0	89 PSIA														

Exhibit 3-27 Stream Table for Case 1

	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
V-L Mole Fraction																		
Ar	0.0000	0.0010	0.0010	0.0000	0.0000	0.0000	0.0000	0.0003	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0013	0.0000	0.0013	0.0013
CO ₂	0.0000	0.6800	0.6800	0.0000	0.0000	0.0000	0.0000	0.9822	0.7311	0.7311	0.7311	0.7311	0.7311	0.7311	0.8598	0.0000	0.8615	0.8615
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	0.2092	0.2092	1.0000	0.0000	0.0000	1.0000	0.0024	0.1515	0.1515	0.1515	0.1515	0.1515	0.1515	0.0021	1.0000	0.0001	0.0001
N ₂	0.0000	0.0918	0.0918	0.0000	0.0000	0.0000	0.0000	0.0022	0.0982	0.0982	0.0982	0.0982	0.0982	0.0982	0.1155	0.0000	0.1158	0.1158
O ₂	0.0000	0.0149	0.0149	0.0000	1.0000	1.0000	0.0000	0.0066	0.0181	0.0181	0.0181	0.0181	0.0181	0.0181	0.0212	0.0000	0.0213	0.0213
SO ₂	0.0000	0.0031	0.0031	0.0000	0.0000	0.0000	0.0000	0.0063	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	0	57,927	57,927	2,992	203	203	1,341	0	54,120	37,405	37,405	8,790	28,615	16,715	14,214	2,532	14,186	14,186
V-L Flowrate (kg/hr)	0	2,142,317	2,142,317	53,897	6,497	6,497	24,152	13	2,071,804	1,431,915	1,431,914	336,500	1,095,414	639,889	594,820	45,610	594,318	594,318
Solids Flowrate (kg/hr)	17,602	0	0	22,881	0	0	0	35,585	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	177	186	15	66	206	15	57	57	57	66	66	66	57	103	22	103	21
Pressure (MPa, abs)	0.10	0.10	0.11	0.11	0.12	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.35	0.24	3.35	15.27
Enthalpy (kJ/kg) ^A		433.86	444.13		59.93	192.48	62.80		230.99	230.99	239.10	239.10	239.10	230.99	74.06	93.12	71.94	-197.78
Density (kg/m ³)		1.0	1.0		1.4	2.5	1,003.1		1.4	1.4	1.4	1.4	1.4	1.4	48.2	996.1	48.2	709.9
V-L Molecular Weight		36.983	36.983		31.999	31.999	18.015		38.282	38.282	38.282	38.282	38.282	38.282	41.848	18.016	41.895	41.895
V-L Flowrate (lb _{mol} /hr)	0	127,707	127,707	6,596	448	448	2,956	1	119,314	82,463	82,463	19,379	63,084	36,851	31,336	5,581	31,274	31,274
V-L Flowrate (lb/hr)	0	4,723,001	4,723,001	118,822	14,324	14,324	53,246	28	4,567,547	3,156,832	3,156,829	741,855	2,414,974	1,410,714	1,311,353	100,552	1,310,247	1,310,247
Solids Flowrate (lb/hr)	38,806	0	0	50,443	0	0	0	78,452	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	350	367	59	150	403	59	135	135	135	150	150	150	135	217	72	217	70
Pressure (psia)	14.7	14.2	15.3	15.5	17.5	45.0	14.7	14.8	14.8	14.8	14.7	14.7	14.7	14.8	485.8	35.2	485.8	2,214.7
Enthalpy (Btu/lb) ^A		186.5	190.9		25.8	82.8	27.0		99.3	99.3	102.8	102.8	102.8	99.3	31.8	40.0	30.9	-85.0
Density (lb/ft ³)		0.061	0.064		0.086	0.156	62.622		0.089	0.089	0.087	0.087	0.087	0.089	3.006	62.182	3.009	44.318

Exhibit 3-27 Stream Table for Case 1 (Continued)

Exhibit 3-29 Heat and Mass Balance, Power Block Systems for Case 1

	HHV	Sensible +	Power	Total						
	Hoot									
	пеан									
Coal	6,143 (5,822)	5.1 (4.9)		6,148 (5,827)						
Air		88.3 (83.7)		88.3 (83.7)						
Raw Water Makeup		104.0 (98.6)		104.0 (98.6)						
Limestone		0.50 (0.47)		0.50 (0.47)						
Auxiliary Power			1,496 (1,418)	1,496 (1,418)						
Totals	6,143 (5,822)	198.0 (187.6)	1,496 (1,418)	7,837 (7,428)						
Heat Out (GJ/hr)										
Boiler Loss		42.5 (40.3)		42.5 (40.3)						
Bottom Ash		0.6 (0.5)		0.6 (0.5)						
Fly Ash + FGD Ash		2.2 (2.1)		2.2 (2.1)						
MAC Cooling		0.0 (0.0)		0.0 (0.0)						
ASU Vent		204.2 (193.5)		204.2 (193.5)						
Condenser		2,831 (2,683)		2,831 (2,683)						
CO ₂ Cooling		484 (459)		484 (459)						
CO ₂		-118 (-111)		-118 (-111)						
Wet FGD Cooling		468 (444)		468 (444)						
Process Condensate		38 (36)		38 (36)						
Cooling Tower Blowdown		50.3 (47.7)		50.3 (47.7)						
Process Losses*		356.0 (337.4)		356.0 (337.4)						
Power			3,477 (3,295)	3,477 (3,295)						
Totals		4,360 (4,133)	3,477 (3,295)	7,837 (7,428)						

Exhibit 3-30 Case 1 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Car	bon In	Carbon Out					
kg/h	r(lb/hr)	kg/hr (l	b/hr)				
Coal	144,660 (318,922)	CO ₂ Product	146,784 (323,602)				
Air (CO ₂)	552 (1,216)	FGD Product	208 (459)				
FGD Reagent	2,322 (5,118)	Separated Air	541 (1,193)				
		Convergence Tolerance*	1 (3)				
Total	147,534 (325,257)	Total	147,534 (325,257)				

Exhibit 3-31 Case 1 Carbon Balance

*by difference

Sul	fur In	Sulfur Out					
kg/hi	· (lb/hr)	kg/hr (lb/hr)					
Coal	5,687 (12,538)	Gypsum	5,652 (12,459)				
		CO ₂ Product	36 (78)				
		Convergence Tolerance*	0 (0)				
Total	5,687 (12,538)	Total	5,687 (12,538)				

*by difference

Exhibit 3-33 Case 1 water Balance	Exhibit	3-33	Case 1	Water	Balance
-----------------------------------	---------	------	--------	-------	---------

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m ³ /min (gpm)			
FGD Makeup	0.40 (106)	0.0 (0)	0.40 (106)	0.0 (0)	0.40 (106)
BFW Makeup	0.25 (66)	0.0 (0)	0.25 (66)	0.0 (0)	0.25 (66)
Cooling Tower	30.1 (7,960)	3.14 (829)	27.0 (7,131)	6.8 (1,790)	20.2 (5,341)
Total	30.8 (8,133)	3.14 (829)	27.6 (7,304)	6.8 (1,790)	20.9 (5,514)

Plant Outp	ut								
Steam Turbine Power	620,500	kW _e							
Nitrogen Expander Power	345,200	kW _e							
Gross Power	965,700	kWe							
Auxiliary Lo	ad								
Coal Handling and Conveying	480	kW _e							
Limestone Handling & Reagent Preparation	1,100	kW _e							
Pulverizers	3,390	kW _e							
Ash Handling	650	kW _e							
Primary Air Fans	910	kW _e							
Forced Draft Fans	1,150	kW _e							
Induced Draft Fans	6,330	kW _e							
Air Separation Unit Main Air Compressor	315,240	kWe							
ASU Auxiliaries	0	kWe							
Baghouse	90	kWe							
FGD Pumps and Agitators	3,680	kWe							
CO ₂ Compression	64,170	kW _e							
Condensate Pumps	810	kW _e							
Boiler Feedwater Booster Pumps ²	N/A	kW _e							
Miscellaneous Balance of Plant ³	2,000	kW _e							
Steam Turbine Auxiliaries	400	kW _e							
Circulating Water Pumps	7,730	kW _e							
Cooling Tower Fans	4,510	kW _e							
Transformer Losses	3,000	kW _e							
Total	415,640	kW _e							
Plant Perform	ance								
Net Auxiliary Load	415,640	kW _e							
Net Plant Power	550,060	kW _e							
Net Plant Efficiency (HHV)	32.2%								
Net Plant Heat Rate (HHV)	11,167 (10,584)	kJ/kWhr (Btu/kWhr)							
Coal Feed Flowrate	226,371 (499,062)	kg/hr (lb/hr)							
Thermal Input ¹	1,706,276	kW _{th}							
Condenser Duty	2,831 (2,683)	GJ/hr (MMBtu/hr)							
Raw Water Usage	27.6 (7,304)	m ³ /min (gpm)							
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/l	b)							
2 - Boiler feed pumps are turbine driven									
3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads									

Exhibit 3-34 Case 1 Performance Summary

4 - Includes work recovered by ITM vitiated air expander

		Department:	NETL Office of	Program Planning a	nd Analysis								Cost Base:	June 2007	
		Project:	Advancing Oxy	combustion Techno	logy								Prepared:	13-Apr-12	
		Case:	Case 1 - Advan	ced O2 Membrane	with Boiler In	tegration								x \$1, 000	
		Plant Size:	550.06	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
			Equipment		Lab	or	Bare	Eng'g	CM H.O. &	Proce	ss Cont.	Pro	ect Cont.	TOTAL PLA	NT COST
Ac	ct No.	Item/Description	Cost	Material Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM													
	1.1	Coal Receive & Unload	3,723	0	1,700	0	5,423	8.9%	484	0%	0	15.0%	886	6,793	12
	1.2	Coal Stackout & Reclaim	4,811	0	1,090	0	5,901	8.8%	517	0%	0	15.0%	963	7,380	13
	1.3	Coal Conveyors & Yd Crus	4,473	0	1,079	0	5,552	8.8%	487	0%	0	15.0%	906	6,944	13
	1.4	Other Coal Handling	1,170	0	250	0	1,420	8.7%	124	0%	0	15.0%	232	1,776	3
	1.5	Sorbent Receive & Unload	153	0	46	0	200	8.8%	18	0%	0	15.0%	33	250	0
	1.6	Sorbent Stackout & Reclaim	2,476	0	454	0	2,930	8.7%	255	0%	0	15.0%	478	3,663	/
	1.7	Sorbent Conveyors	883	191	217	0	1,291	8.7%	112	0%	0	15.0%	210	1,613	3
	1.8	Other Sorbent Handling	534	125	280	0	939	8.8%	83	0%	0	15.0%	153	1,175	2
	1.9	Coal & Sorbent Hnd.Foundations	0	4,577	5,774	0	10,352	9.3%	968	0%	0	15.0%	1,698	13,018	24
0		SUBIUTAL 1.	\$18,223	\$4,894	\$10,889	\$ 0	\$34,006		\$3,047		\$U		\$0,008	\$42,611	\$77
2	2.4	COAL PREP & FEED STSTEMS	2.146	0	410	0	0.564	0 70/	224	00/	0	15 00/	44.0	2 206	6
	2.1	Coal Crushing & Drying	2,140	0	410	0	2,304	0.7%	224	0%	0	15.0%	410	3,200	0
	2.2	Slume Drop & Food	5,495	0	1,199	0	0,094	0.1%	200	0%	0	15.0%	1,092	0,371	15
	2.3	Siully Piep & Feed Mise, Cool Bron & Food	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Serbent Bron Equipment	4 214	192	975	0	5 270	0.0%	450	0%	0	15.0%	950	6 5 90	12
	2.5	Sorbent Storage & Food	4,214	102	10/	0	3,270	0.770 8.0%	409	0%	0	15.0%	115	0,369	12
	2.0	Sorbert Injection System	500	0	134	0	702	0.9%	02	0%	0	0.0%	113	0/9	2
	2.7	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.0	Coal & Sorbent Feed Foundation	0	539	453	0	992	9.2%	Q1	0%	0	15.0%	162	1 246	2
	2.5		\$12 362	\$721	\$3 140	\$0	\$16 222	3.270	\$1 422	070	\$0	13.076	\$2 647	\$20,291	\$37
3		FEEDWATER & MISC. BOP SYSTEMS	ψ12,302	ψ/21	ψ3,140	ψυ	ψ10,222		Ψ1,722		ψυ		ψ2,041	ψ20,231	ψ01
Ŭ	31	Feedwater System	17 580	0	5 679	0	23 259	8.8%	2 037	0%	0	15.0%	3 794	29 090	53
	3.2	Water Makeup & Pretreating	4 873	0	1 568	0	6 441	9.4%	604	0%	0	20.0%	1 409	8 454	15
	3.3	Other Feedwater Subsystems	5,382	0	2,275	0	7.657	8.9%	682	0%	0	15.0%	1,251	9,590	17
	3.4	Service Water Systems	955	0	520	0	1,475	9.3%	137	0%	0	20.0%	322	1,934	4
	3.5	Other Boiler Plant Systems	6.521	0	6,438	0	12,959	9.4%	1.216	0%	0	15.0%	2.126	16.301	30
	3.6	FO Supply Sys & Nat Gas	265	0	331	0	596	9.3%	55	0%	0	15.0%	98	749	1
	3.7	Waste Treatment Equipment	2,827	0	1,612	0	4,438	9.7%	430	0%	0	20.0%	974	5,842	11
	3.8	Misc. Power Plant Equipment	2,814	0	860	0	3,673	9.6%	353	0%	0	20.0%	805	4,831	9
		SUBTOTAL 3.	\$41,216	\$0	\$19,282	\$0	\$60,498		\$5,513		\$0		\$10,779	\$76,791	\$140
4		PC BOILER & ACCESSORIES													
	4.1	PC Boiler	150,356	0	84,365	0	234,721	9.7%	22,735	10%	23,472	10.0%	28,093	309,022	562
	4.2	ASU (Adv. Membrane)/Oxidant Compression	73,307	0	59,979	0	133,286	9.7%	12,910	0%	0	10.0%	14,620	160,816	292
	4.3	Open	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.4	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.5	Primary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.7	Major Component Rigging	0	w/4.1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 4.	\$223,664	\$0	\$144,344	\$0	\$368,007		\$35,645		\$23,472		\$42,712	\$469,837	\$854

Exhibit 3-35 Case 1 Capital Costs

		Equipment		Lat	or	Bare	Eng'g	CM H.O. &	Proce	ss Cont.	Proj	ect Cont.	TOTAL PLA	ANT COST
Acct No.	Item/Description	Cost	Material Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A	FLUE GAS CLEANUP							*						
5.1	Absorber Vessels & Accessories	55,631	0	11,976	0	67,607	9.5%	6,399	0%	0	10.0%	7,401	81,406	148
5.2	Other FGD	2.905	0	3.292	0	6,197	9.6%	597	0%	0	10.0%	679	7,474	14
5.3	Bag House & Accessories	13.827	0	8,775	0	22,602	9.6%	2,162	0%	0	10.0%	2.476	27,240	50
5.4	Other Particulate Removal Materials	913	0	977	0	1,891	9.6%	182	0%	0	10.0%	207	2,280	4
5.5	Gypsum Dewatering System	5,148	0	874	0	6.022	9.4%	569	0%	0	10.0%	659	7,250	13
5.6	Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.7	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 5A.	\$78.423	\$0	\$25.895	\$0	\$104.318		\$9.908		\$0		\$11.423	\$125.649	\$228
5B	CO2 REMOVAL & COMPRESSION	4 . c ,		+==,===	* *	* • • • • • •		++,+++				•••••	40 ,0.10	7
5B.1	CO2 Condensing Heat Exchanger	5.547	0	463	0	6.010	10%	601	0%	0	15.0%	992	7.602	14
5B 2	CO2 Compression & Drving	40,549	0	33 177	0	73 726	10%	7 373	0%	0	20.0%	16 220	97,318	177
5B 3	CO2 Pipeline					,		.,				0	0	0
5B 4	CO2 Storage											0	0	0
5B.5	CO2 Monitoring	-										0	0	0
02.0	SUBTOTAL 5B.	\$46.096	\$0	\$33,640	\$0	\$79,736		\$7.974		\$0		\$17,211	\$104.921	\$191
6	NITROGEN EXPANDER/GENERATOR	<i> </i>	ΨŬ	<i>400,010</i>	ţ.	<i></i>		¢.,e. i		* *		. , .	¢.0.,0	\$
61	Nitrogen Expander/Generator	42 372	0	18 160	0	60 532	9.6%	5 796	0%	0	10.0%	6 633	72 961	133
6.2	Nitrogen Expander/Generator Accessories	,0.2	0	0	0	00,002	10%	0,100	0%	0	0.0%	0,000	0	0
6.3	Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.1	SUBTOTAL 6.	\$42,372	\$0	\$18,160	\$0	\$60.532		\$5,796	070	\$0	0.070	\$6.633	\$72.961	\$133
7	HRSG. DUCTING & STACK	¢,c		¢10,100	ţ.	<i>400,002</i>		<i>Q(1), C(1), C(</i>		* *		40,000	¢. <u>_</u> ,	\$ 100
7.1	Flue Gas Recycle Heat Exchanger	1.299	0	108	0	1.408	10.0%	141	0%	0	15.0%	232	1.781	3
7.2	ASU Superheater	13,108	0	1.095	0	14,203	10.0%	1.420	20%	2.841	15.0%	2.770	21,233	39
7.3	ASU HP FWH	5.647	0	471	0	6,118	10.0%	612	10%	612	15.0%	1,101	8,443	15
7.4	ASU LP FWH	35.227	0	2.941	0	38,169	10.0%	3.817	0%	0	15.0%	6,298	48,283	88
7.5	SCR System	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
7.6	Ductwork	9.007	0	5,787	0	14,794	8.7%	1.292	0%	0	15.0%	2.413	18,499	34
7.7	Stack	1.472	0	862	0	2.334	9.6%	223	0%	0	10.0%	256	2,813	5
7.9	HRSG, Duct & Stack Foundations	0	850	966	0	1,815	9.3%	169	0%	0	20.0%	397	2,381	4
	SUBTOTAL 7.	\$65.761	\$850	\$12.230	\$0	\$78.841		\$7.674		\$3.452		\$13,466	\$103,434	\$188
8	STEAM TURBINE GENERATOR					,.		. ,-		, -		,		
8.1	Steam TG & Accessories	52,756	0	7,001	0	59,757	9.6%	5,722	0%	0	10.0%	6,548	72,027	131
8.2	Turbine Plant Auxiliaries	355	0	761	0	1,116	9.7%	108	0%	0	10.0%	122	1,347	2
8.3	Condenser & Auxiliaries	6,776	0	2,498	0	9,274	9.5%	881	0%	0	10.0%	1,016	11,171	20
8.4	Steam Piping	16,448	0	8,110	0	24,558	8.3%	2,050	0%	0	15.0%	3,991	30,599	56
8.9	TG Foundations	0	1,117	1,765	0	2,882	9.4%	271	0%	0	20.0%	631	3,784	7
	SUBTOTAL 8.	\$76,336	\$1,117	\$20,135	\$0	\$97,588		\$9,032		\$0		\$12,308	\$118,927	\$216
9	COOLING WATER SYSTEM			. ,	• • • •									
9.1	Cooling Towers	11,605	0	3,614	0	15,219	9.5%	1,445	0%	0	10.0%	1,666	18,330	33
9.2	Circulating Water Pumps	2,002	0	154	0	2,156	8.6%	184	0%	0	10.0%	234	2,574	5
9.3	Circ. Water System Auxiliaries	550	0	73	0	623	9.4%	59	0%	0	10.0%	68	750	1
9.4	Circ. Water Piping	0	4,359	4,225	0	8,584	9.2%	791	0%	0	15.0%	1,406	10,781	20
9.5	Make-up Water System	472	0	631	0	1,103	9.5%	105	0%	0	15.0%	181	1,389	3
9.6	Component Cooling Water System	436	0	346	0	782	9.4%	73	0%	0	15.0%	128	984	2
9.9	Circ. Water System Foundations	0	2,655	4,218	0	6,873	9.4%	647	0%	0	20.0%	1,504	9,024	16
	SUBTOTAL 9.	\$15,064	\$7,014	\$13,262	\$0	\$35,340		\$3,303		\$0		\$5,188	\$43,832	\$80

Exhibit 3-35 Case 1 Capital Costs (continued)

		Fauinment		l at	or	Bare	Eng'a	CM HO &	Proce	ss Cont	Proj	act Cont		NT COST
Acct No.	Item/Description	Cost	Material Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW
10	ASH/SPENT SORBENT HANDLING SYS					2.00104			78		7.5		•	••••••
10.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.3	Cyclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.	High Temperature Ash Piping	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.	Ash Storage Silos	645	0	1 987	0	2 632	9.7%	256	0%	0	10.0%	280	3 177	6
10.	Ash Transport & Feed Equipment	4 175	0	4 277	0	8 451	9.5%	799	0%	0	10.0%	925	10 176	18
10.	Misc. Ash Handling Equipment	-,,170	0	-1,211	0	0,101	0.0%	100	0%	0	0.0%	020	10,110	0
10.0	Ash/Spent Sorbent Foundation	0	153	180	0	334	9.3%	31	0%	0	20.0%	73	438	1
10	SUBTOTAL 10	\$4,820	\$153	\$6.444	\$0	\$11,417	3.370	\$1.087	070	\$0	20.070	\$1,287	\$13,791	\$25
11	ACCESSORY ELECTRIC PLANT	¢ .,o_o	¢	\$\$\$\$\$\$\$\$\$\$\$\$\$	ţt	\$ 1.1,		\$ 1,001				¢.,±0.	¢.0,.01	<i>\$</i> _0
11	Generator Equipment	1 630	0	265	0	1 895	9.3%	175	0%	0	7.5%	155	2 225	4
11 :	Station Service Equipment	8,562	0	2 813	0	11 375	9.6%	1 088	0%	0	7.5%	935	13 398	24
11 :	Switchgear & Motor Control	9.843	0	1 673	0	11,516	9.3%	1,000	0%	0	10.0%	1 258	13 841	25
11.	Conduit & Cable Trav	0,040	6 171	21 338	0	27 510	9.6%	2 633	0%	0	15.0%	4 521	34 664	63
11	Wire & Cable	0	11 645	22,480	0	34 124	8.4%	2,000	0%	0	15.0%	5 550	42 549	77
11.	Protective Equipment	261	11,010	22,100	0	1 1/0	0.9%	112	0%	0	10.0%	126	1 388	3
11.	Standby Equipment	1 207	0	30	0	1,143	9.0%	112	0%	0	10.0%	145	1,500	3
11.	Main Power Transformers	7,237	0	125	0	7 572	7.6%	575	0%	0	10.0%	815	8,062	16
11.0		7,447	210	770	0	1,012	0.5%	104	0%	0	20.0%	240	0,902	10
11.3		\$20.040	010 \$10 124	¢50 201	0	1,097	9.5%	104 ¢9 755	0%	0 ¢0	20.0%	240 \$12 746	\$120.066	ు కి210
12		\$29,040	φ10,134	\$30,391	φU	\$97,500		40,73 <u>3</u>		фU		\$13,740	\$120,000	φ210
12	INSTRUMENTATION & CONTROL		0				00/	0	00/	0	0.00/	0	0	0
12.	PC Control Equipment	W/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
12.	Steam Turbine Control	W/8.1	0		0	0	0%	0	0%	0	0.0%	0	0	0
12.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
12.	Signal Processing Equipment	VV/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.0	Control Boards, Panels & Racks	606	0	363	0	969	9.6%	93	0%	0	15.0%	159	1,222	2
12.	Computer Accessories	6,121	0	1,070	0	7,191	9.5%	685	0%	0	10.0%	788	8,663	16
12.8	Instrument Wiring & Tubing	3,319	0	6,584	0	9,903	8.5%	844	0%	0	15.0%	1,612	12,359	22
12.9	Other I & C Equipment	1,729	0	3,924	0	5,654	9.7%	551	0%	0	10.0%	620	6,825	12
	SUBTOTAL 12.	\$11,776	\$0	\$11,942	\$0	\$23,717		\$2,172		\$0		\$3,179	\$29,069	\$53
13	IMPROVEMENTS TO SITE	* 2.000	A4 074	* 0 5 70		<u> </u>	_	*1 1 10				* 0.574	* 4 = 400	* ***
	SUBIOIAL 13.	\$3,260	\$1,874	\$6,570	\$0	\$11,703		\$1,149		\$0		\$2,571	\$15,423	\$28
14	BUILDINGS & STRUCTURES				-									
14.	Boiler Building	0	8,810	7,748	0	16,558	9.0%	1,487	0%	0	15.0%	2,707	20,752	38
14.3	2 Turbine Building	0	12,714	11,850	0	24,564	9.0%	2,212	0%	0	15.0%	4,016	30,792	56
14.:	Administration Building	0	637	674	0	1,311	9.1%	119	0%	0	15.0%	215	1,645	3
14.4	Circulation Water Pumphouse	0	126	100	0	226	8.9%	20	0%	0	15.0%	37	283	1
14.	Water Treatment Buildings	0	634	578	0	1,212	9.0%	109	0%	0	15.0%	198	1,519	3
14.0	Machine Shop	0	426	286	0	713	8.9%	63	0%	0	15.0%	116	892	2
14.	Warehouse	0	289	290	0	579	9.0%	52	0%	0	15.0%	95	726	1
14.8	Other Buildings & Structures	0	236	201	0	437	9.0%	39	0%	0	15.0%	71	548	1
14.9	Waste Treating Building & Str.	0	440	1,336	0	1,776	9.4%	168	0%	0	15.0%	292	2,235	4
	SUBTOTAL 14.	\$0	\$24,313	\$23,062	\$0	\$47,376		\$4,269		\$0		\$7,747	\$59,391	\$108
	Total Cost	\$668,413	\$59,070	\$399,384	\$0	\$1,126,868		\$106,747		\$26,924		\$156,455	\$1,416,994	\$2,576

Exhibit 3-35 Case 1 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,448	\$17
1 Month Maintenance Materials	\$1,411	\$3
1 Month Non-fuel Consumables	\$705	\$1
1 Month Waste Disposal	\$287	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,739	\$3
2% of TPC	\$28,340	\$52
Total	\$41,930	\$76
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$14,976	\$27
0.5% of TPC (spare parts)	\$3	\$0
Total	\$14,979	\$27
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$212,549	\$386
Financing Costs	\$38,259	\$70
Total Overnight Costs (TOC)	\$1,725,610	\$3,137
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,956,842	\$3,558

Exhibit 3-36 Case 1 Owner's Costs

		INITIAL	2 ANINI 1A1	OPM EVD			
C					INJEJ		
Case:				rintegration	Last Data (B	6/L\A/b).	10 594
Plant Size	e (IVIVVE):	550.06					10,584
Primary/S	Secondary Fuel:	IIIINOIS #6 BI	tuminous Co	ai	Fuel Cost (\$/	vivi Btu):	1.64
Design/Co		5 years			BOOK LITE (yr	s):	30
TPC (Plar	t Cost) Year:	June 2007			TPI Year:		2012
Capacity	Factor (%):	85			CO2 Captured	I (IPD):	14,229
Operating	<u>NG & MAINTENANCI</u>	LADUR					
Operating	J Labor Data (basa):		¢24.65	¢/hour			
Operatin	g Labor Rate (base).		په ۲۵۵ کې ۲	⊅/nour			
Operatin	ig Labor Burden:		30.00	% of base			
Labor O	vernead Charge:		25.00	% of lador			
Operatio	a Labor Poquiromont	o por Shift	unite/mod		Total Blant		
Operatin	Skilled Operator	s per Shint.	2.0				
	Operator		2.0		2.0		
	Eoromon		9.0		9.0		
			1.0		1.0		
		laha	2.0		2.0		
	TOTAL Operating	JODS	14.0		14.0		
						¢	¢/kW_not
Annual (Departing Labor Cost	(aala'd)				- φ 	φ/κνν-net
Mointon	Speraling Labor Cost					0,5024,319	10.04
Adminio	trative & Support Lab	cu) cr. (coloid)				9,592,340	6 97
Adminis	Tarre & Support Lab	or (caic d)				3,779,167	0.87
		; 000T0				28,339,874	51.52
TOTAL	FIXED OPERATING	0515				47,235,707	85.87
			-				
VARIADLI	E OPERATING COST	<u> </u>				ŕ	¢/Wh not
Malatan	Matarial Ocata (φ • • • • • • • • • •	\$/KWn-net
Iviainten	ance Material Costs (caic d)				\$14,388,634	0.00351
Conour	ahlaa	Conou	mntion	11014	Initial		
Consum	<u>iables</u>	Consu	mption /Day	Unit	Initial	¢	¢/kWb pot
Consum		Consu Initial	mption /Day	Unit Cost	Initial Cost	\$	\$/kWh-net
Water (/	nables 1000 gallons)	Consul Initial	mption /Day <u>5,259</u>	Unit Cost 1.08	Initial Cost \$0	\$ \$1,764,837	\$/kWh-net 0.00043
Consum Water (/ Chemica	1000 gallons)	Consul Initial	mption /Day 5,259	Unit Cost 1.08	Initial Cost \$0	\$ \$1,764,837	\$/kWh-net 0.00043
Consum Water (/ Chemica MU & V	1000 gallons) 1000 gallons) als WT Chem. (lb)	Consul Initial	mption /Day 5,259 25,456	Unit Cost 1.08 0.17	Initial Cost \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,772	\$/kWh-net 0.00043 0.00033
Consum Water (/ Chemica MU & Limest	hables 1000 gallons) als WT Chem. (lb) one (ton) (lds Remarks) (lb)	Consul Initial 0 0 0	mption /Day 5,259 25,456 605	Unit Cost 1.08 0.17 21.63	Initial Cost \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773	\$/kWh-net 0.00043 0.00033 0.00099
Consum Water (/ Chemica MU & V Limest Carbon	hables 1000 gallons) als WT Chem. (lb) one (ton) (Hg Removal) (lb)	Consul Initial 0 0 0 0	mption /Day 5,259 25,456 605 0	Unit Cost 1.08 0.17 21.63 1.05	Initial Cost \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S	ables 1000 gallons) 1000 gallons) als WT Chem. (lb) one (ton) (Hg Removal) (lb) colvent (ton) solvent (ton)	Consul Initial 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustio	hables 1000 gallons) als WT Chem. (lb) one (ton) (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c social NaOH (ton)	Consul Initial 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustio	hables 1000 gallons) 1000 gallons) als WT Chem. (lb) cone (ton) (Hg Removal) (lb) colvent (ton) coda, NaOH (ton) cacid, H2SO4 (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & U Limest Carbon MEA S Caustic Sulfurio Corrosi	ables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor	Consul Initial 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & U Limest Carbon MEA S Caustic Sulfurio Corrosi Activat	ables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & U Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon	tables tables tooo gallons) tooo gallons) too gallons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon	tables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon	tables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Eucl (MMPtr.)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.000000 0.000000 0.000000 0.000000 0.0000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammoi	ables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000133 0.000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon Other Supple	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon Other Supple SCR C Emissi	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Ammou Other Supple SCR C Emissi	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Ammou Other Supple SCR C Emissi	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Ammon Other Supple SCR C Emissi Waste E Spent	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 00 00 00 00 00 00 00 00 00	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustio Sulfurio Corrosi Activat Ammon Other Supple SCR C Emissi Waste E Spent Flyash	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) solvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00033 0.00099 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustio Sulfurio Corrosi Activat Armoo Other Supple SCR C Emissi Waste I Spent Flyash Bottom	ables 1000 gallons) als WT Chem. (lb) one (ton) (Hg Removal) (lb) solvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) con Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 1.05 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Corrosi Activat Armon Other Supple SCR C Emissi Waste D Spent Flyash Bottom	ables 1000 gallons) als WT Chem. (lb) one (ton) i (Hg Removal) (lb) solvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) cacid, H2SO4 (ton) cacid, H2SO4 (ton) on Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 1.05 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Armon Other Supple SCR C Emissi Waste D Spent Flyash Bottom	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) solvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) con Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W Jucts & Emissions	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 1.05 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Armoo Other Supple SCR C Emissi Waste E Spent Flyash Bottom	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) solvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) cacid, H2SO4 (ton) con Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W Jucts & Emissions m (tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfurio Corrosi Activat Activat Activat Supple SCR C Emissi Waste E Spent Flyash Bottom	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) cacid, H2SO4 (ton) on Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W Jucts & Emissions m (tons) tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Activat Activat Supple SCR C Emissi Waste E Spent Flyash Bottom By-produ Gypsu	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) on Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W Jucts & Emissions m (tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$5,429,643 \$0 \$0 \$5,429,643 \$0 \$0 \$50 \$0 \$50 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Activat Activat Activat Supple SCR C Emissi Waste E Spent Flyash Bottorr By-produ Gypsu Sulfur (ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) on Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W ucts & Emissions m (tons) tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$5,429,643 \$0 \$0 \$5,429,643 \$0 \$0 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$	\$/kWh-net 0.00043 0.00099 0.000000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000000
Consum Water (/ Chemica MU & V Limest Carbon MEA S Caustic Sulfuric Corrosi Activat Activat Activat Activat Supple SCR C Emissi Waste E Spent Flyash Bottorr By-produ Gypsu Sulfur (Coal FUE	ables 1000 gallons) als VT Chem. (lb) one (ton) i (Hg Removal) (lb) iolvent (ton) c Soda, NaOH (ton) c Soda, NaOH (ton) c acid, H2SO4 (ton) ion Inhibitor ed C, MEA (lb) nia, 19% soln (ton) Subtotal Chemic mental Fuel (MMBtu) atalyst Replacement on Penalties Subtotal Other Disposal Mercury Catalyst (lb) (ton) Ash (ton) Subtotal Solid W ucts & Emissions m (tons) (tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 5,259 25,456 605 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,764,837 \$1,366,871 \$4,062,773 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00043 0.00099 0.000000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000

Exhibit 3-37 Case 1 O&M Costs

3.3.2 <u>Case 1a – Advanced Membrane Oxycombustion Process with Natural Gas-fired</u> <u>Integration</u>

Similar to Case 1, Case 1a also uses an advanced membrane process to produce the oxygen necessary for combustion. Instead of pre-heating the membrane inlet stream by integration with the boiler, a natural gas-fired direct contact heater is used to achieve ionization temperatures. While a heat recovery strategy similar to the boiler-integrated case was used here, natural gas was used as a heating fuel because of its lower inherent carbon content per Btu. This was anticipated to mitigate CO_2 compression auxiliary loads and thus raise efficiency, however overall carbon capture is reduced since CO_2 from natural gas combustion is not captured in this system.

Process highlights include the following:

- The air stream exiting the main air compressor is preheated to 571°C (1,060°F) and further heated to 802°C (1,475°F) by a natural gas-fired direct contact heater.
- Both the pure oxygen product and vitiated air stream are cooled to 66°C (150°F) by a recuperator and a series of heat exchangers integrated with the boiler feedwater system.
- The membrane produces oxygen at ~100 percent purity to be mixed with recycled flue gas and used as the oxidant for coal combustion.
- The vitiated air stream at 1.34 MPa (195 psia) is expanded through a turbine to 0.10 MPa (15 psia) and recovers approximately 272 MW of power.

Block Flow Diagram and Stream Table

BFD and stream tables for Case 1a are displayed in Exhibit 3-38 and Exhibit 3-39.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-40 and Exhibit 3-41:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-42. The power out is the steam turbine power after generator losses.

Carbon, sulfur and water balances are shown in Exhibit 3-43 through Exhibit 3-45.

Performance Summary

A performance summary is provided in Exhibit 3-46.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-47 through Exhibit 3-49, respectively.

Equipment List

The combined equipment list for Case 1 and Case 1a is shown Exhibit 3-50.

Exhibit 3-38 Process Block Flow Diagram for Case 1a
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
V-L Mole Fraction																				
Ar	0.0092	0.0092	0.0092	0.0000	0.0091	0.0104	0.0104	0.0104	0.0104	0.0000	0.0000	0.0000	0.0000	0.0012	0.0012	0.0009	0.0009	0.0000	0.0092	0.0000
CO ₂	0.0005	0.0005	0.0005	0.0100	0.0106	0.0122	0.0122	0.0122	0.0122	0.0000	0.0000	0.0000	0.0000	0.7158	0.7158	0.5205	0.5205	0.0000	0.0005	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methane	0.0000	0.0000	0.0000	0.9390	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethane	0.0000	0.0000	0.0000	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Propane	0.0000	0.0000	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N-Butane	0.0000	0.0000	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0101	0.0000	0.0296	0.0340	0.0340	0.0340	0.0340	0.0000	0.0000	0.0000	0.0000	0.1514	0.1514	0.1101	0.1101	0.0000	0.0101	0.0000
N ₂	0.7729	0.7729	0.7729	0.0080	0.7652	0.8794	0.8794	0.8794	0.8794	0.0000	0.0000	0.0000	0.0000	0.1063	0.1063	0.0773	0.0773	0.0000	0.7729	0.0000
O ₂	0.2074	0.2074	0.2074	0.0000	0.1855	0.0639	0.0639	0.0639	0.0639	1.0000	1.0000	1.0000	1.0000	0.0253	0.0253	0.2912	0.2912	0.0000	0.2074	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000
V-L Flowrate (kg _{mol} /hr)	92,174	92,174	92,174	902	93,102	81,014	81,014	81,014	81,014	12,087	12,087	2,799	9,113	7,463	24,293	10,262	33,407	0	1,843	0
V-L Flowrate (kg/hr)	2,659,766	2,659,765	2,659,765	15,544	2,675,309	2,288,527	2,288,527	2,288,527	2,288,527	386,782	386,782	89,579	291,609	284,076	924,758	373,655	1,216,367	0	53,195	0
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	190,935	0	3,712
Temperature (°C)	15	391	572	35	802	802	605	211	66	802	66	66	66	75	69	73	68	15	15	15
Pressure (MPa, abs)	0.10	1.48	1.45	1.38	1.45	1.41	1.38	0.10	0.10	0.17	0.17	0.17	0.17	0.11	0.11	0.11	0.11	0.10	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	419.33	617.99	58.85	922.15	940.31	709.43	274.36	122.00	814.14	59.81	59.81	59.81	249.55	243.90	204.06	199.77		30.57	
Density (kg/m ³)	1.2	7.7	5.9	9.6	4.6	4.5	5.3	0.7	1.0	0.6	2.0	2.0	2.0	1.5	1.4	1.4	1.4		1.2	
V-L Molecular Weight	28.856	28.856	28.856	17.232	28.735	28.248	28.248	28.248	28.248	31.999	31.999	31.999	31.999	38.066	38.066	36.411	36.411		28.856	
V-L Flowrate (lb _{mol} /hr)	203,208	203,208	203,208	1,989	205,255	178,606	178,606	178,606	178,606	26,648	26,648	6,172	20,091	16,452	53,558	22,624	73,649	0	4,064	0
V-L Flowrate (lb/hr)	5,863,780	5,863,778	5,863,778	34,268	5,898,046	5,045,338	5,045,338	5,045,338	5,045,338	852,708	852,708	197,488	642,888	626,280	2,038,742	823,768	2,681,629	0	117,276	0
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	420,941	0	8,183
Temperature (°F)	59	735	1,061	95	1,475	1,475	1,121	411	150	1,475	150	150	150	167	157	163	155	59	59	59
Pressure (psia)	14.7	215.0	210.0	200.0	210.0	205.0	200.0	15.2	15.0	25.0	25.0	25.0	25.0	16.2	15.3	16.2	15.3	14.7	14.7	14.7
Enthalpy (Btu/lb) ^A	13.1	180.3	265.7	25.3	396.5	404.3	305.0	118.0	52.5	350.0	25.7	25.7	25.7	107.3	104.9	87.7	85.9		13.1	
Density (lb/ft ³)	0.076	0.482	0.370	0.597	0.290	0.278	0.332	0.046	0.065	0.039	0.122	0.122	0.122	0.092	0.088	0.088	0.085		0.076	
	A - Refere	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA															

Exhibit 3-39 Stream Table for Case 1a

	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
V-L Mole Fraction																				
Ar	0.0011	0.0000	0.0000	0.0011	0.0011	0.0000	0.0000	0.0000	0.0000	0.0004	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0014	0.0000	0.0014	0.0014
CO ₂	0.6669	0.0000	0.0000	0.6669	0.6669	0.0000	0.0000	0.0000	0.0000	0.9780	0.7158	0.7158	0.7158	0.7158	0.7158	0.7158	0.8418	0.0000	0.8434	0.8434
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Propane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N-Butane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2079	1.0000	0.0000	0.2079	0.2079	1.0000	0.0000	0.0000	1.0000	0.0035	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	0.0021	1.0000	0.0001	0.0001
N ₂	0.0995	0.0000	0.0000	0.0995	0.0995	0.0000	0.0000	0.0000	0.0000	0.0024	0.1063	0.1063	0.1063	0.1063	0.1063	0.1063	0.1250	0.0000	0.1252	0.1252
O ₂	0.0216	0.0000	0.0000	0.0216	0.0216	0.0000	1.0000	1.0000	0.0000	0.0094	0.0253	0.0253	0.0253	0.0253	0.0253	0.0253	0.0297	0.0000	0.0298	0.0298
SO ₂	0.0031	0.0000	0.0000	0.0031	0.0031	0.0000	0.0000	0.0000	0.0000	0.0063	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	49,320	97,950	0	49,320	49,320	2,548	175	175	1,141	0	46,157	31,756	31,756	7,463	24,293	14,401	12,246	2,181	12,222	12,222
V-L Flowrate (kg/hr)	1,815,594	1,764,596	0	1,815,594	1,815,594	45,901	5,594	5,594	20,563	9	1,757,024	1,208,833	1,208,833	284,076	924,758	548,192	509,363	39,294	508,931	508,931
Solids Flowrate (kg/hr)	14,847	0	14,847	0	0	19,261	0	0	0	29,976	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	177	599	15	177	186	15	66	148	15	57	57	57	66	66	66	57	103	22	103	21
Pressure (MPa, abs)	0.10	24.23	0.10	0.10	0.11	0.11	0.17	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.35	0.24	3.35	15.27
Enthalpy (kJ/kg) ^A	502.42	3,493.92		433.62	443.93		59.81	136.85	62.80		232.12	232.12	240.24	240.24	240.24	232.12	74.90	93.14	72.76	-190.99
Density (kg/m ³)	1.0	68.5		1.0	1.0		2.0	2.8	1,003.1		1.4	1.4	1.4	1.4	1.4	1.4	47.7	996.1	47.7	685.3
V-L Molecular Weight	36.812	18.015		36.812	36.812		31.999	31.999	18.015	-	38.066	38.066	38.066	38.066	38.066	38.066	41.595	18.016	41.641	41.641
V-L Flowrate (lb _{mol} /hr)	108,733	215,943	0	108,733	108,733	5,617	385	385	2,516	0	101,759	70,010	70,010	16,452	53,558	31,749	26,997	4,808	26,944	26,944
V-L Flowrate (lb/hr)	4,002,700	3,890,268	0	4,002,700	4,002,700	101,194	12,332	12,332	45,334	19	3,873,575	2,665,020	2,665,022	626,280	2,038,742	1,208,555	1,122,954	86,628	1,122,000	1,122,000
Solids Flowrate (lb/hr)	32,731	0	32,731	0	0	42,462	0	0	0	66,086	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	350	1,110	59	350	367	59	150	298	59	135	135	135	150	150	150	135	218	72	218	70
Pressure (psia)	14.4	3,514.7	14.7	14.2	15.3	15.5	25.0	45.0	14.7	14.8	14.8	14.8	14.7	14.7	14.7	14.8	485.8	35.2	485.8	2,214.7
Enthalpy (Btu/lb) ^A	216.0	1,502.1		186.4	190.9		25.7	58.8	27.0		99.8	99.8	103.3	103.3	103.3	99.8	32.2	40.0	31.3	-82.1
Density (lb/ft ³)	0.061	4.274		0.060	0.064		0.122	0.177	62.622		0.089	0.089	0.086	0.086	0.086	0.089	2.978	62.182	2.981	42.783

Exhibit 3-39 Stream Table for Case 1a (Continued)

Exhibit 3-40 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 1a

Exhibit 3-41 Heat and Mass Balance, Power Block Systems for Case 1a

	HHV	Sensible + Latent	Power	Total
	Heat In N	MBTU/hr (GJ/hr)	<u>.</u>	
Coal	5,181 (4,911)	4.3 (4.1)		5,185 (4,915)
Natural Gas	815 (773)	0.5 (0.5)		815.8 (773.2)
Air		82.9 (78.6)		82.9 (78.6)
Raw Water Makeup		102.4 (97.0)		102.4 (97.0)
Limestone		0.42 (0.40)		0.42 (0.40)
Auxiliary Power			1,385 (1,313)	1,385 (1,313)
Totals	5,996 (5,683)	190.6 (180.6)	1,385 (1,313)	7,572 (7,177)
	Heat Out	MMBTU/hr (GJ/hr)		
Boiler Loss		46.9 (44.4)		46.9 (44.4)
Bottom Ash		0.5 (0.4)		0.5 (0.4)
Fly Ash + FGD Ash		1.9 (1.8)		1.9 (1.8)
MAC Cooling		0.0 (0.0)		0.0 (0.0)
ASU Vent		279.2 (264.6)		279.2 (264.6)
Condenser		2,821.2 (2,674.0)		2,821.2 (2,674.0)
CO ₂ Cooling		414.1 (392.5)		414.1 (392.5)
CO ₂		-97.2 (-92.1)		-97.2 (-92.1)
Wet FGD Cooling		393.3 (372.8)		393.3 (372.8)
Process Condensate		32.4 (30.7)		32.4 (30.7)
Cooling Tower Blowdown		47.6 (45.1)		47.6 (45.1)
Process Losses*		267.4 (253.4)		267.4 (253.4)
Power			3,365 (3,189)	3,365 (3,189)
Totals		4,207 (3,988)	3,365 (3,189)	7,572 (7,177)

Exhibit 3-42 Case 1a Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Car	bon In	Carb	on Out
kg/h	r (lb/hr)	kg/h	r (lb/hr)
Coal	122,016 (268,999)	CO ₂ Product	123,808 (272,951)
Natural Gas	11,376 (25,080)		
Air (CO ₂)	518 (1,143)	FGD Product	169 (372)
FGD Reagent	1,954 (4,309)	Separated Air	11,884 (26,200)
		Convergence Tolerance*	3 (7)
Total	135,865 (299,530)	Total	135,865 (299,530)

Exhibit 3-43 Case 1a Carbon Balance

*by difference

Sulfur In Sulfur Out kg/hr (lb/hr) kg/hr (lb/hr) 4,797 (10,575) 4,767 (10,508) Coal Gypsum CO₂ Product 30 (67) Convergence 0 (0) Tolerance* 4,797 (10,575) Total Total 4,797 (10,575)

Exhibit 3-44 Case 1a Sulfur Balance

*by difference

Exhibit 3-45 Case 1a Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m³/min (gpm)	m ³ /min (gpm)	m ³ /min (gpm)	m ³ /min (gpm)
FGD Makeup	1.11 (293)	0.0 (0)	1.11 (293)	0.00 (0)	1.11 (293)
BFW Makeup	0.28 (73)	0.0 (0)	0.28 (73)	0.00 (0)	0.28 (73)
Cooling Tower	28.5 (7,522)	2.66 (702)	25.8 (6,820)	6.40 (1692)	19.41 (5128)
Total	29.9 (7,888)	2.66 (702)	27.2 (7,186)	6.40 (1,692)	20.80 (5,495)

Plant Outp	ut	
Steam Turbine Power	662,300	kWe
Nitrogen Expander Power	272,400	kWe
Gross Power	934,700	kWe
Auxiliary Lo	ad	
Coal Handling and Conveying	440	kW _e
Limestone Handling & Reagent Preparation	930	kWe
Pulverizers	2,860	kW _e
Ash Handling	550	kWe
Primary Air Fans	770	kWe
Forced Draft Fans	990	kWe
Induced Draft Fans	5,390	kWe
Air Separation Unit Main Air Compressor	296,100	kW _e
ASU Auxiliaries	0	kW _e
Baghouse	70	kW _e
FGD Pumps, Agitators and O ₂ Blower	3,230	kWe
CO ₂ Compression	55,550	kW _e
Condensate Pumps	880	kW _e
Boiler Feedwater Booster Pumps ²	N/A	kW _e
Miscellaneous Balance of Plant ³	2,000	kW _e
Steam Turbine Auxiliaries	400	kW _e
Circulating Water Pumps	7,310	kW _e
Cooling Tower Fans	4,270	kW _e
Transformer Losses	3,040	kW _e
Total	384,780	kW _e
Plant Perform	ance	
Net Auxiliary Load	384,780	kW _e
Net Plant Power	549,920	kW _e
Net Plant Efficiency (HHV)	33.0%	
Net Plant Heat Rate (HHV)	10,904 (10,335)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	190,935 (420,941)	kg/hr (lb/hr)
Natural Gas	15,544 (34,268)	kg/hr (lb/hr)
Coal Thermal Input	1,439,182	kW _{th}
Natural Gas Thermal Input	226,458	kW _{th}
Thermal Input ^{1,4} (Coal + Natural Gas)	1,665,640	kW _{th}
Condenser Duty	2,821 (2,674)	GJ/hr (MMBtu/hr)
Raw Water Usage	27.2 (7,186)	m³/min (gpm)

Exhibit 3-46 Case 1A Performance Summary

1 - HHV of As Received Illinois No. 6 coal is 27,135 kJ/kg (11,666 Btu/lb)

2 - Boiler feed pumps are turbine driven

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

4 - HHV of natural gas is 22,549 Btu/lb

	Department:	NETL Office of	Program Plann	ing and Anal	ysis							Cost Base:	June 2007	
	Project:	Advancing Oxy	combustion Te	chnology								Prepared:	13-Apr-12	
	Case:	Case 1A - Adva	nced O2 Mem	brane with N	atural Gas I	Preheater							x \$1, 000	
	Plant Size:	550	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
		Equipment	Material	Lab	or	Bare	Eng'g (CM H.O. &	Proce	ss Cont.	Proj	ect Cont.	TOTAL PLA	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1	COAL HANDLING SYSTEM													
1.1	Coal Receive & Unload	3,350	0	1,530	0	4,880	8.9%	436	0%	0	15.0%	797	6,113	11
1.2	Coal Stackout & Reclaim	4,329	0	981	0	5,310	8.8%	465	0%	0	15.0%	866	6,641	12
1.3	Coal Conveyors & Yd Crus	4,025	0	971	0	4,995	8.8%	438	0%	0	15.0%	815	6,248	11
1.4	Other Coal Handling	1,053	0	225	0	1,278	8.7%	112	0%	0	15.0%	208	1,598	3
1.5	Sorbent Receive & Unload	137	0	41	0	179	8.8%	16	0%	0	15.0%	29	224	0
1.6	Sorbent Stackout & Reclaim	2,217	0	406	0	2,624	8.7%	229	0%	0	15.0%	428	3,280	6
1.7	Sorbent Conveyors	791	171	194	0	1,156	8.7%	100	0%	0	15.0%	188	1,445	3
1.8	Other Sorbent Handling	478	112	251	0	841	8.8%	74	0%	0	15.0%	137	1,052	2
1.9	Coal & Sorbent Hnd.Foundations	0	4,118	5,195	0	9,314	9.3%	871	0%	0	15.0%	1,528	11,712	21
	SUBTOTAL 1.	\$16,381	\$4,402	\$9,794	\$0	\$30,576		\$2,740		\$0		\$4,997	\$38,313	\$70
2	COAL PREP & FEED SYSTEMS													
2.1	Coal Crushing & Drying	1,918	0	374	0	2,292	8.7%	200	0%	0	15.0%	374	2,865	5
2.2	Prepared Coal Storage & Feed	4,911	0	1,072	0	5,983	8.7%	523	0%	0	15.0%	976	7,482	14
2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.5	Sorbent Prep Equipment	3.767	162	782	0	4,712	8.7%	410	0%	0	15.0%	768	5.891	11
2.6	Sorbent Storage & Feed	454	0	174	0	628	8.9%	56	0%	0	15.0%	103	786	1
2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.9	Coal & Sorbent Feed Foundation	0	484	406	0	890	9.2%	82	0%	0	15.0%	146	1,118	2
	SUBTOTAL 2	\$11.050	\$646	\$2,808	\$0	\$14,504		\$1,271		\$0		\$2,366	\$18,142	\$33
3	FEEDWATER & MISC. BOP SYSTEMS	\$11,000	\$0 .0	<i>4₂,000</i>	ţ,	\$ 11,001		<i>•••,=••</i>		* *		<i>4</i> _, 60	<i></i>	ţ
3.1	Feedwater System	18.612	0	6.012	0	24.624	8.8%	2.156	0%	0	15.0%	4.017	30,796	56
3.2	Water Makeup & Pretreating	4.817	0	1,550	0	6.367	9.4%	597	0%	0	20.0%	1,393	8.357	15
3.3	Other Feedwater Subsystems	5 698	0	2 408	0	8 106	8.9%	722	0%	0	15.0%	1 324	10 152	18
3.4	Service Water Systems	944	0	514	0	1 458	9.3%	135	0%	0	20.0%	319	1 912	.0
3.5	Other Boiler Plant Systems	6 938	0	6 850	0	13 787	9.4%	1 293	0%	0	15.0%	2 262	17 343	32
3.6	FO Supply Sys & Nat Gas	254	0	317	0	571	9.3%	53	0%	0	15.0%		718	1
37	Waste Treatment Equipment	2 589	0	1 476	0	4 064	9.7%	394	0%	0	20.0%	892	5 349	10
3.8	Misc. Power Plant Equipment	2,000	0	824	0	3 520	9.6%	338	0%	0	20.0%	772	4 630	.0
0.0	SUBTOTAL 3.	\$42,547	\$0	\$19.950	\$0	\$62,497	0.070	\$5,689	070	\$0	20.070	\$11.072	\$79.257	\$144
4	PC BOILER & ACCESSORIES	↓ , ↓	ţ.	\$10,000		, ,		\$0,000		* *		* , *	<i></i> ,	••••
41	PC Boiler	159 247	0	89 354	0	248 600	9.7%	24 080	0%	Ω	10.0%	27 268	299 948	545
42	ASIL (Advanced Membrane)/Oxidant Compression	66 421	0	54 344	0	120 766	9.7%	11 697	0%	0	10.0%	13 246	145 709	265
4.3	Open	00,421	0	0,044	0	0	0%	0	0%	0	0.0%	10,240	0	0
4.0	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
4.4	Primary Air System	w/4 1	0	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
4.6	Secondary Air System	w/4.1	0	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
4.0	Major Component Rigging	0	w/4 1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
4.7	PC Foundations	0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
1.0	SUBTOTAL 4	\$225,668	\$0	\$143,698	\$0	\$369.366	070	\$35,777	0,0	\$0	0.070	\$40.514	\$445.657	\$810

		Equipmont	Matorial	Lab	or	Para	Engla (Broco	cc Cont	Bro	ia at Cont		ANT COST
Acct No	Item/Description	Cost	Cost	Direct	Indirect	Frected	<u>%</u>	Total	%	Total	%	Total	\$	\$/kW
54		003	003	Direct	manoot	Licelea	,,,	*	70	Total	70	Total	Ŷ	<i>witte</i>
51	Absorber Vessels & Accessories	49 503	0	10 657	0	60 160	9.5%	5 694	0%	0	10.0%	6 585	72 440	132
5.2	Other FGD	2,585	0	2,930	0	5.515	9.6%	531	0%	0	10.0%	605	6,651	12
5.3	Bag House & Accessories	12 197	0	7 740	0	19 937	9.6%	1 907	0%	0	10.0%	2 184	24 029	44
5.4	Other Particulate Removal Materials	807	0	863	0	1 670	9.6%	161	0%	0	10.0%	183	2 014	4
5.5	Gypsum Dewatering System	4.627	0	786	0	5.413	9.4%	511	0%	0	10.0%	592	6,517	12
5.6	Mercury Removal System	0	0	0	0	0,110	0.0%	0	0%	0	0.0%	0	0	0
5.7	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
0.0	SUBTOTAL 5A	\$69,719	\$0	\$22.976	\$0	\$92,696	0.070	\$8,804	070	\$0	0.070	\$10,150	\$111.650	\$203
5B	CO2 REMOVAL & COMPRESSION	\$00 ,110	* *	\$,010	ţ.	<i>402,000</i>		\$0,00		* *	ļ	\$10,100	¢,000	\$ _000
5B 1	CO2 Condensing Heat Exchanger	4 891	0	408	0	5 299	10%	530	0%	0	15.0%	874	6 704	12
5B 2	CO2 Compression & Drving	36 553	0	29 907	0	66 461	10%	6 646	0%	0	20.0%	14 621	87 728	160
5B 3	CO2 Pineline	00,000	0	20,007		00,101	1070	0,010	070	0	20.070	0	01,120	0
5B 4	CO2 Storage											0	0	0
5B 5	CO2 Monitoring											0	0	0
30.5	SUBTOTAL 5B	\$41 444	\$0	\$30 316	\$0	\$71 760		\$7 176		\$0		\$15.496	\$94 432	\$172
6	NITROGEN EXPANDER/GENERATOR	φ+1,+++	ΨΟ	430,310	ψυ	φ/1,/00		ψ1,170		ψυ		ψ10, 4 00	434,43 <u>2</u>	ψ172
61	Nitrogen Expander/Generator	35 907	0	15 389	0	51 296	9.6%	4 912	0%	0	10.0%	5 621	61 829	112
6.2	Nitrogen Expander/Generator Accessories	00,001	0	10,000	0	01,200	10%	1,012	0%	0	0.0%	0,021	01,020	0
6.3	Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.4		\$35.907	\$0	\$15 389	\$0	\$51 296	1070	\$4 912	070	\$0	0.070	\$5 621	\$61.829	\$112
7	HRSG_DUCTING & STACK	400,001	ΨΟ	ψ10,000	ψυ	ψ 01,200		ψ4,512		ψυ		\$3,021	ψ01,025	ψ112
71	Flue Gas Recycle Heat Exchanger	1 136	0	95	0	1 231	10.0%	123	0%	0	15.0%	203	1 557	3
7.2	ASU Superheater	34 724	0	2 899	0	37 623	10.0%	3 762	20%	7 525	15.0%	7 337	56 247	102
7.3	ASU HP FWH	4 952	0	413	0	5 365	10.0%	537	10%	537	15.0%	966	7 404	13
7 4	ASULP FWH	22 118	0	1 847	0	23,965	10.0%	2 397	0%	0	15.0%	3 954	30,316	55
7.5	SCR System	0	0	.,01	0	20,000	0%	,001	0%	0	0.0%	0,001	00,010	0
7.6	Ductwork	8 443	0	5 424	0	13 867	8.7%	1 211	0%	0	15.0%	2 262	17 340	32
77	Stack	1 363	0	797	0	2 160	9.6%	206	0%	0	10.0%	237	2 603	5
79	HRSG Duct & Stack Foundations	0	830	943	0	1 774	9.3%	165	0%	0	20.0%	388	2 327	4
1.0	SUBTOTAL 7.	\$72,736	\$830	\$12,420	\$0	\$85,986	0.070	\$8,401	070	\$8,061	20.070	\$15.346	\$117,794	\$214
8	STEAM TURBINE GENERATOR	¢,. co	4000	<i>••••</i> , ••••	, ,,	400,000		<i>\$</i> 0, 10 1		<i>vo</i> , <i>oo</i> .		\$10,010	* ,. * .	* =···
8.1	Steam TG & Accessories	55.217	0	7.328	0	62.545	9.6%	5.989	0%	0	10.0%	6.853	75.386	137
8.2	Turbine Plant Auxiliaries	372	0	797	0	1,168	9.7%	113	0%	0	10.0%	128	1,410	3
8.3	Condenser & Auxiliaries	6,760	0	2,492	0	9.252	9.5%	879	0%	0	10.0%	1.013	11,145	20
8.4	Steam Piping	17,428	0	8.593	0	26.020	8.3%	2.172	0%	0	15.0%	4,229	32,421	59
8.9	TG Foundations	0	1,168	1.845	0	3.013	9.4%	284	0%	0	20.0%	659	3,955	7
	SUBTOTAL 8.	\$79.777	\$1,168	\$21.054	\$0	\$101.998		\$9.436		\$0		\$12.883	\$124,317	\$226
9	COOLING WATER SYSTEM	.	<i></i>	•==,===		* ·•·,•••		4 0,100				<i></i>	••=•,•••	v ====
9.1	Cooling Towers	11,165	0	3,477	0	14,642	9.5%	1,390	0%	0	10.0%	1,603	17,636	32
9.2	Circulating Water Pumps	1,906	0	147	0	2,053	8.6%	176	0%	0	10.0%	223	2,452	4
9.3	Circ. Water System Auxiliaries	530	0	71	0	601	9.4%	57	0%	0	10.0%	66	723	1
9.4	Circ. Water Piping	0	4,202	4,072	0	8,274	9.2%	762	0%	0	15.0%	1,355	10,391	19
9.5	Make-up Water System	468	0	625	0	1.092	9.5%	104	0%	0	15.0%	179	1.375	3
9.6	Component Cooling Water System	420	0	334	0	754	9.4%	71	0%	0	15.0%	124	948	2
9.9	Circ. Water System Foundations	0	2,566	4,077	0	6,644	9.4%	625	0%	0	20.0%	1,454	8,723	16
	SUBTOTAL 9.	\$14,489	\$6,768	\$12,803	\$0	\$34,060		\$3,184		\$0		\$5,004	\$42,248	\$77

Exhibit 3-47 Case 1A Capital Costs (continued)

			Equipment	Material	Lab	or	Bare	Ena'a	CM H.O. &	Proce	ss Cont.	Proi	ect Cont.	TOTAL PL	ANT COST
Ace	ct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
10		ASH/SPENT SORBENT HANDLING SYS												· · · ·	
	10.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.2	Cyclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.3	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.4	High Temperature Ash Piping	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.5	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.6	Ash Storage Silos	586	0	1,806	0	2,393	9.7%	233	0%	0	10.0%	263	2,888	5
	10.7	Ash Transport & Feed Equipment	3 795	0	3,888	0	7 683	9.5%	727	0%	0	10.0%	841	9 250	17
	10.8	Misc. Ash Handling Equipment	0,100	0	0,000	0	0	0.0%	0	0%	0	0.0%	0	0,200	0
	10.9	Ash/Spent Sorbent Foundation	0	139	164	0	303	9.3%	28	0%	0	20.0%	66	398	1
		SUBTOTAL 10.	\$4,382	\$139	\$5,858	\$0	\$10.379	0.070	\$988	070	\$0	201070	\$1,170	\$12,537	\$23
11		ACCESSORY ELECTRIC PLANT	\$4,002	¢100]	40,000	ψŪ	<i><i><i></i></i></i>		4000		ψŪ		¢1,110	<i><i>ψ</i>12,001</i>	φ 2 0
	11 1	Generator Equipment	1 689	0	274	0	1 964	9.3%	182	0%	0	7 5%	161	2 306	4
	11.2	Station Service Equipment	8 281	0	2 721	0	11,002	9.6%	1 052	0%	0	7.5%	904	12,000	24
	11.2	Switchgear & Motor Control	0,201	0	1 618	0	11,002	0.3%	1,032	0%	0	10.0%	1 217	12,330	24
	11.0	Conduit & Cable Tray	0,020	5 969	20.638	0	26 607	9.6%	2 546	0%	0	15.0%	4 373	33 526	61
	11.4	Wire & Cable	0	11 263	20,000	0	33,005	8 /0/	2,340	0%	0	15.0%	5 368	41 153	75
	11.5	Protoctive Equipment	261	11,203	21,742	0	1 140	0.470	2,701	0%	0	10.0%	126	41,133	13
	11.0	Stondby Equipment	1 226	0	20	0	1,149	9.0 /0	112	0%	0	10.0%	120	1,300	3
	11.7	Main Dower Transformers	7,000	0	100	0	7,300	9.5%	129	0 /0	0	10.0%	100	0.497	17
	11.0		7,034	0	120	0	1,702	7.0%	590	0%	0	10.0%	030	9,107	17
	11.9		¢00.704	532 \$47 ECA	¢40.055	U ¢0	1,147	9.5%	109	0%	0	20.0%	201	1,507	3
10		SUBIDIAL 11.	\$28,721	\$17,564	\$48,855	\$U	\$95,140		\$8,033		Ф О		\$13,385	\$117,058	\$213
12	40.4			0		0	0	00/	0	00/	0	0.00/	0	0	0
	12.1	PC Control Equipment	W/12.7	0		0	0	0%	0	0%	0	0.0%	0	0	0
	12.2	Combustion Turbine Control	N/A	0	IN/A	0	0	0%	0	0%	0	0.0%	0	0	0
	12.3	Steam Turbine Control	W/8.1	0	W/8.1	0	0	0%	0	0%	0	0.0%	0	0	0
	12.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	12.5	Signal Processing Equipment	W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
	12.6	Control Boards, Panels & Racks	600	0	360	0	960	9.6%	92	0%	0	15.0%	158	1,210	2
	12.7	Computer Accessories	6,061	0	1,059	0	7,120	9.5%	678	0%	0	10.0%	780	8,578	16
	12.8	Instrument Wiring & Tubing	3,286	0	6,519	0	9,806	8.5%	835	0%	0	15.0%	1,596	12,237	22
	12.9	Other I & C Equipment	1,712	0	3,886	0	5,598	9.7%	545	0%	0	10.0%	614	6,758	12
		SUBTOTAL 12.	\$11,660	\$0	\$11,824	\$0	\$23,484		\$2,151		\$0		\$3,148	\$28,783	\$52
13		IMPROVEMENTS TO SITE													
	13.1	Site Preparation	0	55	1,091	0	1,145	9.9%	113	0%	0	20.0%	252	1,510	3
	13.2	Site Improvements	0	1,811	2,249	0	4,060	9.8%	399	0%	0	20.0%	892	5,350	10
	13.3	Site Facilities	3,245	0	3,200	0	6,445	9.8%	633	0%	0	20.0%	1,416	8,493	15
		SUBTOTAL 13.	\$3,245	\$1,865	\$6,540	\$0	\$11,650		\$1,144		\$0		\$2,559	\$15,353	\$28
14		BUILDINGS & STRUCTURES													
	14.1	Boiler Building	0	8,800	7,739	0	16,539	9.0%	1,485	0%	0	15.0%	2,704	20,728	38
	14.2	Turbine Building	0	12,691	11,828	0	24,519	9.0%	2,208	0%	0	15.0%	4,009	30,736	56
	14.3	Administration Building	0	636	672	0	1,308	9.1%	118	0%	0	15.0%	214	1,641	3
	14.4	Circulation Water Pumphouse	0	122	97	0	219	8.9%	20	0%	0	15.0%	36	274	0
	14.5	Water Treatment Buildings	0	627	572	0	1,199	9.0%	107	0%	0	15.0%	196	1,502	3
	14.6	Machine Shop	0	425	286	0	711	8.9%	63	0%	0	15.0%	116	890	2
	14.7	Warehouse	0	288	289	0	577	9.0%	52	0%	0	15.0%	94	724	1
	14.8	Other Buildings & Structures	0	235	201	0	436	9.0%	39	0%	0	15.0%	71	546	1
	14.9	Waste Treating Building & Str.	0	440	1,334	0	1,774	9.4%	168	0%	0	15.0%	291	2,233	4
		SUBTOTAL 14.	\$0	\$24,265	\$23,018	\$0	\$47,283		\$4,260		\$0		\$7,731	\$59,274	\$108
		Total Cost	\$657,726	\$57,647	\$387,303	\$0	\$1,102,676		\$104,466		\$8,061		\$151,442	\$1,366,646	\$2,485

Exhibit 3-47 Case 1A Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,319	\$17
1 Month Maintenance Materials	\$1,380	\$3
1 Month Non-fuel Consumables	\$637	\$1
1 Month Waste Disposal	\$242	\$0
25% of 1 Months Fuel Cost at 100% CF	\$1,467	\$3
2% of TPC	\$27,333	\$50
Total	\$40,379	\$73
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$12,668	\$23
0.5% of TPC (spare parts)	\$3	\$0
Total	\$12,671	\$23
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$204,997	\$373
Financing Costs	\$36,899	\$67
Total Overnight Costs (TOC)	\$1,662,491	\$3,023
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,885,265	\$3,428

Exhibit 3-48 Case 1A Owner's Costs

Exhibit 3-49 Case 1A O&M Costs

		INITIAL &	ANNUAL O	&M EXPENS	SES		
Case:	Case 1A - Advanced O2	Membrane v	vith Natural G	Sas Preheat	er		
Plant Size	(MWe):	549.92			Heat Rate (Bt	u/kWh):	10,335
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Co	al	Fuel Cost (\$/N	IM Btu):	1.64
Design/Con	struction	5 years			Book Life (yrs	s):	30
TPC (Plant	Cost) Year:	June 2007			TPI Year:		2012
Capacity Fa	actor (%):	85			CO2 Captured	(TPD):	12,002
OPERATING	3 & MAINTENANCE LAB	OR					
Operating L	_abor						
Operating	Labor Rate (base):		\$34.65	\$/hour			
Operating	Labor Burden:		30.00	% of base			
Labor Ove	rhead Charge:		25.00	% of labor			
Operating	Labor Requirements per	Shift:	units/mod.		Total Plant		
	Skilled Operator		2.0		2.0		
	Operator		9.0		9.0		
	Foreman		1.0		1.0		
	Lab Tech's etc.		2.0		2.0		
	TOTAL Operating Jobs		14.0		14.0		
						\$	\$/kW-net
Annual Op	perating Labor Cost (calc)	d)				5,524,319	10.05
Maintenan	ce Labor Cost (calc'd)					9,386,423	17.07
Administra	ative & Support Labor (ca	lc'd)				3,727,686	6.78
Property T	axes and Insurance					27,332,915	49.70
TOTAL FI	XED OPERATING COST	S				45,971,342	83.60
			-				
VARIABLE	OPERATING COSTS					•	A // 1
						\$	\$/kWh-net
Maintenan	ice Material Costs (calc'd)				\$14,079,745	0.00344
0		0		1114	1		
Consuma	<u>bies</u>	Consu	mption (Devi	Onit	Initial	¢	¢//JM/h pot
Water (/10)00 gallone)		7Day	1.08	C051	₽ \$1,736,356	5/KWII-Het
Chomicala		0	5,174	1.00	φυ	φ1,730,330	0.00042
Chemicais							
	T Cham (lb)	0	25.046	0.17	0.2	¢1 244 012	0 00022
MU & W	T Chem. (Ib)	0	25,046	0.17	\$0	\$1,344,812	0.00033
MU & W Limestor	T Chem. (lb) ne (ton)	0	25,046 510	0.17	\$0 \$0	\$1,344,812 \$3,419,982	0.00033
MU & W Limestor Carbon (I	T Chem. (lb) ne (ton) Hg Removal) (lb)	000000000000000000000000000000000000000	25,046 510 0	0.17 21.63 1.05	\$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0	0.00033 0.00084 0.00000
MU & W Limestor Carbon (I MEA Sol	T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton)	0 0 0 0	25,046 510 0 0	0.17 21.63 1.05 2249.89	\$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0	0.00033 0.00084 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S	r Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton)	0 0 0 0 0	25,046 510 0 0 0	0.17 21.63 1.05 2249.89 433.68	\$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a	r Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton)	0 0 0 0 0 0 0	25,046 510 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78	\$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion	r Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor		25,046 510 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated	r Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a 19% solp (top)		25,046 510 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	T Chem. (Ib) he (ton) Hg Removal) (Ib) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals	0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia	T Chem. (Ib) he (ton) Hg Removal) (Ib) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals	0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ 0 \$0 \$ 0 \$0 \$ 0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000116
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMR+u)		25,046 510 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000116
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	T Chem. (lb) he (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) ental Fuel (MMBtu)		25,046 510 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000116
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat	T Chem. (lb) te (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000116 0.000000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	T Chem. (lb) he (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	r Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent M	T Chem. (lb) he (ton) Hg Removal) (lb) tvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (lb) acid	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t	T Chem. (lb) he (ton) Hg Removal) (lb) lvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (lb) on)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A	T Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal California	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A	T Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid Waste to a Subtotal Solid Waste	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$1,977,178 \$494,295 \$2,471,473	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activatec Artivatec Artivatec Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A	T Chem. (Ib) te (ton) Hg Removal) (Ib) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Artivated Artivated Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum	T Chem. (Ib) te (ton) Hg Removal) (Ib) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Armonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum Sulfur (to	T Chem. (Ib) te (ton) Hg Removal) (Ib) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) n Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons) ms)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Armonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom / By-produc Gypsum Sulfur (to	T Chem. (Ib) te (ton) Hg Removal) (Ib) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) in Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons) ms) Subtotal By-Products	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum Sulfur (to	T Chem. (Ib) te (ton) Hg Removal) (Ib) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) In Inhibitor d C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) n Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons) ms) Subtotal By-Products PABLE OPERATING CO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum Sulfur (to Dotal EUE)	T Chem. (lb) te (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) h Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons) ns) Subtotal By-Products RIABLE OPERATING CO (fons)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000
MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum Sulfur (to TOTAL VAR Coal FUEL NATURAL C	T Chem. (Ib) te (ton) Hg Removal) (Ib) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor I C, MEA (Ib) a, 19% soln (ton) Subtotal Chemicals ental Fuel (MMBtu) alyst Replacement (m3) in Penalties Subtotal Other sposal ercury Catalyst (Ib) on) Ash (ton) Subtotal Solid Waste ts & Emissions (tons) ins) Subtotal By-Products RIABLE OPERATING CO (tons) Ash Fuel (Merfi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25,046 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23 16.23 16.23 16.23	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$1,344,812 \$3,419,982 \$0 \$0 \$0 \$0 \$0 \$0 \$4,764,794 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.00033 0.00084 0.00000

Exhibit 3-50 Equipment List for Case 1 and 1a

ACCOUNT 1 FUEL AND SORBENT HANDLING

Equipment No.	Description Type		Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Bottom Trestle Dumper and Receiving Hoppers N/A		181 tonne (200 ton)	181 tonne (200 ton)	2 (0)
2	Feeder	Belt	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)	2 (0)
3	Conveyor No. 1	Belt	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
4	Transfer Tower No. 1	Enclosed	N/A	N/A	1 (0)
5	Conveyor No. 2 Belt		1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
6	As-Received Coal Sampling System	Two-stage	N/A	N/A	1 (0)
7	Stacker/Reclaimer	Traveling, linear	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
8	Reclaim Hopper	N/A	45 tonne (50 ton)	36 tonne (40 ton)	2 (1)
9	Feeder	Vibratory	191 tonne/hr (210 tph)	154 tonne/hr (170 tph)	2 (1)
10	Conveyor No. 3	Belt w/ tripper	372 tonne/hr (410 tph)	318 tonne/hr (350 tph)	1 (0)
11	Crusher Tower	N/A	N/A	N/A	1 (0)
12	Coal Surge Bin w/ Vent Filter	Dual outlet	191 tonne (210 ton)	154 tonne (170 ton)	2 (0)
13	Crusher Impactor reduction		8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	2 (0)
14	As-Fired Coal Sampling System	Swing hammer	N/A	N/A	1 (1)

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
15	Conveyor No. 4	Belt w/tripper	372 tonne/hr (410 tph)	318 tonne/hr (350 tph)	1 (0)
16	Transfer Tower No. 2	Enclosed	N/A	N/A	1 (0)
17	Conveyor No. 5	Belt w/ tripper	372 tonne/hr (410 tph)	318 tonne/hr (350 tph)	1 (0)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	816 tonne (900 ton)	726 tonne (800 ton)	3 (0)
19	Limestone Truck Unloading Hopper	N/A	36 tonne (40 ton)	36 tonne (40 ton)	1 (0)
20	Limestone Feeder	Belt	100 tonne/hr (110 tph)	82 tonne/hr (90 tph)	1 (0)
21	Limestone Conveyor No. L1	Belt	100 tonne/hr (110 tph)	82 tonne/hr (90 tph)	1 (0)
22	Limestone Reclaim Hopper	N/A	18 tonne (20 ton)	18 tonne (20 ton)	1 (0)
23	Limestone Reclaim Feeder Belt		73 tonne/hr (80 tph)	64 tonne/hr (70 tph)	1 (0)
24	Limestone Conveyor No. L2 Belt		73 tonne/hr (80 tph)	64 tonne/hr (70 tph)	1 (0)
25	Limestone Day Bin	w/ actuator	299 tonne (330 ton)	254 tonne (280 ton)	2 (0)

ACCOUNT 2

COAL AND SORBENT PREPARATION AND FEED

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Coal Feeder	Gravimetric	45 tonne/hr (50 tph)	36 tonne/hr (40 tph)	6 (0)
2	Coal Pulverizer	Ball type or equivalent	45 tonne/hr (50 tph)	36 tonne/hr (40 tph)	6 (0)
3	Limestone Weigh Feeder	Gravimetric	25 tonne/hr (28 tph)	21 tonne/hr (23 tph)	1 (1)

Equipment No.	Description Type		Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
4	Limestone Ball Mill	Rotary	25 tonne/hr (28 tph)	21 tonne/hr (23 tph)	1 (1)
5	Limestone Mill Slurry Tank with Agitator	N/A	98,421 liters (26,000 gal)	83,279 liters (22,000 gal)	1 (1)
6	Limestone Mill Recycle Pumps	Horizontal centrifugal	1,628 lpm @ 12m H ₂ O (430 gpm @ 40 ft H ₂ O)	1,363 lpm @ 12m H ₂ O (360 gpm @ 40 ft H ₂ O)	1 (1)
7	Hydroclone Classifier	droclone Classifier 4 active cyclones in a 5-cyclone bank		341 lpm (90 gpm) per cyclone	1 (1)
8	Distribution Box	2-way	N/A	N/A	1 (1)
9	Limestone Slurry Storage Tank with Agitator Field erected		545,099 liters (144,000 gal)	458,035 liters (121,000 gal)	1 (1)
10	Limestone Slurry Feed Pumps Horizontal centrifugal		$\begin{array}{c} 1,136 \ lpm @ 9m \ H_2O \ (300 \ gpm \\ @ 30 \ ft \ H_2O) \end{array}$	946 lpm @ 9m H ₂ O (250 gpm @ 30 ft H ₂ O)	1 (1)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equip ment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	995,563 liters (263,000 gal)	1,018,276 liters (269,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	23,470 lpm @ 213 m H ₂ O (6,200 gpm @ 700 ft H ₂ O)	23,848 lpm @ 213 m H ₂ O (6,300 gpm @ 700 ft H ₂ O)	1 (1)

Equip ment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
3	Deaerator and Storage Tank	Horizontal spray type	1,658,787 kg/hr (3,657,000 lb/hr)	1,101,555 liters (291,000 gal)	1 (0)
4	Boiler Feed Pump/Turbine	Barrel type, multi-stage, centrifugal	28,012 lpm @ 3,444 m H ₂ O (7,400 gpm @ 11,300 ft H ₂ O)	25,741 lpm @ 213 m H ₂ O (6,800 gpm @ 700 ft H ₂ O)	1 (1)
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi-stage, centrifugal	8,328 lpm @ 3,444 m H ₂ O (2,200 gpm @ 11,300 ft H ₂ O)	1,832,060 kg/hr (4,039,000 lb/hr), 5 min. tank	1 (0)
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	703,068 kg/hr (1,550,000 lb/hr)	30,662 lpm @ 3,444 m H ₂ O (8,100 gpm @ 11,300 ft H ₂ O)	2 (0)
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	703,068 kg/hr (1,550,000 lb/hr)	9,085 lpm @ 3,444 m H ₂ O (2,400 gpm @ 11,300 ft H ₂ O)	2 (0)
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	703,068 kg/hr (1,550,000 lb/hr)	766,571 kg/hr (1,690,000 lb/hr)	2 (0)
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	703,068 kg/hr (1,550,000 lb/hr)	766,571 kg/hr (1,690,000 lb/hr)	2 (0)
10	HP Feedwater Heater 6	Horizontal U-tube	1,660,148 kg/hr (3,660,000 lb/hr)	766,571 kg/hr (1,690,000 lb/hr)	1 (0)
11	HP Feedwater Heater 7	Horizontal U-tube	1,660,148 kg/hr (3,660,000 lb/hr)	766,571 kg/hr (1,690,000 lb/hr)	1 (0)
12	HP Feedwater heater 8	Horizontal U-tube	1,660,148 kg/hr (3,660,000 lb/hr)	1,832,513 kg/hr (4,040,000 lb/hr)	1 (0)
13	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1,832,513 kg/hr (4,040,000 lb/hr)	1 (0)
14	Fuel Oil System	No. 2 fuel oil for light off	1,135,624 liter (300,000 gal)	1,832,513 kg/hr (4,040,000 lb/hr)	1 (0)

Equip ment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
15	Service Air Compressors	Flooded Screw	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2 (1)
16	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1,000 scfm)	28 m ³ /min (1,000 scfm)	2 (1)
17	Closed Cycle Cooling Heat Exchangers	Shell and tube	53 GJ/hr (50 MMBtu/hr) each	53 GJ/hr (50 MMBtu/hr) each	2 (0)
18	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	2 (1)
19	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1 (1)
20	Fire Service Booster Pump	Two-stage horizontal centrifugal	$\begin{array}{c} 2,650 \text{ lpm } @ \ 64 \text{ m } \text{H}_2\text{O} \\ 210 \text{ ft } \text{H}_2\text{O} \end{array} (700 \text{ gpm } @ \\ \end{array}$	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	1 (1)
21	Raw Water Pumps	Stainless steel, single suction	$\begin{array}{c} 16,\!996 \text{ lpm } @ \ 43 \text{ m } \text{H}_2\text{O} \\ @ \ 140 \text{ ft } \text{H}_2\text{O} \end{array} (4,\!490 \text{ gpm} \\ \end{array}$	16,050 lpm @ 43 m H_2O (4,240 gpm @ 140 ft H_2O)	2 (1)
22	Filtered Water Pumps	Stainless steel, single suction	568 lpm @ 49 m H ₂ O (150 gpm @ 160 ft H ₂ O)	568 lpm @ 49 m H ₂ O (150 gpm @ 160 ft H ₂ O)	2 (1)
23	Filtered Water Tank	Vertical, cylindrical	541,314 liter (143,000 gal)	541,314 liter (143,000 gal)	1 (0)
24	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionization unit	681 lpm (180 gpm)	719 lpm (190 gpm)	1 (1)
25	Liquid Waste Treatment System		10 years, 24-hour storm	10 years, 24-hour storm	1 (0)

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Boiler	Supercritical, drum, wall-fired, low NOx burners, overfire air	1,787,154 kg/hr steam @ 25.5 MPa/607°C/629°C (3,940,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	1,941,375 kg/hr steam @ 25.5 MPa/607°C/629°C (4,280,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	1 (0)
2	Primary Air Fan	Centrifugal	185,066 kg/hr, 2,223 m ³ /min @ 47 cm WG (408,000 lb/hr, 78,500 acfm @ 19 in. WG)	156,036 kg/hr, 1,889 m ³ /min @ 47 cm WG (344,000 lb/hr, 66,700 acfm @ 19 in. WG)	2 (0)
3	Forced Draft Fan	Centrifugal	602,371 kg/hr, 7,238 m ³ /min @ 123 cm WG (1,328,000 lb/hr, 255,600 acfm @ 48 in. WG)	508,477 kg/hr, 6,145 m ³ /min @ 123 cm WG (1,121,000 lb/hr, 217,000 acfm @ 48 in. WG)	2 (0)
4	Induced Draft Fan	Centrifugal	1,178,433 kg/hr, 20,252 m ³ /min @ 95 cm WG (2,598,000 lb/hr, 715,200 acfm @ 37 in. WG)	998,357 kg/hr, 17,242 m ³ /min @ 95 cm WG (2,201,000 lb/hr, 608,900 acfm @ 37 in. WG)	2 (0)
5	ASU Main Air Compressor	Centrifugal, multi- stage	21,323 m ³ /min @ 1.5 MPa (753,000 scfm @ 215 psia)	20,020 m ³ /min @ 1.5 MPa (707,000 scfm @ 215 psia)	2 (0)
6	Advanced Membrane ASU	Vendor design	5,987 tonne/day (6,600 tpd) of 100% purity oxygen	5,080 tonne/day (5,600 tpd) of 100% purity oxygen	2 (0)
7	Nitrogen Expander	Centrifugal, multi- stage	18,208 m ³ /min @ 0.1 MPa (643,000 scfm @ 015 psia)	21,436 m ³ /min @ 0.1 MPa (757,000 scfm @ 015 psia)	2 (0)
8	Recuperator	Single pass, multi- stage	1,023 GJ/hr (970 MMBtu/hr), Inlet N ₂ temperature 330°C (625°F), Inlet O ₂ temperature 802°C (1,475°F), N ₂ temperature decrease 264°C (475°F), O ₂ temperature decrease 736°C (1,325°F)	1,308 GJ/hr (1,240 MMBtu/hr), Inlet N ₂ temperature 330°C (625°F), Inlet O ₂ temperature 802°C (1,475°F), N ₂ temperature decrease 270°C (485°F), O ₂ temperature decrease 736°C (1,325°F)	2 (0)

ACCOUNT 4 BOILER AND ACCESSORIES

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
9	PreHeater	Single pass, heat exchanger	N/A	528 GJ/hr (501 MMBtu/hr), Inlet air temperature 391°C (735°F), air temperature increase 181°C (326°F)	1 (0)
10	NG Combustor	Vendor design	N/A	823 GJ/hr (780 MMBtu/hr), Inlet air temperature 572°C (1,061°F), air temperature increase 230°C (414°F)	1 (0)

ACCOUNT 5 FLUE GAS CLEANUP

Equi pmen t No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Fabric Filter	Single stage, high- ratio with pulse-jet online cleaning system	1,178,433 kg/hr (2,598,000 lb/hr) 99.8% efficiency	998,357 kg/hr (2,201,000 lb/hr) 99.8% efficiency	2 (0)
2	Absorber Module	Counter-current open spray	39,927 m ³ /min (1,410,000 acfm)	34,009 m ³ /min (1,201,000 acfm)	1 (0)
3	Recirculation Pumps	Horizontal centrifugal	140,060 lpm @ 64 m H2O (37,000 gpm @ 210 ft H2O)	117,348 lpm @ 64 m H ₂ O (31,000 gpm @ 210 ft H ₂ O)	5 (1)
4	Bleed Pumps	Horizontal centrifugal	4,959 lpm (1,310 gpm) at 20 wt% solids	4,164 lpm (1,100 gpm) at 20 wt% solids	2 (1)

Equi pmen t No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
5	Oxidation Air Blowers	Centrifugal	24 m ³ /min @ 0.3 MPa (840 acfm @ 42 psia)	18 m ³ /min @ 0.3 MPa (640 acfm @ 42 psia)	2 (1)
6	Agitators	Side entering	50 hp	50 hp	5 (1)
7	Dewatering Cyclones	Radial assembly, 5 units each	1,249 lpm (330 gpm) per cyclone	1,060 lpm (280 gpm) per cyclone	2 (0)
8	Vacuum Filter Belt	Horizontal belt	39 tonne/hr (43 tph) of 50 wt % slurry	33 tonne/hr (36 tph) of 50 wt % slurry	2 (1)
9	Filtrate Water Return Pumps	Horizontal centrifugal	757 lpm @ 12 m H ₂ O (200 gpm @ 40 ft H ₂ O)	644 lpm @ 12 m H ₂ O (170 gpm @ 40 ft H ₂ O)	1 (1)
10	Filtrate Water Return Storage Tank	Vertical, lined	492,104 lpm (130,000 gal)	416,395 lpm (110,000 gal)	1 (0)
11	Process Makeup Water Pumps	Horizontal centrifugal	454 lpm @ 21 m H ₂ O (120 gpm @ 70 ft H ₂ O)	379 lpm @ 21 m H ₂ O (100 gpm @ 70 ft H ₂ O)	1 (1)

ACCOUNT 5B CARBON DIOXIDE RECOVERY

Equipme nt No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	CO ₂ Compressor	Centrifugal	295,808 kg/h @ 15.3 MPa (652,146 lb/h @ 2,215 psia)	249,507 kg/h @ 15.3 MPa (550,069 lb/h @ 2,215 psia)	2 (0)

ACCOUNT 7	HRSG, D	UCTING & STACK			
Equipment No.	Descriptio n	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Stack	Reinforced concrete with FRP liner	46 m (150 ft) high x 3.4 m (11 ft) diameter	46 m (150 ft) high x 3.2 m (10 ft) diameter	1 (0)

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

Equipment No.	Description	Type Case 1 Design Condition		Case 1a Design Condition	Operating Qty. (Spares)
1	Steam Turbine	Commercially available advanced steam turbine	653 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	697 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	730 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	770 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	3,112 GJ/hr (2,950 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	31020 GJ/hr (2,940 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

ACCOUNT 9 COOLING WATER SYSTEM

Equipment No.	Description	Type Case 1 Design Condition		Case 1a Design Condition	Operating Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	776,000 lpm @ 30 m (205,000 gpm @ 100 ft)	734,400 lpm @ 30 m (194,000 gpm @ 100 ft)	2 (1)

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 4,326 GJ/hr (4,100 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 4,094 GJ/hr (3,880 MMBtu/hr) heat duty	1 (0)

ACCOUNT 10

ASH/SPENT SORBENT RECOVERY AND HANDLING

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	Economizer Hopper (part of boiler scope of supply)				4 (0)
2	Bottom Ash Hopper (part of boiler scope of supply)				2 (0)
3	Clinker Grinder		5.4 tonne/hr (6 tph)	4.5 tonne/hr (5 tph)	1 (1)
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)				6 (0)
5	Hydroejectors				12 (1)
6	Economizer /Pyrites Transfer Tank				1 (0)
7	Ash Sluice Pumps	Vertical, wet pit	189 lpm @ 17 m H ₂ O (50 gpm @ 56 ft H ₂ O)	151 lpm @ 17 m H ₂ O (40 gpm @ 56 ft H ₂ O)	1 (1)

Equipment No.	Description	on Type Case 1 Design Condition		Case 1a Design Condition	Operating Qty. (Spares)
8	Ash Seal Water Pumps	Vertical, wet pit	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	1 (1)
9	Hydrobins		189 lpm (50 gpm)	151 lpm (40 gpm)	1 (1)
10	Baghouse Hopper (part of baghouse scope of supply)				24 (0)
11	Air Heater Hopper (part of boiler scope of supply)				10 (0)
12	Air Blower		18 m ³ /min @ 0.2 MPa (620 scfm @ 24 psi)	15 m ³ /min @ 0.2 MPa (530 scfm @ 24 psi)	1 (1)
13	Fly Ash Silo	Reinforced concrete	590 tonne (1,300 ton)	499 tonne (1,100 ton)	2 (0)
14	Slide Gate Valves				2 (0)
15	Unloader				1 (0)
16	Telescoping Unloading Chute		109 tonne/hr (120 tph)	91 tonne/hr (100 tph)	1 (0)

Equipment No.	Description	Type Case 1 Design Condition		Case 1a Design Condition	Operating Qty. (Spares)
1	STG Transformer	Oil-filled	24 kV/345 kV, 240 MVA, 3-ph, 60 Hz	24 kV/345 kV, 330 MVA, 3-ph, 60 Hz	1 (0)
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 458 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 424 MVA, 3-ph, 60 Hz	1 (1)
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 69 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 64 MVA, 3-ph, 60 Hz	1 (1)
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz	1 (0)
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz	1 (1)
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz	1 (1)
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

ACCOUNT 11 ACCESSORY ELECTRIC PLANT

Equipment No.	Description	Туре	Case 1 Design Condition	Case 1a Design Condition	Operating Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	Fully redundant, 25% spare	1 (0)

ACCOUNT 12 INSTRUMENTATION AND CONTROL

3.4 CASE 4 – SUPERCRITICAL CO-SEQUESTRATION PROCESS

Case 4 does not use an FGD system, which means that the process is designed to capture CO_2 together with contaminants such as sulfur. This system is theoretically possible in an oxycombustion configuration due to the ability to co-sequester all flue gas constituents. However, since oxycombustion involves inert removal prior to firing, this causes the sulfur concentration in the flue gas stream to increase. For instance, for air-fired cases that utilize the same design fuel as this study, the boiler SO₂ concentrations are approximately 2,500 ppm. For Case 4, the sulfur concentrations in the boiler are approximately 8,400 ppm (a 3.36-fold increase in sulfur concentration from the air-fired case). Since current practical design limits for boiler materials to avoid excess corrosion is about a 3.5 percent sulfur coal (or approximately 3,500 ppm SO₂ in the flue gas), sulfur tolerant materials would be required for the boiler system, induced, forced, and primary air fans, and the baghouse for Case 4 of this study.

Similar to the current technology case (but without a wet FGD), major components for Case 4 include the following:

- 1. Conventional cryogenic ASU
- 2. PC boiler operating at supercritical steam conditions
- 3. Baghouse to remove particulates
- 4. CPU with compression to 15.3 MPa (2,215 psia)
- 5. Steam Turbine/generator

Block Flow Diagram and Stream Table

A process BFD for the supercritical CO_2 co-sequestration Case 4 is shown in Exhibit 3-51, and the corresponding stream tables are shown in Exhibit 3-52.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-53 and Exhibit 3-54.

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-55. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-56 through Exhibit 3-58.

Performance Summary

A performance summary is provided in Exhibit 3-59.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-60 through Exhibit 3-62, respectively.

Equipment List

In the interest of consolidation, the <u>combined</u> equipment list for Case 4 through Case 7 is shown in Exhibit 3-99.

Exhibit 3-51 Process Block Flow Diagram for Case 4

	1	2	3	4	5	6	7	8	9	10	11	12	13
V-L Mole Fraction													
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0251	0.0251	0.0275	0.0275	0.0000	0.0092	0.0000
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.5692	0.5692	0.4139	0.4139	0.0000	0.0005	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.3047	0.3047	0.2215	0.2215	0.0000	0.0101	0.0000
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0697	0.0697	0.0551	0.0551	0.0000	0.7729	0.0000
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0230	0.0230	0.2758	0.2758	0.0000	0.2074	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0084	0.0084	0.0061	0.0061	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000
V-L Flowrate (kg _{mol} /hr)	72,546	72,546	57,084	15,462	3,634	11,829	9,685	31,527	13,318	43,355	0	1,451	0
V-L Flowrate (kg/hr)	2,093,396	2,093,396	1,595,430	497,966	117,022	380,944	336,687	1,096,022	453,709	1,476,966	0	41,868	0
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	229,991	0	4,471
Temperature (°C)	15	24	17	13	13	13	222	215	176	170	15	15	15
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	632.51	623.68	472.33	465.78		30.57	
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	0.9	0.9	1.0	1.0		1.2	
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	34.765	34.765	34.066	34.066		28.856	
V-L Flowrate (lb _{mol} /hr)	159,937	159,937	125,848	34,089	8,011	26,078	21,351	69,504	29,362	95,582	0	3,199	0
V-L Flowrate (lb/hr)	4,615,147	4,615,148	3,517,322	1,097,827	257,989	839,837	742,267	2,416,315	1,000,256	3,256,153	0	92,303	0
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	507,043	0	9,857
Temperature (°F)	59	75	63	55	56	56	432	418	349	338	59	59	59
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	271.9	268.1	203.1	200.2		13.1	
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.059	0.057	0.064	0.061		0.076	
	A - Refere	nce conditi	ons are 32.	02 F & 0.0	89 PSIA								

Exhibit 3-52 Stream Table for Case 4

	14	15	16	17	18	19	20	21	22	23	24	25	26
V-L Mole Fraction													
Ar	0.0251	0.0000	0.0000	0.0251	0.0251	0.0251	0.0251	0.0251	0.0304	0.0360	0.0000	0.0361	0.0361
CO ₂	0.5692	0.0000	0.0000	0.5692	0.5692	0.5692	0.5692	0.5692	0.6905	0.8171	0.0000	0.8184	0.8184
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.3047	1.0000	0.0000	0.3047	0.3047	0.3047	0.3047	0.3047	0.1564	0.0017	1.0000	0.0002	0.0002
N ₂	0.0697	0.0000	0.0000	0.0697	0.0697	0.0697	0.0697	0.0697	0.0846	0.1001	0.0000	0.1003	0.1003
O ₂	0.0230	0.0000	0.0000	0.0230	0.0230	0.0230	0.0230	0.0230	0.0279	0.0330	0.0000	0.0330	0.0330
SO ₂	0.0084	0.0000	0.0000	0.0084	0.0084	0.0084	0.0084	0.0084	0.0102	0.0120	0.0000	0.0120	0.0120
Total	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	62,712	116,611	0	62,712	62,712	41,211	9,685	31,527	17,721	14,976	6,551	14,952	14,952
V-L Flowrate (kg/hr)	2,180,179	2,100,779	0	2,180,179	2,180,179	1,432,709	336,687	1,096,022	679,374	629,909	118,028	629,483	629,483
Solids Flowrate (kg/hr)	17,884	0	17,884	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	204	599	15	204	210	210	210	210	58	100	43	100	35
Pressure (MPa, abs)	0.10	24.23	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.33	0.10	3.33	15.27
Enthalpy (kJ/kg) ^A	682.04	3,493.92		612.21	617.96	617.96	617.96	617.96	236.31	69.77	178.39	68.06	-149.36
Density (kg/m ³)	0.9	68.5		0.9	0.9	0.9	0.9	0.9	1.4	48.5	970.0	48.5	576.2
V-L Molecular Weight	34.765	18.015		34.765	34.765	34.765	34.765	34.765	38.337	42.062	18.017	42.100	42.100
V-L Flowrate (lb _{mol} /hr)	138,256	257,083	0	138,256	138,256	90,855	21,351	69,504	39,068	33,016	14,442	32,964	32,964
V-L Flowrate (lb/hr)	4,806,471	4,631,426	0	4,806,471	4,806,471	3,158,582	742,267	2,416,315	1,497,764	1,388,712	260,207	1,387,771	1,387,771
Solids Flowrate (lb/hr)	39,426	0	39,426	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	400	1,110	59	400	409	409	409	409	136	212	109	212	95
Pressure (psia)	14.4	3,514.7	14.7	14.2	14.7	14.7	14.7	14.7	14.7	483.4	14.7	483.4	2,214.7
Enthalpy (Btu/lb) ^A	293.2	1,502.1		263.2	265.7	265.7	265.7	265.7	101.6	30.0	76.7	29.3	-64.2
Density (lb/ft ³)	0.054	4.274		0.054	0.055	0.055	0.055	0.055	0.089	3.028	60.553	3.030	35.971

Exhibit 3-52 Stream Table for Case 4 (Continued)

Exhibit 3-53 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 4

Exhibit 3-54 Heat and Mass Balance, Power Block Systems for Case 4

	HHV	Sensible + Latent	Power	Total					
	Heat In G	J/hr (MMBtu/hr)							
Coal	6,241 (5,915)	5.2 (4.9)		6,246 (5,920)					
Combustion Air		65.3 (61.9)		65.3 (61.9)					
Raw Water Makeup		113.6 (107.7)		113.6 (107.7)					
Limestone		0.00 (0.00)		0.00 (0.00)					
Auxiliary Power			776 (735)	776 (735)					
Totals	6,241 (5,915)	184.1 (174.5)	776 (735)	7,201 (6,825)					
Heat Out GJ/hr (MMBtu/hr)									
Boiler Loss		57.8 (54.7)		57.8 (54.7)					
Bottom Ash		0.7 (0.6)		0.7 (0.6)					
Fly Ash + FGD Ash		2.7 (2.5)		2.7 (2.5)					
MAC Cooling		401.6 (380.6)		401.6 (380.6)					
ASU Vent		61.7 (58.4)		61.7 (58.4)					
Condenser		3,160 (2,995)		3,160 (2,995)					
CO ₂ Cooling		486 (461)		486 (461)					
CO ₂		-94 (-89)		-94 (-89)					
Wet FGD Cooling		0 (0)		0 (0)					
Process Condensate		21 (20)		21 (20)					
Cooling Tower Blowdown		53.2 (50.4)		53.2 (50.4)					
Process Losses*		351.5 (333.2)		351.5 (333.2)					
Power			2,756 (2,612)	2,756 (2,612)					
Totals		4,445 (4,213)	2,756 (2,612)	7,201 (6,825)					

Exhibit 3-55 Cases 4 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Car	bon In	Carbon Out				
kg/h	r (lb/hr)	kg/hr	(lb/hr)			
Coal	146,974 (324,022)	CO ₂ Product	146,980 (324,036)			
Air (CO ₂)	408 (899)	FGD Product	0 (0)			
FGD Reagent	0 (0)	Separated Air	400 (882)			
		Convergence Tolerance*	1 (3)			
Total	147,382 (324,921)	Total	147,382 (324,921)			

Exhibit 3-56 Case 4 Carbon Balance

*by difference

Sulfur In		Sulfur Out			
kg/hr (lb/hr)		kg/hr (lb/hr)			
Coal	5,778 (12,739)	CO ₂ Compression Knockout	6 (14)		
		CO ₂ Product	5,772 (12,725)		
		Convergence Tolerance*	0 (0)		
Total	5,778 (12,739)	Total	5,778 (12,739)		

Exhibit 3-57 Case 4 Sulfur Balance

*by difference

Exhibit 3-58 Case 4 Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption		
	m ³ /min (gpm)	m ³ /min (gpm)					
FGD Makeup	0.00 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)		
BFW Makeup	0.35 (93)	0.0 (0)	0.35 (93)	0.0 (0)	0.35 (93)		
Cooling Tower	31.8 (8,403)	1.97 (520)	29.8 (7,883)	7.15 (1,890)	22.69 (5,993)		
Total	32.2 (8,496)	1.97 (520)	30.2 (7,976)	7.15 (1,890)	23.04 (6,086)		

Plant Output									
Steam Turbine Power	765,500	kW _e							
Gross Power	765,500	kWe							
Auxiliary Load									
Coal Handling and Conveying	480	kW _e							
Limestone Handling & Reagent Preparation	0	kW _e							
Pulverizers	3,450	kW _e							
Ash Handling	660	kW _e							
Primary Air Fans	1,410	kWe							
Forced Draft Fans	1,800	kW _e							
Induced Draft Fans	3,610	kW _e							
Air Separation Unit Main Air Compressor	115,970	kW _e							
ASU Auxiliaries	1,000	kW _e							
Baghouse	90	kW _e							
FGD Pumps and Agitators	0	kWe							
CO ₂ Compression	67,770	kWe							
Condensate Pumps	1,020	kWe							
Boiler Feedwater Booster Pumps ²	N/A	kW _e							
Miscellaneous Balance of Plant ³	2,000	kW _e							
Steam Turbine Auxiliaries	400	kW _e							
Circulating Water Pumps	8,170	kWe							
Cooling Tower Fans	4,770	kWe							
Transformer Losses	2,880	kW _e							
Total	215,480	kW _e							
Plant Perform	ance								
Net Auxiliary Load	215,480	kW _e							
Net Plant Power	550,020	kWe							
Net Plant Efficiency (HHV)	31.7%								
Net Plant Heat Rate (HHV)	11,347 (10,754)	kJ/kWhr (Btu/kWhr)							
Coal Feed Flowrate	229,991 (507,043)	kg/hr (lb/hr)							
Thermal Input	1,733,562	kW _{th}							
Condenser Duty	3,160 (2,995)	GJ/hr (MMBtu/hr)							
Raw Water Usage	30.2 (7,976)	m³/min (gpm)							
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)							
2 - Boiler feed pumps are turbine driven									

Exhibit 3-59 Case 4 Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

		Dep	partment:	NETL Office of I	vsis							Cost Base:	June 2007			
			Project:	Advancing Oxycombustion Technology										Prepared:	13-Apr-12	
			Case:	Case 4 - Co-sequestration		0,									x \$1, 000	
		Pla	lant Size:	550	MW, net		Capital C	harge Factor	0.158	Capacity	Factor	0.85				
				Equipment	Material	Lab	or	Bare	Eng'g	CM H.O. &	Proces	ss Cont.	Proj	ect Cont.	TOTAL PLA	ANT COST
Aco	ct No.	Item/Description		Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM		-	-		·									
	1.1	Coal Receive & Unload		3,759	0	1,717	0	5,477	8.9%	489	0%	0	15.0%	895	6,860	12
	1.2	Coal Stackout & Reclaim		4,859	0	1,101	0	5,959	8.8%	522	0%	0	15.0%	972	7,453	14
	1.3	Coal Conveyors & Yd Crus		4,517	0	1,089	0	5,606	8.8%	491	0%	0	15.0%	915	7,013	13
	1.4	Other Coal Handling		1,182	0	252	0	1,434	8.7%	125	0%	0	15.0%	234	1,793	3
	1.5	Sorbent Receive & Unload		0	0	0	0	0	8.8%	0	0%	0	15.0%	0	0	0
	1.6	Sorbent Stackout & Reclaim		0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
	1.7	Sorbent Conveyors		0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
	1.8	Other Sorbent Handling		0	0	0	0	0	8.8%	0	0%	0	15.0%	0	0	0
	1.9	Coal & Sorbent Hnd.Foundations		0	4,355	5,494	0	9,848	9.3%	921	0%	0	15.0%	1,615	12,384	23
		S	SUBTOTAL 1.	\$14,317	\$4,355	\$9,653	\$0	\$28,325		\$2,548		\$0		\$4,631	\$35,504	\$65
2		COAL PREP & FEED SYSTEMS														
	2.1	Coal Crushing & Drying		2,169	0	423	0	2,591	8.7%	226	0%	0	15.0%	423	3,240	6
	2.2	Prepared Coal Storage & Feed		5,552	0	1,212	0	6,764	8.7%	592	0%	0	15.0%	1,103	8,459	15
	2.3	Slurry Prep & Feed		0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed		0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment		0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
	2.6	Sorbent Storage & Feed		0	0	0	0	0	8.9%	0	0%	0	15.0%	0	0	0
	2.7	Sorbent Injection System		0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System		0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation		0	512	430	0	942	9.2%	87	0%	0	15.0%	154	1,184	2
		S	SUBTOTAL 2.	\$7,721	\$512	\$2,065	\$0	\$10,298		\$904		\$0		\$1,680	\$12,883	\$23
3		FEEDWATER & MISC. BOP SYSTEMS			-		-									
	3.1	Feedwater System		20,991	0	6,781	0	27,772	8.8%	2,432	0%	0	15.0%	4,531	34,734	63
	3.2	Water Makeup & Pretreating		5,187	0	1,670	0	6,856	9.4%	643	0%	0	20.0%	1,500	8,999	16
	3.3	Other Feedwater Subsystems		6,426	0	2,716	0	9,142	8.9%	815	0%	0	15.0%	1,494	11,451	21
	3.4	Service water Systems		1,017	0	553	0	1,570	9.3%	146	0%	0	20.0%	343	2,059	4
	3.5	Other Boller Plant Systems		7,907	0	7,807	0	15,714	9.4%	1,4/4	0%	0	15.0%	2,578	19,766	36
	3.6	FO Supply Sys & Nat Gas		266	0	333	0	599	9.3%	56	0%	0	15.0%	98	752	1
_	3.7	Waste Treatment Equipment		1,085	0	619	0	1,704	9.7%	165	0%	0	20.0%	374	2,243	4
	3.8	Misc. Power Plant Equipment		2,825	0	604 240	0	3,088	9.6%	354	0%	0	20.0%	808	4,850	9
4			OBTOTAL 3.	\$45,704	φU	⊅ 21,340	φU	Ф 07,044		\$0,004		φU		\$11,725	 \$04,034	\$104
4	11	PC Boiler & ACCESSORIES		170 774	0	100 871	0	280 645	0.7%	27 183	15%	42 007	10.0%	34 003	38/ 018	700
_	4.1	ASI //Oxidant Compression		110,174	0	00.344	0	200,043	9.7%	10 1/6	0%	42,037	10.0%	22 021	242 231	100
_	4.2			110,420	0	90,344	0	200,764	9.7%	19,440 A	0%	0	0.0%	22,021	242,231	440
_	4.3	Boiler BoB (w/ID Eans)		0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
_	4.4	Primary Air System		w/4_1	0	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
_	4.5	Secondary Air System		w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
_	4.0	Major Component Rigging		w/4.1	W/A 1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
_	4.7	PC Foundations		0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
	u			\$290 104	¢0	\$101 215	\$0	\$481 400	070	\$46 630	070	\$42 007	0.070	\$57.014	\$627 140	\$1 140
		3	JUDIAL 4.	ψ£30,134	ψU	ψισι,213	φυ	ψτυ 1,409		ψ-τ0,030		Ψ Τ Δ,037		ψ37,014	ψ0∠1,149	φι,ι+υ

Exhibit 3-60 Case 4 Capital Costs
			Equipment	ent Material Labor		Bare	Eng'g	CM H.O. & Process Cont.		ss Cont.	Cont. Project Cont.		TOTAL PLANT COST		
Ac	ct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A		FLUE GAS CLEANUP							*						
	5.1	Absorber Vessels & Accessories	0	0	0	0	C	9.5%	0	0%	0	10.0%	0	0	0
	5.2	Other FGD	0	0	0	0	C	9.6%	0	0%	0	10.0%	0	0	0
	5.3	Bag House & Accessories	15,415	0	9,782	0	25,197	9.6%	2,410	0%	0	10.0%	2,761	30,368	55
	5.4	Other Particulate Removal Materials	1,017	0	1,088	0	2,105	9.6%	203	0%	0	10.0%	231	2,538	5
	5.5	Gypsum Dewatering System	0	0	0	0	C	9.4%	0	0%	0	10.0%	0	0	0
	5.6	Mercury Removal System	0	0	0	0	C	0.0%	0	0%	0	0.0%	0	0	0
	5.7	Open	0	0	0	0	C	0.0%	0	0%	0	0.0%	0	0	0
	5.8	Open	0	0	0	0	C	0.0%	0	0%	0	0.0%	0	0	0
	5.9	Open	0	0	0	0	C	0.0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 5A.	\$16,431	\$0	\$10,870	\$0	\$27,302	2	\$2,613		\$0		\$2,991	\$32,906	\$60
5B		CO2 REMOVAL & COMPRESSION													
	5B.1	CO2 Condensing Heat Exchanger	3,975	0	332	0	4,307	10%	431	0%	0	15.0%	711	5,449	10
	5B.2	CO2 Compression & Drying	40,582	0	33,204	0	73,786	10%	7,379	0%	0	20.0%	16,233	97,398	177
	5B.3	CO2 Pipeline											0	0	0
	5B.4	CO2 Storage											0	0	0
	5B.5	CO2 Monitoring											0	0	0
		SUBTOTAL 5B.	\$44,558	\$0	\$33,536	\$0	\$78,094	l.	\$7,809		\$0		\$16,944	\$102,847	\$187
6		NITROGEN EXPANDER/GENERATOR													
	6.1	Nitrogen Expander/Generator	0	0	0	0	C	10%	0	0%	0	0.0%	0	0	0
	6.2	Nitrogen Expander/Generator Accessories	0	0	0	0	C	10%	0	0%	0	0.0%	0	0	0
	6.3	Compressed Air Piping	0	0	0	0	C	10%	0	0%	0	0.0%	0	0	0
	6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	C	10%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	\$0
7		HRSG, DUCTING & STACK													
	7.1	Flue Gas Recycle Heat Exchanger	0	0	0	0	C	10%	0	0%	0	15.0%	0	0	0
	7.2	SCR System	0	0	0	0	C	0%	0	0%	0	0.0%	0	0	0
	7.3	Ductwork	9,062	0	5,822	0	14,884	8.7%	1,300	10%	1,488	15.0%	2,651	20,323	37
	7.4	Stack	1,617	0	946	0	2,563	9.6%	245	0%	0	10.0%	281	3,088	6
	7.9	HRSG, Duct & Stack Foundations	0	852	968	0	1,819	9.3%	170	0%	0	20.0%	398	2,386	4
		SUBTOTAL 7.	\$10,678	\$852	\$7,736	\$0	\$19,266	i	\$1,714		\$1,488		\$3,329	\$25,798	\$47
8		STEAM TURBINE GENERATOR													
	8.1	Steam TG & Accessories	61,098	0	8,108	0	69,206	9.6%	6,626	0%	0	10.0%	7,583	83,416	152
	8.2	Turbine Plant Auxiliaries	411	0	881	0	1,293	9.7%	125	0%	0	10.0%	142	1,560	3
	8.3	Condenser & Auxiliaries	7,294	0	2,688	0	9,982	9.5%	949	0%	0	10.0%	1,093	12,024	22
	8.4	Steam Piping	19,690	0	9,708	0	29,398	8.3%	2,454	0%	0	15.0%	4,778	36,630	67
	8.9	TG Foundations	0	1,288	2,035	0	3,324	9.4%	313	0%	0	20.0%	727	4,364	8
		SUBTOTAL 8.	\$88,494	\$1,288	\$23,422	\$0	\$113,204		\$10,467		\$0		\$14,323	\$137,994	\$251
9		COOLING WATER SYSTEM													
	9.1	Cooling Towers	12,056	0	3,754	0	15,810	9.5%	1,501	0%	0	10.0%	1,731	19,043	35
	9.2	Circulating Water Pumps	2,097	0	161	0	2,258	8.6%	193	0%	0	10.0%	245	2,697	5
	9.3	Circ. Water System Auxiliaries	570	0	76	0	646	9.4%	61	0%	0	10.0%	71	777	1
	9.4	Circ. Water Piping	0	4,516	4,376	0	8,892	9.2%	819	0%	0	15.0%	1,457	11,168	20
	9.5	Make-up Water System	498	0	665	0	1,163	9.5%	110	0%	0	15.0%	191	1,464	3
	9.6	Component Cooling Water System	451	0	359	0	810	9.4%	76	0%	0	15.0%	133	1,019	2
	9.9	Circ. Water System Foundations	0	2,743	4,358	0	7,100	9.4%	668	0%	0	20.0%	1,554	9,323	17
		SUBTOTAL 9.	\$15,672	\$7,258	\$13,750	\$0	\$36,680		\$3,429		\$0		\$5,381	\$45,490	\$83

Exhibit 3-60 Case 4 Capital Costs (continued)

			Fauinment	Material	Lah	Labor		Bare Englg		Ena'a CM H.O. & Process Co			ess Cont. Project Cont.		TOTAL PLANT COST	
Acct N	lo.	Item/Description	Cost	Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW	
10		ASH/SPENT SORBENT HANDLING SYS	000	000	2		Littlica			70		,,		Ŧ	4/111	
1	0.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	0.2	Cyclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	0.3	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	0.0	High Temperature Ash Pining	Ν/Δ	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	0.5	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	0.6	Ash Storage Silos	651	0	2 005	0	2 656	9.7%	259	0%	0	10.0%	201	3 206	6	
1	0.0	Ash Transport & Feed Equipment	4 212	0	4 315	0	2,000	0.5%	806	0%	0	10.0%	033	10,266	10	
1	0.7	Misc. Ash Handling Equipment	4,212	0	4,313	0	0,527	0.0%	000	0%	0	0.0%	333	10,200	19	
1	0.0		0	155	102	0	227	0.076	21	0%	0	20.0%	74	442	1	
	0.3		\$4 863	\$155	\$6 502	02	\$11 510	3.370	\$1.006	078	\$0	20.070	¢1 208	\$13 01/	\$25	
11			φ 4 ,005	\$155	φ0, 30 2	φU	φ11, 3 13		\$1,030		φU		φ1,230	\$13,314	φ23	
11	1 1	Concreter Equipment	1 920	0	207	0	2 126	0.20/	107	09/	0	7 50/	174	2 407	Б	
	1.1	Station Control Equipment	1,029	0	297	0	2,120	9.3%	197	0%	0	7.5%	704	2,497	5	
1	1.2	Station Service Equipment	6,444	0	2,117	0	8,562	9.6%	819	0%	0	7.5%	704	10,084	18	
1	1.3	Switchgear & Motor Control	7,409	0	1,259	0	8,668	9.3%	802	0%	0	10.0%	947	10,418	19	
1	1.4	Conduit & Cable Tray	0	4,645	16,061	0	20,706	9.6%	1,982	0%	0	15.0%	3,403	26,091	47	
1	1.5	Wire & Cable	0	8,765	16,920	0	25,685	8.4%	2,164	0%	0	15.0%	4,177	32,026	58	
1	1.6	Protective Equipment	261	0	888	0	1,149	9.8%	112	0%	0	10.0%	126	1,388	3	
1	1.7	Standby Equipment	1,425	0	33	0	1,458	9.5%	138	0%	0	10.0%	160	1,756	3	
1	1.8	Main Power Transformers	8,208	0	138	0	8,346	7.6%	634	0%	0	10.0%	898	9,879	18	
1	1.9	Electrical Foundations	0	367	899	0	1,265	9.5%	120	0%	0	20.0%	277	1,663	3	
		SUBTOTAL 11.	\$25,577	\$13,777	\$38,612	\$0	\$77,966		\$6,969		\$0		\$10,866	\$95,801	\$174	
12		INSTRUMENTATION & CONTROL													1	
1	2.1	PC Control Equipment	w/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0	
1	2.2	Combustion Turbine Control	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
1	2.3	Steam Turbine Control	w/8.1	0	w/8.1	0	0	0%	0	0%	0	0.0%	0	0	0	
1	2.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0	
1	2.5	Signal Processing Equipment	W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0	
1	2.6	Control Boards, Panels & Racks	557	0	334	0	891	9.6%	86	0%	0	15.0%	147	1,124	2	
1	2.7	Computer Accessories	5,627	0	984	0	6,611	9.5%	630	0%	0	10.0%	724	7,965	14	
1	2.8	Instrument Wiring & Tubing	3,051	0	6,052	0	9,103	8.5%	775	0%	0	15.0%	1,482	11,361	21	
1	2.9	Other I & C Equipment	1,590	0	3,608	0	5,198	9.7%	506	0%	0	10.0%	570	6,275	11	
		SUBTOTAL 12.	\$10,826	\$0	\$10,978	\$0	\$21,804		\$1,997		\$0		\$2,923	\$26,724	\$49	
13		IMPROVEMENTS TO SITE														
1	3.1	Site Preparation	0	54	1,076	0	1,129	9.9%	111	0%	0	20.0%	248	1,489	3	
1	3.2	Site Improvements	0	1,786	2,218	0	4,003	9.8%	393	0%	0	20.0%	879	5,275	10	
1	3.3	Site Facilities	3,200	0	3,155	0	6,355	9.8%	624	0%	0	20.0%	1,396	8,375	15	
		SUBTOTAL 13.	\$3,200	\$1,839	\$6,448	\$0	\$11,488		\$1,128		\$0		\$2,523	\$15,139	\$28	
14		BUILDINGS & STRUCTURES														
1	4.1	Boiler Building	0	8,769	7,712	0	16,481	9.0%	1,480	0%	0	15.0%	2,694	20,655	38	
1	4.2	Turbine Building	0	12,620	11,762	0	24,382	9.0%	2,195	0%	0	15.0%	3,987	30,564	56	
1	4.3	Administration Building	0	631	668	0	1,299	9.1%	118	0%	0	15.0%	213	1.629	3	
1	4.4	Circulation Water Pumphouse	0	130	103	0	234	8.9%	21	0%	0	15.0%	38	293	1	
1	4.5	Water Treatment Buildings	0	672	613	0	1.285	9.0%	115	0%	0	15.0%	210	1.609	3	
1	4.6	Machine Shop	0	422	284	0	706	8.9%	63	0%	0	15.0%	115	884	2	
1	4.7	Warehouse	0	286	287	0	573	9.0%	52	0%	0	15.0%	.10	719	1	
1	4.8	Other Buildings & Structures	0	234	199	0	433	9.0%	39	0%	0	15.0%	71	543	1	
1	4.9	Waste Treating Building & Str	0	443	1 344	0	1 787	9.4%	169	0%	0	15.0%	293	2 249	4	
		SURTOTAL 14	\$0	\$24 208	\$22 971	\$0	\$47 179	0.170	\$4 251	570	\$0		\$7 715	\$59 145	\$108	
		Total Cost	\$578,235	\$54,244	\$399.098	\$0	\$1.031.577	1	\$97,639		\$43 585		\$143,345	\$1 316 146	\$2,393	

Exhibit 3-60 Case 4 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$8,941	\$16
1 Month Maintenance Materials	\$1,291	\$2
1 Month Non-fuel Consumables	\$335	\$1
1 Month Waste Disposal	\$292	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,767	\$3
2% of TPC	\$26,323	\$48
Total	\$38,949	\$71
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$14,426	\$26
0.5% of TPC (spare parts)	\$6,581	\$12
Total	\$21,007	\$38
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$197,422	\$359
Financing Costs	\$35,536	\$65
Total Overnight Costs (TOC)	\$1,609,960	\$2,927
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,825,694	\$3,319

Exhibit 3-61 Case 4 Owner's Costs

		INITIAL	& ANNUAL	O&M EXP	ENSES		
Case: (Case 4 - Co-seque	estration					
Plant Size (N	/We):	550.02			Heat Rate (B	tu/kWh):	10,754
Primary/Seco	ondary Fuel:	Illinois #6 Bir	tuminous Co	al	Fuel Cost (\$/	MM Btu):	1.64
Design/Const	truction	5 years			Book Life (yr	s):	30
TPC (Plant C	ost) Year:	June 2007			TPI Year:		2012
Capacity Fac	ctor (%):	85			CO2 Captured	I (TPD):	14,248
OPERATING	& MAINTENANCE						
Operating La	abor						
Operating L	abor Rate (base)		\$34.65	\$/hour			
Operating L	abor Burden:		30.00	% of base			
Labor Overh	ead Charge:		25.00	% of labor			
	0						
Operating L	abor Requirement	s per Shift:	units/mod.		Total Plant		
5	Skilled Operator		2.0		2.0		
(Operator		9.0	1	9.0		
F	Foreman		1.0	1	1.0		
L	ab Tech's etc.		2.0		2.0		
1	TOTAL Operating	Jobs	14.0		14.0		
						•	¢/1.38/ (
Annual On a		(\$	\$/kW-net
Annual Ope	erating Labor Cost	(calc'd)				5,524,319	10.04
Maintenanc	e Labor Cost (cald	C)				8,781,199	15.97
Administrati	ive & Support Lab	or (calc'd)				3,576,379	6.50
	xes and insurance					26,322,917	47.80
	ED OPERATING	0313				44,204,014	00.37
VARIABLE O	PERATING COST	<u>'S</u>					
						\$	\$/kWh-net
Maintenanc	e Material Costs (calc'd)				\$13,171,902	0.00322
0	1	0		Unit	1		
Consumab	les	Consu	nption /Day	Cont	Initial	¢	¢/Wh not
Water (/100	0 gallons)	0	5 743	1.08	50 St	\$1 927 199	0 00047
Chemicals	ganene)		0,110		ф.	¢1,021,100	0.0001
MU & WT	Chem. (lb)	0	27,798	0.17	\$0	\$1,492,621	0.00036
Limestone	(ton)	0	0	21.63	\$0	\$0	0.0000
Carbon (He	g Removal) (lb)	0	0	1.05	\$0	\$0	0.0000
MEA Solve	ent (ton)	0	0	2249.89	\$0	\$0	0.00000
Caustic So	oda, NaOH (ton)	0	0	433.68	\$0	\$0	0.0000
Sulfuric ac	id, H2SO4 (ton)	0	0	138.78	\$0	\$0	0.0000
Corrosion	Inhibitor	0	0	0.00	\$0	\$0	0.0000
Activated (C, MEA (lb)	0	0	1.05	\$0	\$0	0.0000
Ammonia,	19% soln (ton)	0	0	129.80	\$0	\$0	0.0000
5	Subtotal Chemic	als			\$0	\$1,492,621	0.00036
Other	ntal Eucl (MANAD ()			0.55	<u>۴</u> ۰	ድ	0.0000
Supplement	nial Fuel (MIMBtu)	0	0	5775.04	\$0	\$0	0.00000
SCR Catal	lyst Replacement	w/equip.	0.0	5775.94	\$0	\$0	0.00000
Emission		0	0	0.00	\$0	\$0	0.00000
N/sets Dise					φU	Ф О	0.00000
waste Disp	osai						0.0000
Cocat Mar	Cotol of the line			0.40	m-0	<u>¢</u> _	
Spent Mer	cury Catalyst (lb)	0	0	0.42	\$0	\$0	0.00000
Spent Mer Flyash (tor	rcury Catalyst (lb) n)	0	0 473	0.42	\$0 \$0	\$0 \$2,381,574	0.00000
Spent Mer Flyash (tor Bottom As	rcury Catalyst (lb) n) sh (ton)	0 0 asto Dispess	0 473 118	0.42 16.23 16.23	\$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,076,007	0.00000
Spent Mer Flyash (tor Bottom As	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W	0 0 aste Disposa	0 473 118 al	0.42 16.23 16.23	\$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997	0.00000 0.00058 0.00015 0.00073
Spent Mer Flyash (tor Bottom As By-products	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions	0 0 aste Disposa	0 473 118 al	0.42	\$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997	0.00000
Spent Mer Flyash (tor Bottom As By-products Gypsum (t	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions tons)	0 0 aste Disposa	0 473 118 al	0.42 16.23 16.23 0.00	\$0 \$0 \$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997 \$0	0.00000
Spent Mer Flyash (tor Bottom As S By-products Gypsum (ton Sulfur (ton	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions tons) s) Subtotal By-Prod	0 0 aste Disposa 0 0 0 ucts	0 473 118 al 0 0	0.42 16.23 16.23 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997 \$0 \$0 \$0	0.00000 0.00058 0.00015 0.00073 0.00000 0.00000 0.00000
Spent Mer Flyash (tor Bottom As By-products Gypsum (tor Sulfur (tors	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions tons) s) Subtotal By-Prod	0 0 aste Dispose 0 0 ucts	0 473 118 al 0 0	0.42 16.23 16.23 0.00 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997 \$0 \$0 \$ 0 \$ 0	0.00000 0.00058 0.00015 0.000073 0.000000 0.000000 0.000000
Spent Mer Flyash (tor Bottom As By-products Gypsum (t Sulfur (tor Sulfur (tor Sulfur (tor Sulfur (tor	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions tons) s) Subtotal By-Prod ABLE OPERATIN	0 0 aste Disposa 0 ucts G COSTS	0 473 118 al 0 0	0.42 16.23 16.23 0.00 0.00	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997 \$0 \$0 \$0 \$0 \$19,568,718	0.00000 0.00058 0.00015 0.000073 0.000000 0.000000 0.000000 0.000000
Spent Mer Flyash (tor Bottom As By-products Gypsum (t Sulfur (tor Sulfur (tor	rcury Catalyst (lb) n) sh (ton) Subtotal Solid W s & Emissions tons) s) Subtotal By-Prod ABLE OPERATIN ons)	0 0 aste Disposa 0 ucts G COSTS 0	0 473 118 al 0 0 0	0.42 16.23 16.23 0.00 0.00 38.18	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$0 \$2,381,574 \$595,424 \$2,976,997 \$0 \$0 \$0 \$19,568,718 \$72,081,686	0.00000 0.00058 0.00015 0.00073 0.00000 0.00000 0.00000 0.000478 0.01760

Exhibit 3-62 Case 4 O&M Costs

3.5 CASE 5 – ADVANCED FLUE GAS RECYCLE PROCESS

The advanced FGR system eliminates the FGR superheating system used in the current technology case. The current technology case integrates the low pressure feedwater heating system with the FGR stream to superheat the recycle stream by 8° C (15° F). The primary reason to superheat the recycle stream is to ensure that primary or secondary air streams do not produce condensate in the ducts or enter the air fans at saturated conditions. This case assumes that these problems can be mitigated without the superheating system and upgraded fan, and that burner and coal drying system designs will not be affected by the saturated conditions of the FGR stream.

Similar to the current technology case (but without flue gas recycle superheater), major components for Case 5 include the following:

- 1. Conventional cryogenic ASU
- 2. PC boiler operating at supercritical steam conditions
- 3. Baghouse to remove particulates
- 4. Wet FGD to reduce sulfur emissions
- 5. CPU with compression to 15.3 MPa (2,215 psia)
- 6. Steam Turbine/generator

Block Flow Diagram and Stream Table

A process BFD for Case 5 is shown in Exhibit 3-63, and the corresponding stream tables are shown in Exhibit 3-64.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-65 and Exhibit 3-66:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-67. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-68 through Exhibit 3-70.

Performance Summary

A performance summary is provided in Exhibit 3-71.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-72 through Exhibit 3-74, respectively.

Equipment List

The combined equipment list for Case 4 through Case 7 is shown in Exhibit 3-99.

Exhibit 3-63 Process Block Flow Diagram for Case 5

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
V-L Mole Fraction																
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0308	0.0308	0.0317	0.0317	0.0000	0.0092	0.0000	0.0287	0.0000	0.0000
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.7084	0.7084	0.5063	0.5063	0.0000	0.0005	0.0000	0.6606	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.1522	0.1522	0.1088	0.1088	0.0000	0.0101	0.0000	0.2079	1.0000	0.0000
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0855	0.0855	0.0657	0.0657	0.0000	0.7729	0.0000	0.0801	0.0000	0.0000
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0231	0.0231	0.2874	0.2874	0.0000	0.2074	0.0000	0.0197	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0031	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000
V-L Flowrate (kg _{mol} /hr)	78,744	78,744	61,961	16,783	3,889	12,659	9,743	31,717	13,632	44,377	0	1,575	0	64,563	123,001	0
V-L Flowrate (kg/hr)	2,272,242	2,272,237	1,731,730	540,508	125,240	407,696	373,017	1,214,289	498,257	1,621,985	0	45,445	0	2,391,062	2,215,890	0
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	249,640	0	4,853	19,411	0	19,411
Temperature (°C)	15	24	17	13	13	13	67	61	54	51	15	15	15	177	599	15
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	24.23	0.10
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	240.24	234.76	182.74	178.64		30.57		496.90	3,493.92	
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	1.5	1.5	1.5	1.4		1.2		1.0	68.5	
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	38.285	38.285	36.550	36.550		28.856		37.035	18.015	
V-L Flowrate (lb _{mol} /hr)	173,601	173,601	136,600	37,001	8,573	27,909	21,480	69,924	30,054	97,834	0	3,472	0	142,336	271,170	0
V-L Flowrate (lb/hr)	5,009,436	5,009,426	3,817,810	1,191,615	276,107	898,816	822,361	2,677,048	1,098,468	3,575,864	0	100,189	0	5,271,388	4,885,202	0
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	550,361	0	10,699	42,795	0	42,795
Temperature (°F)	59	75	63	55	56	56	152	142	129	124	59	59	59	350	1,110	59
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	3,514.7	14.7
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	103.3	100.9	78.6	76.8		13.1		213.6	1,502.1	
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.095	0.091	0.094	0.090		0.076		0.061	4.274	
	A - Refere	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA											

Exhibit 3-64 Stream Table for Case 5

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
V-L Mole Fraction																
Ar	0.0287	0.0287	0.0000	0.0000	0.0340	0.0340	0.0000	0.0308	0.0308	0.0308	0.0308	0.0308	0.0362	0.0000	0.0363	0.0363
CO ₂	0.6606	0.6606	0.0000	0.0000	0.0000	0.0000	0.0011	0.7084	0.7084	0.7084	0.7084	0.7084	0.8337	0.0000	0.8354	0.8354
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2079	0.2079	1.0000	1.0000	0.0000	0.0000	0.9989	0.1522	0.1522	0.1522	0.1522	0.1522	0.0021	1.0000	0.0001	0.0001
N ₂	0.0801	0.0801	0.0000	0.0000	0.0162	0.0162	0.0000	0.0855	0.0855	0.0855	0.0855	0.0855	0.1007	0.0000	0.1009	0.1009
O ₂	0.0197	0.0197	0.0000	0.0000	0.9498	0.9498	0.0000	0.0231	0.0231	0.0231	0.0231	0.0231	0.0272	0.0000	0.0272	0.0272
SO ₂	0.0031	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	64,563	64,563	3,143	1,725	235	235	242	60,485	41,460	9,743	31,717	19,026	16,165	2,895	16,133	16,133
V-L Flowrate (kg/hr)	2,391,062	2,391,062	56,629	31,075	7,572	7,572	4,363	2,315,681	1,587,305	373,017	1,214,289	728,406	676,860	52,165	676,284	676,284
Solids Flowrate (kg/hr)	0	0	25,150	0	0	0	39,159	0	0	0	0	0	0	0	0	0
Temperature (°C)	177	186	15	15	13	95	57	57	57	57	57	58	104	22	104	21
Pressure (MPa, abs)	0.10	0.11	0.11	0.10	0.16	0.31	0.10	0.10	0.10	0.10	0.10	0.10	3.33	0.24	3.33	15.27
Enthalpy (kJ/kg) ^A	429.52	439.12		62.80	11.49	85.68		231.21	231.21	231.21	231.21	231.74	74.58	93.20	72.43	-188.93
Density (kg/m ³)	1.0	1.0		1,003.1	2.2	3.3		1.4	1.4	1.4	1.4	1.4	47.6	996.0	47.7	691.1
V-L Molecular Weight	37.035	37.035		18.015	32.205	32.205	-	38.285	38.285	38.285	38.285	38.285	41.872	18.016	41.920	41.920
V-L Flowrate (lb _{mol} /hr)	142,336	142,336	6,930	3,803	518	518	533	133,348	91,405	21,480	69,924	41,945	35,637	6,383	35,567	35,567
V-L Flowrate (lb/hr)	5,271,388	5,271,388	124,846	68,510	16,692	16,692	9,619	5,105,203	3,499,409	822,361	2,677,048	1,605,859	1,492,220	115,004	1,490,951	1,490,951
Solids Flowrate (lb/hr)	0	0	55,446	0	0	0	86,331	0	0	0	0	0	0	0	0	0
Temperature (°F)	350	366	59	59	56	203	135	135	135	135	135	136	219	72	219	70
Pressure (psia)	14.2	15.2	15.5	14.7	23.2	45.0	14.7	14.7	14.7	14.7	14.7	14.7	483.4	35.0	483.4	2,214.7
Enthalpy (Btu/lb) ^A	184.7	188.8		27.0	4.9	36.8		99.4	99.4	99.4	99.4	99.6	32.1	40.1	31.1	-81.2
Density (lb/ft ³)	0.061	0.064		62.622	0.135	0.204		0.089	0.089	0.089	0.089	0.089	2.973	62.179	2.976	43.147

Exhibit 3-64 Stream Table for Case 5 (Continued)

Exhibit 3-65 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 5

Exhibit 3-66 Heat and Mass Balance, Power Block Systems for Case 5

	HHV	Sensible + Latent	Power	Total
	Heat In G	J/hr (MMBtu/hr)		
Coal	6,774 (6,421)	5.7 (5.4)		6,780 (6,426)
Combustion Air		70.9 (67.2)		70.9 (67.2)
Raw Water Makeup		125.0 (118.5)		125.0 (118.5)
Limestone		0.55 (0.52)		0.55 (0.52)
Auxiliary Power			866 (821)	866 (821)
Totals	6,774 (6,421)	202.1 (191.5)	866 (821)	7,842 (7,433)
	Heat Out 0	GJ/hr (MMBtu/hr)		
Boiler Loss		60.9 (57.8)		60.9 (57.8)
Bottom Ash		0.6 (0.6)		0.6 (0.6)
Fly Ash + FGD Ash		2.5 (2.3)		2.5 (2.3)
MAC Cooling		435.9 (413.1)		435.9 (413.1)
ASU Vent		66.9 (63.4)		66.9 (63.4)
Condenser		3,088 (2,927)		3,088 (2,927)
CO ₂ Cooling		548 (519)		548 (519)
CO ₂		-128 (-121)		-128 (-121)
Wet FGD Cooling		513 (486)		513 (486)
Process Condensate		4.9 (4.6)		4.9 (4.6)
Cooling Tower Blowdown		59.7 (56.6)		59.7 (56.6)
Process Losses*		404.3 (383.2)		404.3 (383.2)
Power			2,846 (2,698)	2,846 (2,698)
Totals		4,996 (4,736)	2,846 (2,698)	7,842 (7,433)

Exhibit 3-67 Cases 5 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Carbon In		Carbon Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	159,530 (351,704)	CO ₂ Product	161,875 (356,874)
Air (CO ₂) 443 (976)		FGD Product	221 (487)
FGD Reagent 2,552 (5,626)		Separated Air	434 (957)
		Convergence Tolerance*	-5 (-11)
Total	162,525 (358,306)	Total	162,525 (358,306)

Exhibit 3-68 Case 5 Carbon Balance

*by difference

Sulfur In		Sulfur Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	6,272 (13,827)	Gypsum	6,232 (13,739)
		CO ₂ Product	40 (88)
		Convergence Tolerance*	0 (0)
Total	6,272 (13,827)	Total	6,272 (13,827)

Exhibit 3-69 Case 5 Sulfur Balance

*by difference

Exhibit 3-70 Case 5 Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m ³ /min (gpm)			
FGD Makeup	0.52 (137)	0.0 (0)	0.52 (137)	0.0 (0)	0.52 (137)
BFW Makeup	0.37 (98)	0.0 (0)	0.37 (98)	0.0(0)	0.37 (98)
Cooling Tower	35.7 (9,444)	3.41 (901)	32.3 (8,542)	8.04 (2124)	24.30 (6418)
Total	36.6 (9,678)	3.41 (901)	33.2 (8,777)	8.04 (2,124)	25.18 (6,653)

Plant Output												
Steam Turbine Power	790,600	kW _e										
Gross Power	790,600	kWe										
Auxiliary Lo	ad											
Coal Handling and Conveying	500	kWe										
Limestone Handling & Reagent Preparation	1,210	kWe										
Pulverizers	3,740	kW _e										
Ash Handling	720	kW _e										
Primary Air Fans	980	kW _e										
Forced Draft Fans	1,240	kW _e										
Induced Draft Fans	6,610	kW _e										
Air Separation Unit Main Air Compressor	125,880	kW _e										
ASU Auxiliaries	1,000	kW _e										
Baghouse	90	kW _e										
FGD Pumps and Agitators	4,050	kWe										
CO ₂ Compression	73,620	kWe										
Condensate Pumps	1,040	kW _e										
Boiler Feedwater Booster Pumps ²	N/A	kW _e										
Miscellaneous Balance of Plant ³	2,000	kW _e										
Steam Turbine Auxiliaries	400	kW _e										
Circulating Water Pumps	9,180	kWe										
Cooling Tower Fans	5,360	kWe										
Transformer Losses	3,030	kWe										
Total	240,650	kW _e										
Plant Perform	ance											
Net Auxiliary Load	240,650	kW _e										
Net Plant Power	549,950	kWe										
Net Plant Efficiency (HHV)	29.2%											
Net Plant Heat Rate (HHV)	12,317 (11,675)	kJ/kWhr (Btu/kWhr)										
Coal Feed Flowrate	249,640 (550,361)	kg/hr (lb/hr)										
Thermal Input	1,881,666	kW _{th}										
Condenser Duty	3,088 (2,927)	GJ/hr (MMBtu/hr)										
Raw Water Usage	33.2 (8,777)	m ³ /min (gpm)										
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)										
2 - Boiler feed pumps are turbine driven												

Exhibit 3-71 Case 5 Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

		Department:	NETL Office of	Program Plann	ing and Anal	ysis					Cost Base: June 2007				
		Project:	Advancing Oxy	combustion Te	chnology							F	Prepared:	13-Apr-12	
		Case:	Case 5 - Advan	ced Recycle										x \$1, 000	
		Plant Size:	550	MW, net		Capital C	Charge Factor	0.158	8 Capacity Facto		0.85				
			Equipment	Material	Lab	or	Bare	Eng'g	g CM H.O. & Proce		ss Cont.	Proje	ct Cont.	TOTAL PL	ANT COST
Ac	ct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM													
	1.1	Coal Receive & Unload	3,955	0	1,807	0	5,762	8.9%	515	0%	0	15.0%	941	7,218	13
	1.2	Coal Stackout & Reclaim	5,112	0	1,158	0	6,270	8.8%	549	0%	0	15.0%	1,023	7,842	14
	1.3	Coal Conveyors & Yd Crus	4,753	0	1,146	0	5,899	8.8%	517	0%	0	15.0%	962	7,378	13
	1.4	Other Coal Handling	1,243	0	265	0	1,509	8.7%	132	0%	0	15.0%	246	1,887	3
	1.5	Sorbent Receive & Unload	163	0	49	0	212	8.8%	19	0%	0	15.0%	35	265	0
	1.6	Sorbent Stackout & Reclaim	2,630	0	482	0	3,112	8.7%	271	0%	0	15.0%	508	3,891	7
	1.7	Sorbent Conveyors	939	203	230	0	1,372	8.7%	119	0%	0	15.0%	224	1,714	3
	1.8	Other Sorbent Handling	567	133	297	0	997	8.8%	88	0%	0	15.0%	163	1,248	2
	1.9	Coal & Sorbent Hnd.Foundations	0	4,863	6,135	0	10,997	9.3%	1,028	0%	0	15.0%	1,804	13,829	25
		SUBTOTAL 1.	\$19,362	\$5,199	\$11,569	\$0	\$36,130		\$3,237		\$0		\$5,905	\$45,272	\$82
2		COAL PREP & FEED SYSTEMS													
	2.1	Coal Crushing & Drying	2,289	0	446	0	2,735	8.7%	239	0%	0	15.0%	446	3,420	6
	2.2	Prepared Coal Storage & Feed	5,861	0	1,279	0	7,140	8.7%	624	0%	0	15.0%	1,165	8,930	16
	2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment	4,481	193	931	0	5,604	8.7%	488	0%	0	15.0%	914	7,007	13
	2.6	Sorbent Storage & Feed	540	0	207	0	747	8.9%	66	0%	0	15.0%	122	935	2
	2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation	0	574	482	0	1,056	9.2%	97	0%	0	15.0%	173	1,326	2
		SUBTOTAL 2.	\$13,171	\$767	\$3,345	\$0	\$17,282		\$1,515		\$0		\$2,820	\$21,617	\$39
3		FEEDWATER & MISC. BOP SYSTEMS							• • •		· · · ,				
-	3.1	Feedwater System	21,778	0	7,035	0	28,813	8.8%	2,523	0%	0	15.0%	4,700	36,037	66
	3.2	Water Makeup & Pretreating	5.551	0	1,787	0	7.338	9.4%	688	0%	0	20.0%	1.605	9.632	18
	3.3	Other Feedwater Subsystems	6.667	0	2,818	0	9,485	8.9%	845	0%	0	15.0%	1.550	11.880	22
	3.4	Service Water Systems	1.088	0	592	0	1,680	9.3%	156	0%	0	20.0%	367	2.204	4
	3.5	Other Boiler Plant Systems	8,230	0	8,125	0	16,355	9.4%	1.534	0%	0	15.0%	2.683	20.573	37
	3.6	FO Supply Sys & Nat Gas	272	0	339	0	611	9.3%	57	0%	0	15.0%	100	768	1
	3.7	Waste Treatment Equipment	2,975	0	1,696	0	4,670	9.7%	452	0%	0	20.0%	1.025	6.147	11
	3.8	Misc. Power Plant Equipment	2 883	0	881	0	3 764	9.6%	361	0%	0	20.0%	825	4 951	9
	0.0	SUBTOTAL 3.	\$49,445	\$0	\$23.273	\$0	\$72,718	0.070	\$6.617	0,0	\$0	20.070	\$12.856	\$92,190	\$168
4		PC BOILER & ACCESSORIES	••••		4 -0,-10	++	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 0,000		* *		<i>+</i> ·=,•••	4 ,	7
	4.1	PC Boiler	186,567	0	104.683	0	291,250	9.7%	28,211	0%	0	10.0%	31.946	351,406	639
	42	ASU/Oxidant Compression	115 985	0	94 897	0	210 882	9.7%	20 426	0%	0	10.0%	23 131	254 439	463
	4.3	Open	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	.30
	4.4	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.5	Primary Air System	w/4 1	0	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4 1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.7	Major Component Rigging	0	w/4 1	w/4 1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14 1	w/14 1	0	0	0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 4	\$302,552	\$0	\$199,580	\$0	\$502,131	070	\$48,637	070	\$0	0.070	\$55.077	\$605.845	\$1,102
			\$55 <u></u> ,50 <u></u>	ψU	÷,	ΨU	<i>~~~</i> , 101		÷,		ΨŪ		<i>,</i>	<i>4000,010</i>	÷.,102

Exhibit 3-72 Case 5 Capital Costs

			Equipment	Material	Lab	or	Bare Eng		CM H.O. &	& Process Cont		Cont. Project Co		ct Cont. TOTAL PLA	
Acct N	No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A		FLUE GAS CLEANUP							*						
	5.1	Absorber Vessels & Accessories	60,351	0	12,992	0	73,343	9.5%	6,942	0%	0	10.0%	8,028	88,313	161
	5.2	Other FGD	3,152	0	3,572	0	6,723	9.6%	648	0%	0	10.0%	737	8,108	15
	5.3	Bag House & Accessories	15,048	0	9,550	0	24,597	9.6%	2,353	0%	0	10.0%	2,695	29,645	54
	5.4 Other Particulate Removal Materials		993	0	1,062	0	2,055	9.6%	198	0%	0	10.0%	225	2,478	5
	5.5	Gypsum Dewatering System	5,463	0	928	0	6,391	9.4%	604	0%	0	10.0%	699	7,694	14
	5.6	Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	5.7	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 5A.	\$85,006	\$0	\$28,104	\$0	\$113,110		\$10,744		\$0		\$12,385	\$136,239	\$248
5B		CO2 REMOVAL & COMPRESSION													
5B	5.1	CO2 Condensing Heat Exchanger	6,032	0	504	0	6,536	10%	654	0%	0	15.0%	1,078	8,268	15
5B	.2	CO2 Compression & Drying	43,041	0	35,216	0	78,257	10%	7,826	0%	0	20.0%	17,217	103,299	188
5B	.3	CO2 Pipeline											0	0	0
5B	.4	CO2 Storage											0	0	0
5B	.5	CO2 Monitoring											0	0	0
		SUBTOTAL 5B.	\$49,074	\$0	\$35,719	\$0	\$84,793		\$8,479		\$0		\$18,295	\$111,567	\$203
6		NITROGEN EXPANDER/GENERATOR													
	6.1	Nitrogen Expander/Generator	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	6.2	Nitrogen Expander/Generator Accessories	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	6.3	Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	-	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	\$0
7		HRSG, DUCTING & STACK													
	7.1	Flue Gas Recycle Heat Exchanger	0	0	0	0	0	10%	0	0%	0	15.0%	0	0	0
	7.2	SCR System	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	7.3	Ductwork	9,349	0	6,006	0	15,355	8.7%	1,341	0%	0	15.0%	2,504	19,200	35
	7.4	Stack	1,593	0	932	0	2,525	9.6%	241	0%	0	10.0%	277	3,043	6
	7.9	HRSG, Duct & Stack Foundations	0	861	978	0	1,840	9.3%	171	0%	0	20.0%	402	2,413	4
		SUBTOTAL 7.	\$10,941	\$861	\$7,917	\$0	\$19,719		\$1,754		\$0		\$3,183	\$24,656	\$45
8		STEAM TURBINE GENERATOR	• • • • •								1-		, ,	, ,	
	8.1	Steam TG & Accessories	62,506	0	8,295	0	70,801	9.6%	6,779	0%	0	10.0%	7,758	85,338	155
	8.2	Turbine Plant Auxiliaries	421	0	902	0	1,323	9.7%	128	0%	0	10.0%	145	1,596	3
	8.3	Condenser & Auxiliaries	7,183	0	2,647	0	9,830	9.5%	934	0%	0	10.0%	1,076	11,840	22
	8.4	Steam Piping	20,439	0	10,078	0	30,517	8.3%	2,547	0%	0	15.0%	4,960	38,023	69
	8.9	TG Foundations	0	1,317	2,081	0	3,398	9.4%	320	0%	0	20.0%	744	4,462	8
		SUBTOTAL 8.	\$90,548	\$1,317	\$24,003	\$0	\$115,868		\$10,708		\$0		\$14,683	\$141,259	\$257
9		COOLING WATER SYSTEM			. ,		,				1-		, ,	, ,	
	9.1	Cooling Towers	13,090	0	4,076	0	17,167	9.5%	1,630	0%	0	10.0%	1,880	20,676	38
	9.2	Circulating Water Pumps	2,318	0	178	0	2,497	8.6%	213	0%	0	10.0%	271	2,981	5
	9.3	Circ. Water System Auxiliaries	614	0	82	0	696	9.4%	66	0%	0	10.0%	76	838	2
	9.4	Circ. Water Piping	0	4,871	4,721	0	9,593	9.2%	884	0%	0	15.0%	1.571	12,048	22
	9.5	Make-up Water System	527	0	704	0	1.232	9.5%	117	0%	0	15.0%	202	1.551	3
	9.6	Component Cooling Water System	487	0	387	0	874	9.4%	82	0%	0	15.0%	143	1,099	2
	9.9	Circ. Water System Foundations	0	2,942	4.674	0	7.615	9.4%	717	0%	0	20.0%	1.666	9,999	18
		SUBTOTAL 9.	\$17.037	\$7,813	\$14,823	\$0	\$39,674		\$3,708		\$0		\$5.810	\$49,192	\$89

Exhibit 3-72 Case 5 Capital Costs (continued)

			Equipment	Material	Lab	or	Bare Eng'g C		CM H.O. & Process Co		s Cont. Project 0		ct Cont. TOTAI		AL PLANT COST	
Acc	t No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW	
10		ASH/SPENT SORBENT HANDLING SYS														
	10.1	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
	10.2	Cyclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
	10.3	HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
	10.4	High Temperature Ash Piping	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
	10.5	Other Ash Recovery Equipment	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0	
	10.6	Ash Storage Silos	681	0	2,099	0	2,780	9.7%	271	0%	0	10.0%	305	3,356	6	
	10.7	Ash Transport & Feed Equipment	4,410	0	4.517	0	8.927	9.5%	844	0%	0	10.0%	977	10,749	20	
	10.8	Misc. Ash Handling Equipment	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0	
	10.9	Ash/Spent Sorbent Foundation	0	162	191	0	353	9.3%	33	0%	0	20.0%	77	463	1	
		SUBTOTAL 10.	\$5.091	\$162	\$6.807	\$0	\$12.060		\$1,148		\$0		\$1.359	\$14.568	\$26	
11		ACCESSORY ELECTRIC PLANT	+=,===		<i>+</i> ····	÷-,	•		÷.,				<i></i>	* • • • • • •		
	11.1	Generator Equipment	1.862	0	302	0	2,165	9.3%	200	0%	0	7.5%	177	2,542	5	
	11.2	Station Service Equipment	6 760	0	2 221	0	8 981	9.6%	859	0%	0	7.5%	738	10 578	19	
	11.3	Switchgear & Motor Control	7 771	0	1 321	0	9 092	9.3%	842	0%	0	10.0%	993	10,927	20	
	11.4	Conduit & Cable Tray	0	4 872	16.847	0	21 719	9.6%	2 079	0%	0	15.0%	3 570	27 368	50	
	11.5	Wire & Cable	0	9 194	17 748	0	26 942	8.4%	2 270	0%	0	15.0%	4 382	33 593	61	
	11.6	Protective Equipment	261	0,101	888	0	1 149	9.8%	112	0%	0	10.0%	126	1 388	3	
	11.0	Standby Equipment	1 446	0	33	0	1,145	9.5%	140	0%	0	10.0%	162	1,300	 	
	11.7	Main Power Transformers	8 203	0	140	0	8 432	7.6%	641	0%	0	10.0%	907	9.980	18	
	11.0	Electrical Foundations	0,233	375	010	0	1 20/	0.5%	123	0%	0	20.0%	283	3,300	10	
	11.3		\$26.304	\$14 441	\$40.419	0	\$81.254	3.370	\$7 266	070	0 \$0	20.070	\$11 330	\$00.858	\$182	
12			\$20,334	φ14,441	\$ 4 0,413	ψU	φ01,2 3 4		φ <i>1</i> ,200		ψU		φ11,333	433,030	φ10z	
12	12.1	PC Control Equipment	w/12 7	0	w/12 7	0	0	0%	0	00/	0	0.0%	0	0	0	
	12.1	Computing Turbing Control	VV/ 12.7	0	NI/A	0	0	0%	0	070	0	0.0%	0	0	0	
	12.2	Stoom Turbing Control	W/A	0	IV/A	0	0	0%	0	0 /0	0	0.0%	0	0	0	
	12.3	Other Majer Component Control	w/o.1	0	W/O.1	0	0	0%	0	0 /0	0	0.0%	0	0	0	
	12.4	Signal Processing Equipment	U	0	U w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0	
	12.5	Centrel Reards, Rende & Reaks	VV/12.7	0	W/ 12.7	0	004	0%	0	0%	0	15.0%	140	1 1 1 0	0	
	12.0		505	0	339	0	904	9.0%	07	0%	0	10.0%	724	1,140	15	
	12.7	Computer Accessories	5,708	0	998	0	6,705	9.5%	539	0%	0	10.0%	1 502	0,070	15	
	12.8	Other L& C. Environment	3,095	0	6,139	0	9,233	8.5%	780	0%	0	10.0%	1,503	11,523	21	
	12.9		1,013 ¢10,000	0	3,000	0	5,272	9.7%	513	0%	0	10.0%	67 OCE	6,304	12	
40		SUBIUIAL 12.	\$10,980	۵ ۵	\$11,134	\$ 0	\$22,114		\$2,025		۵ 0		\$2,960	\$27,104	\$ 49	
13	40.4	Site Dreportion	0		1 100	0	4 4 6 4	0.00/	444	00/		20.00/	055	4 500	2	
	13.1	Site Preparation	0	00	1,106	0	1,161	9.9%	114	0%	0	20.0%	200	1,530	3	
	13.2		0	1,835	2,280	0	4,115	9.8%	404	0%	0	20.0%	904	5,423	10	
	13.3	Site Facilities	3,289	0	3,244	0	6,533	9.8%	641	0%	0	20.0%	1,435	8,609	16	
		SUBIDIAL 13.	\$3,289	\$1,891	\$6,629	\$ 0	\$11,809	ļ	\$1,160		\$0		\$2,594	\$15,562	\$28	
14		BUILDINGS & STRUCTURES	0	0.000	7 705	0	40.505	0.00/	1 400	00/		45.00/	0.740	00 700		
	14.1	Boiler Building	0	8,830	7,765	0	16,595	9.0%	1,490	0%	0	15.0%	2,713	20,798	38	
	14.2		0	12,760	11,892	0	24,652	9.0%	2,220	0%	0	15.0%	4,031	30,903	56	
	14.3	Administration Building	0	640	677	0	1,317	9.1%	119	0%	0	15.0%	215	1,652	3	
	14.4	Circulation Water Pumphouse	0	140	111	0	251	8.9%	22	0%	0	15.0%	41	314	1	
	14.5	vvater Treatment Buildings	0	716	653	0	1,368	9.0%	123	0%	0	15.0%	224	1,714	3	
	14.6	Machine Shop	0	428	288	0	716	8.9%	64	0%	0	15.0%	117	896	2	
	14.7	Warehouse	0	290	291	0	581	9.0%	53	0%	0	15.0%	95	729	1	
	14.8	Other Buildings & Structures	0	237	202	0	439	9.0%	39	0%	0	15.0%	72	550	1	
	14.9	waste Treating Building & Str.	0	446	1,353	0	1,799	9.4%	170	0%	0	15.0%	295	2,264	4	
\vdash		SUBTOTAL 14.	\$0	\$24,487	\$23,232	\$0	\$47,719		\$4,300		\$0		\$7,803	\$59,821	\$109	
		Total Cost	\$682,890	\$56,938	\$436,553	\$0	\$1,176,382		\$111,297		\$0		\$157,073	\$1,444,752	\$2,627	

Exhibit 3-72 Case 5 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,711	\$18
1 Month Maintenance Materials	\$1,473	\$3
1 Month Non-fuel Consumables	\$807	\$1
1 Month Waste Disposal	\$317	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,918	\$3
2% of TPC	\$28,895	\$53
Total	\$43,120	\$78
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$16,539	\$30
0.5% of TPC (spare parts)	\$7,224	\$13
Total	\$23,763	\$43
	-	•
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$216,713	\$394
Financing Costs	\$39,008	\$71
Total Overnight Costs (TOC)	\$1,768,256	\$3,215
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$2,005,202	\$3,646

Exhibit 3-73 Case 5 Owner's Costs

		ΙΝΙΤΙΔΙ	& ANNUAI	O&M EXP	INSES		
Case:	Case 5 - Advanced	Recycle					
Plant Size	(MWe)	549 95			Heat Rate (B	tu/kWh)∙	11 675
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Co	al	Fuel Cost (\$/	MM Btu):	1 64
Design/Cor	nstruction	5 vears			Book Life (vr	s):	30
TPC (Plant	Cost) Year:	June 2007			TPI Year:	0,.	2012
Canacity E	actor (%):	85			CO2 Captured	(TPD)·	15 692
capacity 1						(11 0).	10,002
OPERATIN	G & MAINTENANCE	LABOR					
Operating	Labor						
Operating	Labor Rate (base):		\$34.65	\$/hour			
Operating	Labor Burden:		30.00	% of base			
Labor Ove	erhead Charge:		25.00	% of labor			
Operating	Labor Requirements	s per Shift:	units/mod.		Total Plant		
	Skilled Operator		2.0		2.0		
	Operator		9.0		9.0		
	Foreman		1.0		1.0		
	Lab Tech's etc.		2.0		2.0		
	TOTAL Operating	Jobs	14.0		14.0		
						\$	\$/kW-net
Annual O	perating Labor Cost	(calc'd)				5,524,319	10.05
Maintenar	nce Labor Cost (calo	;'d)				10,013,832	18.21
Administr	ative & Support Labo	or (calc'd)				3,884,538	7.06
Property -	Taxes and Insurance	;				28,895,034	52.54
TOTAL F	IXED OPERATING	COSTS				48,317,723	87.86
VARIABLE	OPERATING COST	<u>'S</u>					
						\$	\$/kWh-net
Maintenar	nce Material Costs (calc'd)				\$15,020,866	0.00367
Consuma	ables	Consu	mption	Unit	Initial		
<u>Consuma</u>	ables	Consu Initial	mption /Day	Unit Cost	Initial Cost	\$	\$/kWh-net
Consuma Water (/10	ables 000 gallons)	Consu Initial	mption /Day <u>6,31</u> 9	Unit Cost 1.08	Initial Cost \$0	\$ \$2,120,740	\$/kWh-net 0.00052
Water (/10 Chemicals	ables 000 gallons) s	Consu Initial 0	mption /Day <u>6,319</u>	Unit Cost 1.08	Initial Cost \$0	\$ \$2,120,740	\$/kWh-net 0.00052
Consuma Water (/10 Chemicals MU & W	ables 000 gallons) s /T Chem. (lb)	Consu Initial 0	mption /Day 6,319 30,590	Unit Cost 1.08 0.17	Initial Cost \$0 \$0	\$ \$2,120,740 \$1,642,519	\$/kWh-net 0.00052 0.00040
Water (/10 Chemicals MU & W Limestor	ables 000 gallons) s /T Chem. (lb) ne (ton)	Consul Initial 0 0 0	mption /Day 6,319 30,590 665	Unit Cost 1.08 0.17 21.63	Initial Cost \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708	\$/kWh-net 0.00052 0.00040 0.00109
Water (/10 Chemicals MU & W Limeston Carbon (ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb)	Consul Initial 0 0 0 0 0	mption /Day 6,319 30,590 665 0	Unit Cost 1.08 0.17 21.63 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton)	Consul Initial 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton)	Consur Initial 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton)	Consur Initial 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemic:	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000149
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemics nental Fuel (MMBtu)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemics nental Fuel (MMBtu) talyst Replacement n Penalties	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemics nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemics nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom /	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemics nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.00000 0.00000 0.00000 0.00000000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom /	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal lercury Catalyst (lb) ion) Ash (ton) Subtotal Solid W	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.000000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Armoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (By-produc	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ion) Ash (ton) Subtotal Solid W cts & Emissions	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activated Armoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (By-produc Gypsum	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) on Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions n (tons)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (MEA So Caustic Sulfuric Corrosio Activater Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / Sulfur (to	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement n Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions n (tons) ons)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions in (tons) ons) Subtotal By-Prod	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions in (tons) ons) Subtotal By-Prod	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activate Ammoni Other Supplerr SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum Sulfur (to TOTAL VAI	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions in (tons) ons) Subtotal By-Prod	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (MEA So Caustic Sulfuric Corrosio Activated Ammoni Other Supplem SCR Ca Emissio Waste Dis Spent M Flyash (Bottom / By-produc Gypsum Sulfur (tr Coal FUEL	ables 000 gallons) s /T Chem. (lb) ne (ton) (Hg Removal) (lb) olvent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) ia, 19% soln (ton) Subtotal Chemica nental Fuel (MMBtu) talyst Replacement in Penalties Subtotal Other sposal lercury Catalyst (lb) ton) Ash (ton) Subtotal Solid W cts & Emissions in (tons) ons) Subtotal By-Prod RIABLE OPERATIN (tons)	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mption /Day 6,319 30,590 665 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23 16.23 3.16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,120,740 \$1,642,519 \$4,465,708 \$0 \$0 \$0 \$0 \$0 \$6,108,226 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00052 0.00040 0.00109 0.00000

Exhibit 3-74 Case 5 O&M Costs

3.6 CASE 6 – ADVANCED CO₂ COMPRESSION PROCESS

The advanced CO_2 compression system employs "shock wave compression" technology for product CO_2 compression. The major advantages of shock wave technology are reported to be (1) its ability to produce higher single stage compression efficiencies; (2) its simplicity and small size, which make it less expensive to manufacture; and (3) its higher single stage compression ratio, which causes the compressed stream to have a higher temperature and offers an opportunity for waste heat recovery. This is in contrast to a conventional system, where in each compression stage the CO_2 stream temperature reaches about 99°C (210°F) and the stream is cooled using cooling water without useful heat recovery. The main reason for not recovering the heat in a conventional system is that the temperature is too low and to recover it is likely economically prohibitive. A review of the shock wave compression technology and the relevant assumptions used in this study are given in Section 2.5.6.

Similar to the current technology case (with the exception of advanced compression system for CO_2 compression), major components for Case 6 include the following:

- 1. Conventional cryogenic ASU
- 2. PC boiler operating at supercritical steam conditions
- 3. Baghouse to remove particulates
- 4. Wet FGD to reduce sulfur emission
- 5. Shock wave system to compress CO₂ to 15.3 MPa (2215 psia)
- 6. Steam turbine/generator

Block Flow Diagram and Stream Table

A process BFD for Case 6 is shown in Exhibit 3-75, and the corresponding stream tables are shown in Exhibit 3-76.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-77 and Exhibit 3-78:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-79. The power out is the steam turbine power after generator losses.

Carbon, sulfur and water balances are shown in Exhibit 3-80 through Exhibit 3-82.

Performance Summary

A performance summary is provided in Exhibit 3-83.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-84 through Exhibit 3-86, respectively.

Equipment List

The combined equipment list for Case 4 through Case 7 is shown in Exhibit 3-99.

Exhibit 3-75 Process Block Flow Diagram for Case 6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
V-L Mole Fraction																		
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0308	0.0308	0.0317	0.0317	0.0000	0.0092	0.0000	0.0288	0.0000	0.0000	0.0288	0.0288
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.7090	0.7090	0.5086	0.5086	0.0000	0.0005	0.0000	0.6614	0.0000	0.0000	0.6614	0.6614
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.1514	0.1514	0.1087	0.1087	0.0000	0.0101	0.0000	0.2069	1.0000	0.0000	0.2069	0.2069
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0856	0.0856	0.0660	0.0660	0.0000	0.7729	0.0000	0.0802	0.0000	0.0000	0.0802	0.0802
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0231	0.0231	0.2849	0.2849	0.0000	0.2074	0.0000	0.0197	0.0000	0.0000	0.0197	0.0197
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0000	0.0000	0.0030	0.0030
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	77,534	77,534	61,009	16,526	3,829	12,465	9,722	31,648	13,551	44,113	0	1,551	0	64,117	120,752	0	64,117	64,117
V-L Flowrate (kg/hr)	2,237,330	2,237,330	1,705,126	532,204	123,316	401,434	372,369	1,212,179	495,685	1,613,613	0	44,747	0	2,375,957	2,175,381	0	2,375,957	2,375,957
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	245,804	0	4,778	19,113	0	19,113	0	0
Temperature (°C)	15	24	17	13	13	13	75	69	60	56	15	15	15	177	599	15	177	186
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	24.23	0.10	0.10	0.11
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	247.49	241.88	188.78	184.56		30.57		494.88	3,493.92		428.12	438.37
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	1.5	1.4	1.5	1.4		1.2		1.0	68.5		1.0	1.0
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	38.302	38.302	36.579	36.579		28.856		37.057	18.015		37.057	37.057
V-L Flowrate (lb _{mol} /hr)	170,934	170,934	134,501	36,433	8,442	27,481	21,433	69,771	29,875	97,252	0	3,419	0	141,353	266,213	0	141,353	141,353
V-L Flowrate (lb/hr)	4,932,468	4,932,468	3,759,159	1,173,309	271,866	885,010	820,932	2,672,397	1,092,798	3,557,407	0	98,649	0	5,238,088	4,795,895	0	5,238,088	5,238,088
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	541,905	0	10,534	42,137	0	42,137	0	0
Temperature (°F)	59	75	63	55	56	56	167	157	141	133	59	59	59	350	1,110	59	350	367
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	3,514.7	14.7	14.2	15.3
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	106.4	104.0	81.2	79.3		13.1		212.8	1,502.1		184.1	188.5
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.092	0.089	0.092	0.088		0.076		0.062	4.274		0.061	0.064
	A - Referer	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA													

Exhibit 3-76 Stream Table for Case 6

	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
V-L Mole Fraction																	
Ar	0.0000	0.0000	0.0340	0.0340	0.0099	0.0308	0.0308	0.0308	0.0308	0.0308	0.0308	0.0308	0.0000	0.0355	0.0363	0.0363	0.0363
CO ₂	0.0000	0.0000	0.0000	0.0000	0.9704	0.7090	0.7090	0.7090	0.7090	0.7090	0.7090	0.7090	0.0000	0.8164	0.8355	0.8355	0.8355
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	1.0000	1.0000	0.0000	0.0000	0.0029	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	1.0000	0.0228	0.0000	0.0000	0.0000
N ₂	0.0000	0.0000	0.0162	0.0162	0.0019	0.0856	0.0856	0.0856	0.0856	0.0856	0.0856	0.0856	0.0000	0.0986	0.1009	0.1009	0.1009
O ₂	0.0000	0.0000	0.9498	0.9498	0.0086	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0000	0.0266	0.0272	0.0272	0.0272
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0063	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	3,352	1,427	231	231	0	60,086	41,369	41,369	9,722	31,648	18,717	18,717	2,835	16,253	15,882	15,882	15,882
V-L Flowrate (kg/hr)	60,382	25,704	7,454	7,454	11	2,301,442	1,584,543	1,584,548	372,369	1,212,179	716,899	716,899	51,066	672,517	665,833	665,833	665,833
Solids Flowrate (kg/hr)	24,768	0	0	0	38,562	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	15	13	95	57	57	57	66	66	66	58	321	78	21	21	274	21
Pressure (MPa, abs)	0.11	0.10	0.16	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.25	0.10	1.24	1.24	15.27	15.26
Enthalpy (kJ/kg) ^A		62.80	11.49	85.68		230.24	230.24	238.24	238.24	238.24	230.77	502.50	324.69	8.64	6.84	221.55	-188.96
Density (kg/m ³)		1,003.1	2.2	3.3		1.4	1.4	1.4	1.4	1.4	1.4	9.7	941.3	22.7	22.6	144.2	690.8
V-L Molecular Weight		18.015	32.205	32.205		38.302	38.302	38.302	38.302	38.302	38.302	38.302	18.015	41.378	41.923	41.923	41.923
V-L Flowrate (lb _{mol} /hr)	7,389	3,146	510	510	1	132,467	91,204	91,204	21,433	69,771	41,263	41,263	6,249	35,832	35,014	35,014	35,014
V-L Flowrate (lb/hr)	133,120	56,668	16,433	16,433	23	5,073,812	3,493,320	3,493,329	820,932	2,672,397	1,580,492	1,580,492	112,582	1,482,645	1,467,910	1,467,910	1,467,910
Solids Flowrate (lb/hr)	54,603	0	0	0	85,015	0	0	0	0	0	0	0	0	0	0	0	0
										1-0							
Temperature (°F)	59	59	56	203	135	135	135	150	150	150	136	610	172	/0	/0	525	/0
Pressure (psia)	15.5	14.7	23.2	45.0	14.8	14.8	14.8	14.7	14.7	14.7	14.8	180.8	14.7	1/9.8	179.8	2,214.7	2,213.7
Enthalpy (Btu/lb)^		27.0	4.9	36.8		99.0	99.0	102.4	102.4	102.4	99.2	216.0	139.6	3.7	2.9	95.2	-81.2
Density (lb/ft ³)		62.622	0.135	0.204		0.089	0.089	0.087	0.087	0.087	0.089	0.606	58.763	1.420	1.408	9.002	43.124

Exhibit 3-76 Stream Table for Case 6 (Continued)

Exhibit 3-77 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 6

Exhibit 3-78 Heat and Mass Balance, Power Block Systems for Case 6

	HHV	Sensible + Latent	Power	Total
	Heat In G	J/hr (MMBtu/hr)		
Coal	6,670 (6,322)	5.6 (5.3)		6,675 (6,327)
Combustion Air		69.8 (66.1)		69.8 (66.1)
Raw Water Makeup		121.0 (114.7)		121.0 (114.7)
Limestone		0.54 (0.51)		0.54 (0.51)
Auxiliary Power			950 (900)	950 (900)
Totals	6,670 (6,322)	196.9 (186.7)	950 (900)	7,817 (7,409)
	Heat Out 0	GJ/hr (MMBtu/hr)		
Boiler Loss		60.1 (57.0)		60.1 (57.0)
Bottom Ash		0.6 (0.6)		0.6 (0.6)
Fly Ash + FGD Ash		2.4 (2.3)		2.4 (2.3)
MAC Cooling		429.2 (406.8)		429.2 (406.8)
ASU Vent		65.9 (62.5)		65.9 (62.5)
Condenser		3,398 (3,221)		3,398 (3,221)
CO ₂ Cooling		125 (119)		125 (119)
CO ₂		-126 (-119)		-126 (-119)
Wet FGD Cooling		505 (478)		505 (478)
Process Condensate		54 (51)		54 (51)
Cooling Tower Blowdown		58.2 (55.1)		58.2 (55.1)
Process Losses*		374.4 (354.9)		374.4 (354.9)
Power			2,930 (2,777)	2,930 (2,777)
Totals		4,886 (4,631)	2,930 (2,777)	7,817 (7,409)

Exhibit 3-79 Cases 6 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Carbon In		Carbon Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	157,079 (346,300)	CO ₂ Product	159,384 (351,382)
Air (CO2)	436 (961)	FGD Product	217 (479)
FGD Reagent	2,513 (5,541)	Separated Air	427 (942)
		Convergence Tolerance*	-1 (-2)
Total	160,028 (352,802)	Total	160,028 (352,802)

Exhibit 3-80 Case 6 Carbon Balance

*by difference

Exhibit 3-81 Case 6 Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	6,175 (13,614)	Gypsum	6,136 (13,528)
		CO ₂ Product	39 (86)
		Convergence Tolerance*	0 (0)
Total	6,175 (13,614)	Total	6,175 (13,614)

*by difference

Exhibit 3-82 Case 6 Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m³/min (gpm)	m ³ /min (gpm)	gpm (m³/min)	m³/min (gpm)
FGD Makeup	0.43 (113)	0.0 (0)	0.43 (113)	0.0 (0)	0.43 (113)
BFW Makeup	0.36 (96)	0.0 (0)	0.36 (96)	0.0 (0)	0.36 (96)
Cooling Tower	34.8 (9,195)	3.43 (905)	31.4 (8,289)	7.83 (2068)	23.55 (6222)
Total	35.6 (9,404)	3.43 (905)	32.2 (8,499)	7.83 (2,068)	24.34 (6,431)

Plant Output												
Steam Turbine Power	814,000	kW _e										
Gross Power	814,000	kWe										
Auxiliary Lo	ad											
Coal Handling and Conveying	500	kWe										
Limestone Handling & Reagent Preparation	1,190	kWe										
Pulverizers	3,680	kW _e										
Ash Handling	710	kW _e										
Primary Air Fans	1,010	kW _e										
Forced Draft Fans	1,270	kW _e										
Induced Draft Fans	7,010	kW _e										
Air Separation Unit Main Air Compressor	123,950	kW _e										
ASU Auxiliaries	1,000	kW _e										
Baghouse	90	kW _e										
FGD Pumps and Agitators	3,990	kWe										
CO ₂ Compression	98,700	kWe										
Condensate Pumps	1,070	kW _e										
Boiler Feedwater Booster Pumps ²	N/A	kW _e										
Miscellaneous Balance of Plant ³	2,000	kW _e										
Steam Turbine Auxiliaries	400	kW _e										
Circulating Water Pumps	8,930	kWe										
Cooling Tower Fans	5,220	kWe										
Transformer Losses	3,160	kW _e										
Total	263,880	kW _e										
Plant Perform	ance											
Net Auxiliary Load	263,880	kWe										
Net Plant Power	550,120	kWe										
Net Plant Efficiency (HHV)	29.7%											
Net Plant Heat Rate (HHV)	12,124 (11,492)	kJ/kWhr (Btu/kWhr)										
Coal Feed Flowrate	245,804 (541,905)	kg/hr (lb/hr)										
Thermal Input	1,852,755	kW _{th}										
Condenser Duty	3,398 (3,221)	GJ/hr (MMBtu/hr)										
Raw Water Usage	32.2 (8,499)	m ³ /min (gpm)										
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)										
2 - Boiler feed pumps are turbine driven												

Exhibit 3-83 Case 6 Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

	Department:	NETL Office of	Program Plann	ing and Ana	lysis							Cost Base:	June 2007	
	Project:	Advancing Oxy	combustion Te	chnology								Prepared:	13-Apr-12	
	Case:	Case 6 - Advan	ced CO2 Comp	pression									x \$1, 000	
	Plant Size:	550	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
		Equipment	Material	Lab	or	Bare	Eng'g	CM H.O. &	Proce	ess Cont.	Proj	ect Cont.	TOTAL PL	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1	COAL HANDLING SYSTEM											-		
1.1	Coal Receive & Unload	3,918	0	1,789	0	5,707	8.9%	510	0%	0	15.0%	932	7,149	13
1.2	Coal Stackout & Reclaim	5,063	0	1,147	0	6,210	8.8%	544	0%	0	15.0%	1,013	7,767	14
1.3	Coal Conveyors & Yd Crus	4,707	0	1,135	0	5,842	8.8%	512	0%	0	15.0%	953	7,308	13
1.4	Other Coal Handling	1,232	0	263	0	1,494	8.7%	131	0%	0	15.0%	244	1,869	3
1.5	Sorbent Receive & Unload	161	0	49	0	210	8.8%	19	0%	0	15.0%	34	263	0
1.6	Sorbent Stackout & Reclaim	2,605	0	477	0	3,082	8.7%	269	0%	0	15.0%	503	3,853	7
1.7	Sorbent Conveyors	929	201	228	0	1,358	8.7%	118	0%	0	15.0%	221	1,697	3
1.8	Other Sorbent Handling	561	132	294	0	987	8.8%	87	0%	0	15.0%	161	1,236	2
1.9	Coal & Sorbent Hnd.Foundations	0	4,816	6,076	0	10,892	9.3%	1,018	0%	0	15.0%	1,787	13,697	25
	SUBTOTAL 1.	\$19,176	\$5,149	\$11,458	\$0	\$35,784		\$3,206		\$0		\$5,848	\$44,838	\$82
2	COAL PREP & FEED SYSTEMS													
2.1	Coal Crushing & Drying	2,266	0	442	0	2,707	8.7%	236	0%	0	15.0%	442	3,385	6
2.2	Prepared Coal Storage & Feed	5,801	0	1,266	0	7,068	8.7%	618	0%	0	15.0%	1,153	8,839	16
2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.5	Sorbent Prep Equipment	4,436	191	921	0	5,549	8.7%	483	0%	0	15.0%	905	6,937	13
2.6	Sorbent Storage & Feed	534	0	205	0	739	8.9%	66	0%	0	15.0%	121	926	2
2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
2.9	Coal & Sorbent Feed Foundation	0	568	477	0	1,045	9.2%	96	0%	0	15.0%	171	1,313	2
	SUBTOTAL 2.	\$13,038	\$760	\$3,311	\$0	\$17,109		\$1,500		\$0		\$2,791	\$21,399	\$39
3	FEEDWATER & MISC. BOP SYSTEMS													
3.1	Feedwater System	21,503	0	6,946	0	28,449	8.8%	2,491	0%	0	15.0%	4,641	35,581	65
3.2	Water Makeup & Pretreating	5,426	0	1,747	0	7,173	9.4%	672	0%	0	20.0%	1,569	9,414	17
3.3	Other Feedwater Subsystems	6,583	0	2,782	0	9,365	8.9%	835	0%	0	15.0%	1,530	11,730	21
3.4	Service Water Systems	1,064	0	579	0	1,642	9.3%	152	0%	0	20.0%	359	2,154	4
3.5	Other Boiler Plant Systems	8,117	0	8,014	0	16,130	9.4%	1,513	0%	0	15.0%	2,647	20,290	37
3.6	FO Supply Sys & Nat Gas	2/1	0	338	0	609	9.3%	57	0%	0	15.0%	100	765	1
3.7	Waste Treatment Equipment	2,950	0	1,682	0	4,632	9.7%	449	0%	0	20.0%	1,016	6,097	11
3.8	Misc. Power Plant Equipment	2,872	0	8//	0	3,750	9.6%	360	0%	0	20.0%	822	4,931	9
	SUBIOTAL 3.	\$48,785	\$0	\$22,964	\$0	\$71,749		\$6,529		\$0		\$12,683	\$90,962	\$165
4		404 400		402.240	0	007 507	0.70/	07.054	00/	0	40.00/	24 520	240.007	C04
4.1	A CLI/Quident Compression	184,189	0	103,349	0	287,537	9.7%	27,851	0%	0	10.0%	31,539	346,927	631
4.2		114,916	0	94,022	0	208,938	9.7%	20,238	0%	0	0.0%	22,918	252,093	458
4.3		0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
4.4	Duller Dur (W/ID Falls)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
4.5	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
4.0	Major Component Rigging	vv/4.1))// 1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
4.7	PC Foundations	0	w/4.1	W/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
4.0		\$299,105	¢n	\$107 371	¢n	\$496.475	0 /0	\$48 090	0 /0	0 ¢0	0.070	\$54.456	\$599.021	\$1 089
	300101AL 4	ψ255,105	ψU	ψ131,371	ψŪ	ψ-30,-#/ 3		ψ-0,009		ψU		ψυ-,+30	ψ000,0 2 Ι	ψ1,009

Exhibit 3-84 Case 6 Capital Costs

		Fauinment	t Material Labor		Bare	CM HO &	MHO & Process Cont			ect Cont	TOTAL PLANT COST			
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW
5A	FLUE GAS CLEANUP					2.00104		*					Ŧ	•••••
5.1	Absorber Vessels & Accessories	59,900	0	12.895	0	72,795	9.5%	6.890	0%	0	10.0%	7,968	87.653	159
5.3	2 Other FGD	3,128	0	3.545	0	6.673	9.6%	643	0%	0	10.0%	732	8.047	15
5.3	Bag House & Accessories	14.967	0	9,498	0	24,465	9.6%	2.340	0%	0	10.0%	2.680	29,485	54
5.4	4 Other Particulate Removal Materials	988	0	1.057	0	2.044	9.6%	197	0%	0	10.0%	224	2,465	4
5.5	5 Gypsum Dewatering System	5,411	0	919	0	6.330	9.4%	598	0%	0	10.0%	693	7.621	14
5.0	6 Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5	7 Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	3 Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 5A	\$84.393	\$0	\$27.914	\$0	\$112.307		\$10.668		\$0		\$12.297	\$135.272	\$246
5B	CO2 REMOVAL & COMPRESSION	\$0 1,000	ţu	4 <u></u>	ţ.	¢,cc.		<i>‡.0,000</i>		* *		* ,_ .	¢.00,2.2	+=
5B 1	CO2 Condensing Heat Exchanger	5 997	0	501	0	6 498	10%	650	0%	0	15.0%	1 072	8 219	15
5B 2	CO2 Compression & Drving	41,386	0	12 984	0	54 370	10%	5 200	0%	0	20.0%	11 914	71 483	130
5B.3	CO2 Additional BEW Heat Exchanger	4 653	0	389	0	5 042	10%	504	0%	0	15.0%	832	6.378	12
5B 4	CO2 Pipeline	1,000			Ű	0,012			070	<u> </u>	101070	002	0,010	0
5B 5	CO2 Storage											0	0	0
5B 6	CO2 Monitoring											0	0	0
00.0	SUBTOTAL 5B	\$52.036	\$0	\$13 873	\$0	\$65 909		\$6.354		\$0		\$13 818	\$86.080	\$156
6	NITROGEN EXPANDER/GENERATOR	<i>402,000</i>	ψu	\$10,010	ψU	400,000		\$0,00		ψŪ		<i><i></i></i>	400,000	
6	Nitrogen Expander/Generator	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.1	Nitrogen Expander/Generator Accessories	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Compressed Air Pining	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.	1 Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.	SUBTOTAL 6	\$0	\$0	\$0	\$0	\$0	1070	\$0	070	\$0	0.070	\$0	\$0	\$0
7	HRSG. DUCTING & STACK	÷0	ψu	4 0	ψŰ			ψu		ψŪ		ψU	, ,	
7	1 Flue Gas Recycle Heat Exchanger	1 402	0	117	0	1 519	10%	152	0%	0	15.0%	251	1 921	3
7	2 SCR System	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
7.5	3 Ductwork	9.294	0	5.971	0	15.265	8.7%	1.333	0%	0	15.0%	2,490	19.088	35
7.4	4 Stack	1.587	0	929	0	2 516	9.6%	240	0%	0	10.0%	276	3 032	6
7 0	HRSG Duct & Stack Foundations	0	859	976	0	1 836	9.3%	171	0%	0	20.0%	401	2 408	4
7		\$12 283	\$859	\$7 993	\$0	\$21 136	0.070	\$1 897	070	\$0	20.070	\$3 417	\$26,450	\$48
8	STEAM TURBINE GENERATOR	¢12,200	4000	<i></i>	ψU	<i>\</i> _ 1,100				ψŪ		<i>40,411</i>	420,400	ψic
- 8	1 Steam TG & Accessories	63 770	0	8 463	0	72 233	9.6%	6 916	0%	0	10.0%	7 915	87 064	158
8.3	2 Turbine Plant Auxiliaries	429	0	920	0	1.349	9.7%	131	0%	0	10.0%	148	1.628	3
8.3	Condenser & Auxiliaries	7,658	0	2.823	0	10,481	9.5%	996	0%	0	10.0%	1,148	12.625	23
8.4	4 Steam Piping	20,177	0	9,948	0	30,125	8.3%	2.514	0%	0	15.0%	4,896	37,535	68
8 9	TG Foundations	0	1 343	2 122	0	3 465	9.4%	326	0%	0	20.0%	758	4 549	8
	SUBTOTAL 8.	\$92.035	\$1,343	\$24,276	\$0	\$117.654		\$10.883		\$0		\$14.865	\$143,402	\$261
9	COOLING WATER SYSTEM	<i>••=,•••</i>	+ -,	* = 1,=1 0	֥	••••		 ,				• ••,•••	40 , 0 _	4 -01
9.1	1 Cooling Towers	12.845	0	4.000	0	16.845	9.5%	1.599	0%	0	10.0%	1.844	20.288	37
9.2	2 Circulating Water Pumps	2,266	0	174	0	2,440	8.6%	209	0%	0	10.0%	265	2,914	5
9.3 Circ. Water System Auxiliaries		604	0	81	0	684	9.4%	65	0%	0	10.0%	75	824	1
9.4	4 Circ. Water Piping	0	4,788	4,640	0	9,428	9.2%	868	0%	0	15.0%	1,544	11,840	22
9.5	Make-up Water System	517	0	691	0	1,208	9.5%	114	0%	0	15.0%	198	1,521	3
9.0	Component Cooling Water System	478	0	381	0	859	9.4%	81	0%	0	15.0%	141	1,081	2
9.9	Circ. Water System Foundations	0	2,895	4,599	0	7,494	9.4%	705	0%	0	20.0%	1.640	9,840	18
	SUBTOTAL 9.	\$16,710	\$7,683	\$14,566	\$0	\$38,959		\$3,641		\$0		\$5,708	\$48,308	\$88

Exhibit 3-84 Case 6 Capital Costs (continued)

		Equipment Material Labor		Bare	are Eng'g CM H.O. & Process Cont.			s Cont.	Project Cont		TOTAL PL	ANT COST		
Acct No	Item/Description	Cost	Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW
10 ASH/SPENT SORBENT HANDLING SYS			0001			2.00104							•	
10.1 Ash Coolers		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.2 Cyclone Ash Letdown		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10	3 HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.4 High Temperature Ash Pining		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.5 Other Ash Recovery Equipment		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.	6 Ash Storage Silos	675	0	2 081	0	2 756	9.7%	268	0%	0	10.0%	302	3 327	6
10.	7 Ash Transport & Feed Equipment	4 372	0	4 478	0	8,850	9.5%	837	0%	0	10.0%	969	10,656	19
10.	8 Misc. Ash Handling Equipment	1,012	0		0	0,000	0.0%	001	0%	0	0.0%	000	10,000	0
10.	9 Ash/Spent Sorbent Foundation	0	161	189	0	349	9.3%	33	0%	0	20.0%	76	459	1
10.	SUBTOTAL 10	\$5.047	\$161	\$6 748	\$0	\$11 956	0.070	\$1 138	070	\$0	20.070	\$1 348	\$14 442	\$26
11		ψ0,047	φ101	ψ0,140	Ψ0	ψΠ,550		ψ1,150		ψυ		ψ1,540	ψ14,442	ψ20
11	1 Generator Equipment	1 892	0	307	0	2 100	0.3%	204	0%	0	7 5%	180	2 583	5
11	2 Station Service Equipment	7.035	0	2 311	0	9 346	9.6%	894	0%	0	7.5%	768	11 008	20
11	3 Switchgear & Motor Control	8.087	0	1 375	0	0,040	0.3%	876	0%	0	10.0%	1 034	11,000	20
11	4 Conduit & Cable Trav	0,007	5 070	17 532	0	22 602	0.6%	2 163	0%	0	15.0%	3 715	28.480	52
11.	5 Wire & Cable	0	9,568	18,470	0	22,002	9.070	2,103	0%	0	15.0%	4 560	20,400	52
11.	6 Protective Equipment	261	3,500	888	0	1 1/0	0.4%	2,302	0%	0	10.0%	4,500	1 388	
11.	7 Standby Equipment	1 465	0	22	0	1,149	9.0%	142	0%	0	10.0%	120	1,300	3
11.	Main Dower Transformere	1,403	0	140	0	1,499	9.5%	142	0%	0	10.0%	004	1,000	10
11.	0 Main Power Hansionners	0,417	0	142	0	0,009	7.0%	1050	0%	0	10.0%	921	10,130	10
11.		¢07.457	\$15 020	\$37 \$44.005	0	1,319 ¢94,473	9.5%	120 \$7,500	0%	0 60	20.0%	209 \$11 757	£102 459	ن 100 ¢
10		\$27,157	\$15,020	\$41,995	φU	\$04,173		\$7,529		φU		\$11,757	\$103,456	\$100
12	1 DC Control Equipment	w/10 7	0	w/10 7	0	0	00/	0	00/	0	0.00/	0	0	0
12.	2 Combustion Turbing Control	W/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.	2 Combustion Turbine Control	IN/A	0	IV/A	0	0	0%	0	0%	0	0.0%	0	0	0
12.	4 Other Maler Octavity	W/8.1	0	<u></u>	0	0	0%	0	0%	0	0.0%	0	0	0
12.	4 Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
12.	5 Signal Processing Equipment	VV/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.	6 Control Boards, Panels & Racks	5/2	0	343	0	915	9.6%	88	0%	0	15.0%	150	1,153	2
12.	7 Computer Accessories	5,775	0	1,009	0	6,785	9.5%	646	0%	0	10.0%	/43	8,174	15
12.	8 Instrument Wiring & Tubing	3,131	0	6,212	0	9,343	8.5%	796	0%	0	15.0%	1,521	11,659	21
12.	9 Other I & C Equipment	1,632	0	3,703	0	5,335	9.7%	520	0%	0	10.0%	585	6,440	12
10	SUBIOTAL 12.	\$11,110	\$0	\$11,267	\$0	\$22,377		\$2,049		\$0		\$3,000	\$27,426	\$50
13	IMPROVEMENTS TO SITE	0		4 4 9 4		4 4 5 7	0.00/		00/	0	00.00/	054	4 505	
13.	Site Preparation	0	55	1,101	0	1,157	9.9%	114	0%	0	20.0%	254	1,525	3
13.	2 Site Improvements	0	1,828	2,271	0	4,099	9.8%	403	0%	0	20.0%	900	5,402	10
13.	3 Site Facilities	3,277	0	3,231	0	6,508	9.8%	639	0%	0	20.0%	1,429	8,5/6	16
	SUBIOTAL 13.	\$3,277	\$1,884	\$6,603	\$0	\$11,764		\$1,155		\$0		\$2,584	\$15,503	\$28
14	BUILDINGS & STRUCTURES		0.000			10 570	0.00/	4 400	00/		15 00/	0.740	00 770	
14.	1 Boiler Building	0	8,822	7,758	0	16,579	9.0%	1,489	0%	0	15.0%	2,710	20,778	38
14.2 Turbine Building		0	12,740	11,874	0	24,614	9.0%	2,216	0%	0	15.0%	4,025	30,855	56
14.	3 Administration Building	0	639	676	0	1,315	9.1%	119	0%	0	15.0%	215	1,649	3
14.4 Circulation Water Pumphouse		0	137	109	0	247	8.9%	22	0%	0	15.0%	40	309	1
14.5 Water Treatment Buildings		0	701	639	0	1,340	9.0%	120	0%	0	15.0%	219	1,678	3
14.6 Machine Shop		0	427	287	0	715	8.9%	63	0%	0	15.0%	117	895	2
14.	7 Warehouse	0	290	291	0	580	9.0%	52	0%	0	15.0%	95	727	1
14.	8 Other Buildings & Structures	0	237	201	0	438	9.0%	39	0%	0	15.0%	72	549	1
14.	9 Waste Treating Building & Str.	0	445	1,350	0	1,795	9.4%	170	0%	0	15.0%	295	2,259	4
	SUBTOTAL 14.	\$0	\$24,438	\$23,185	\$0	\$47,622		\$4,291		\$0		\$7,787	\$59,700	\$109
	Total Cost	\$684,153	\$57,296	\$413,524	\$0	\$1,154,973		\$108,928		\$0		\$152,360	\$1,416,260	\$2,574

Exhibit 3-84 Case 6 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,597	\$17
1 Month Maintenance Materials	\$1,446	\$3
1 Month Non-fuel Consumables	\$788	\$1
1 Month Waste Disposal	\$312	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,888	\$3
2% of TPC	\$28,325	\$51
Total	\$42,357	\$77
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$16,280	\$30
0.5% of TPC (spare parts)	\$7,081	\$13
Total	\$23,361	\$42
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$212,439	\$386
Financing Costs	\$38,239	\$70
Total Overnight Costs (TOC)	\$1,733,556	\$3,151
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,965,853	\$3,573

Exhibit 3-85 Case 6 Owner's Costs

INITIAL & ANNUAL O&M EXPENSES													
Case:	Case 6 - Advanced	d CO2 Compr	ression										
Plant Size (MWe): 5					Heat Rate (B	11,492							
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Coa	al	Fuel Cost (\$/I	1.64							
Design/Con	struction	5 years			Book Life (yr	s):	30						
TPC (Plant	Cost) Year:	June 2007			TPI Year:		2012						
Capacity Fa	actor (%):	85			CO2 Captured	(TPD):	15,450						
							-,						
OPERATING	& MAINTENANCE	LABOR											
Operating L	_abor												
Operating	Labor Rate (base)		\$34.65	\$/hour									
Operating	Labor Burden:		30.00	% of base									
Labor Ove	rhead Charge:		25.00	% of labor									
	lindud onlargo.		20.00										
Operating	Labor Requirement	s ner Shift	units/mod		Total Plant								
opolating	Skilled Operator		2.0		2.0								
	Operator		9.0		2.0								
	Foreman		1.0		1.0								
	Lab Toch's otc		1.0		1.0								
	TOTAL Operating	lobe	14.0		14.0								
	OTAL Operating	1003	14.0		14.0								
						¢	\$/kW_nat						
Appuel Or	orating Labor Cost	(calc'd)				¥ 5 524 240	40.04						
Annual Op Mointenen	erating Labor Cost					0,024,019	10.04						
		vu)				3,031,000	17.87						
Administra		or (caic d)				3,838,977	0.98						
						28,325,203	51.49						
TOTAL FI	LED OPERATING	0515				47,520,088	80.38						
VARIABLE	OPERATING COST	<u>s</u>				•	A // 14/1						
						\$	\$/kWh-net						
Maintenan	ice Material Costs (calc'd)				\$14,747,498	0.00360						
-													
Consuma	bles	Consu	mption	Unit	Initial								
			·			•	A.0						
		Initial	/Day	Cost	Cost	\$	\$/kWh-net						
Water (/10	000 gallons)	Initial 0	/Day 6,119	Cost 1.08	Cost \$0	\$ \$2,053,568	\$/kWh-net 0.00050						
Water (/10 Chemicals	000 gallons)	Initial 0	/Day 6,119	Cost 1.08	Cost \$0	\$ \$2,053,568	\$/kWh-net 0.00050						
Water (/10 Chemicals MU & W	000 gallons) T Chem. (lb)	Initial 0 0	/Day 6,119 29,621	Cost 1.08	Cost \$0 \$0	\$ \$2,053,568 \$1,590,494	\$/kWh-net 0.00050 0.00039						
Water (/10 Chemicals MU & W Limestor	000 gallons) T Chem. (lb) ne (ton)	Initial 0 0 0 0 0	/Day 6,119 29,621 655	Cost 1.08 0.17 21.63	Cost \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811	\$/kWh-net 0.00050 0.00039 0.00107						
Water (/10 Chemicals MU & W Limestor Carbon (l	000 gallons) 5 T Chem. (Ib) 1e (ton) Hg Removal) (Ib)	Initial 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0	Cost 1.08 0.17 21.63 1.05	Cost \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol	000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton)	Initial 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0	Cost 1.08 0.17 21.63 1.05 2249.89	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S	000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton)	Initial 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a	000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton)	Initial 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion	000 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor	Initial 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated	D00 gallons) T Chem. (lb) ne (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	D00 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	D00 gallons) T Chem. (lb) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000146						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	000 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) h Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	D00 gallons) T Chem. (lb) he (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000146						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia	D00 gallons) T Chem. (lb) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) alyst Replacement	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	200 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) alyst Replacement n Penalties	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	200 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other posal	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 00 00 00 00 00 00 00 00 00 00 00 00 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis	2000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic : ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mi Elvach (f	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemics ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb) on)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.000000 0.00000 0.00000 0.00000 0.0000000 0.0000000 0.00000000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb) on)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) the Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic ental Fuel (MMBtu) alyst Replacement the Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A By-produc	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum	D00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Ivent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) in Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: ental Fuel (MMBtu) alyst Replacement in Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) ms)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 0.00 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$5,988,305 \$0 \$5,988,305 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mu Flyash (t Bottom A By-produc Gypsum Sulfur (to	D00 gallons) T Chem. (lb) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) In Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) ons) Subtotal By-Brod	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 1.08 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$5,988,305 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A By-produc Gypsum Sulfur (to	000 gallons) T Chem. (lb) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Subtotal Chemic: Penalties Subtotal Other sposal ercury Catalyst (lb) on) Ash (ton) Subtotal Solid W ts & Emissions (tons) ms) Subtotal By-Prod	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 0.00 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$5,988,305 \$ \$636,319 \$3,181,654 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A By-produc Gypsum Sulfur (to	D00 gallons) T Chem. (lb) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemic: Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms) Subtotal By-Prod	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 0.00 0.00	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						
Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Mo Flyash (t Bottom A By-produc Gypsum Sulfur (to D	D00 gallons) T Chem. (lb) Hg Removal) (lb) Went (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms) Subtotal By-Prod RIABLE OPERATIN (fons)	Initial 0 0 0 0 0 0 0 0 0 0 0 0 0	/Day 6,119 29,621 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.00 0.42 16.23 17.24	Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$2,053,568 \$1,590,494 \$4,397,811 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00050 0.00039 0.00107 0.00000						

Exhibit 3-86 Case 6 O&M Costs

3.7 CASE 7 – OXYCOMBUSTION BOILER DEVELOPMENT

This case uses an oxycombustion boiler system designed specifically for coal combustion in a highly concentrated O_2 environment. Conceptually, an oxycombustion-specific boiler is designed to accommodate a smaller flue gas flow, which results in reduced equipment size. It is also designed to accommodate increased temperatures by increasing heat transfer rates above those of conventional boilers. Furthermore, fan loads required for flue gas recycle are reduced, increasing system efficiency. More information on oxycombustion boilers is in Section 2.5.7.

With the exception of the higher adiabatic flame temperature, the major features for Case 7 are similar to the current technology case, which include the following:

- 1. Conventional cryogenic ASU
- 2. Advanced oxycombustion boiler with an adiabatic flame temperature of $4,187^{\circ}F$
- 3. Baghouse to remove particulates
- 4. Wet FGD to reduce sulfur emissions
- 5. CPU with compression to 15.3 MPa (2,215 psia)
- 6. FGR superheater
- 7. Steam turbine/generator

A process BFD for Case 7 is shown in Exhibit 3-87, and the corresponding stream tables are shown in Exhibit 3-88.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-89 and Exhibit 3-90:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-91. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-92 through Exhibit 3-94.

Performance Summary

A performance summary is provided in Exhibit 3-95.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-96 through Exhibit 3-98, respectively.

Equipment List

In an attempt to condense the content of the report, the combined equipment list for Case 4 through Case 7 is shown in Exhibit 3-99.

Exhibit 3-87 Process Block Flow Diagram for Case 7

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
V-L Mole Fraction																	
Ar	0.0092	0.0092	0.0024	0.0340	0.0340	0.0340	0.0308	0.0308	0.0319	0.0319	0.0000	0.0092	0.0000	0.0284	0.0000	0.0000	0.0284
CO ₂	0.0005	0.0005	0.0006	0.0000	0.0000	0.0000	0.7090	0.7090	0.4711	0.4711	0.0000	0.0005	0.0000	0.6536	0.0000	0.0000	0.6536
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0128	0.0000	0.0000	0.0000	0.1514	0.1514	0.1006	0.1006	0.0000	0.0101	0.0000	0.2161	1.0000	0.0000	0.2161
N ₂	0.7729	0.7729	0.9778	0.0162	0.0162	0.0162	0.0856	0.0856	0.0623	0.0623	0.0000	0.7729	0.0000	0.0793	0.0000	0.0000	0.0793
O ₂	0.2074	0.2074	0.0063	0.9498	0.9498	0.9498	0.0231	0.0231	0.3340	0.3340	0.0000	0.2074	0.0000	0.0191	0.0000	0.0000	0.0191
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0035	0.0000	0.0000	0.0035
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	77,685	77,685	61,127	16,558	3,836	12,489	7,598	24,735	11,435	37,224	0	1,554	0	55,125	122,311	0	55,125
V-L Flowrate (kg/hr)	2,241,685	2,241,687	1,708,446	533,240	123,554	402,206	291,040	947,427	414,593	1,349,633	0	44,834	0	2,031,404	2,203,471	0	2,031,404
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	246,282	0	4,788	19,150	0	19,150	0
Temperature (°C)	15	24	17	13	13	13	75	69	57	53	15	15	15	177	599	15	177
Pressure (MPa, abs)	0.10	0.59	0.10	0.16	0.16	0.16	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	24.23	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	32.03	38.64	11.49	11.49	11.49	247.49	241.87	177.16	173.22		30.57		519.94	3,493.92		441.58
Density (kg/m ³)	1.2	7.0	1.2	2.2	2.2	2.2	1.5	1.4	1.5	1.4		1.2		1.0	68.5		1.0
V-L Molecular Weight	28.856	28.856	27.949	32.205	32.205	32.205	38.303	38.303	36.257	36.257		28.856		36.851	18.015		36.851
V-L Flowrate (lb _{mol} /hr)	171,267	171,267	134,763	36,504	8,458	27,534	16,752	54,532	25,210	82,066	0	3,425	0	121,530	269,650	0	121,530
V-L Flowrate (lb/hr)	4,942,070	4,942,073	3,766,479	1,175,594	272,389	886,713	641,632	2,088,718	914,021	2,975,431	0	98,841	0	4,478,480	4,857,822	0	4,478,480
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	542,960	0	10,555	42,219	0	42,219	0
Temperature (°F)	59	75	63	55	56	56	167	157	135	128	59	59	59	350	1,110	59	350
Pressure (psia)	14.7	86.1	14.7	23.2	23.2	23.2	16.2	15.3	16.2	15.3	14.7	14.7	14.7	14.4	3,514.7	14.7	14.2
Enthalpy (Btu/lb) ^A	13.1	13.8	16.6	4.9	4.9	4.9	106.4	104.0	76.2	74.5		13.1		223.5	1,502.1		189.8
Density (lb/ft ³)	0.076	0.435	0.073	0.135	0.135	0.135	0.092	0.089	0.092	0.088		0.076		0.061	4.274		0.060
	A - Refere	nce conditi	ons are 32	.02 F & 0.0	89 PSIA												

Exhibit 3-88 Stream Table for Case 7
	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
V-L Mole Fraction																
Ar	0.0284	0.0000	0.0000	0.0340	0.0340	0.0099	0.0308	0.0308	0.0308	0.0308	0.0308	0.0308	0.0362	0.0000	0.0363	0.0363
CO ₂	0.6536	0.0000	0.0000	0.0000	0.0000	0.9695	0.7090	0.7090	0.7090	0.7090	0.7090	0.7090	0.8337	0.0000	0.8354	0.8354
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2161	1.0000	1.0000	0.0000	0.0000	0.0026	0.1514	0.1514	0.1514	0.1514	0.1514	0.1514	0.0021	1.0000	0.0001	0.0001
N ₂	0.0793	0.0000	0.0000	0.0162	0.0162	0.0019	0.0856	0.0856	0.0856	0.0856	0.0856	0.0856	0.1007	0.0000	0.1009	0.1009
O ₂	0.0191	0.0000	0.0000	0.9498	0.9498	0.0086	0.0231	0.0231	0.0231	0.0231	0.0231	0.0231	0.0272	0.0000	0.0272	0.0272
SO ₂	0.0035	0.0000	0.0000	0.0000	0.0000	0.0074	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	55,125	3,174	1,618	232	232	0	51,087	32,334	32,334	7,598	24,735	18,753	15,947	2,840	15,915	15,915
V-L Flowrate (kg/hr)	2,031,404	57,185	29,145	7,481	7,481	12	1,956,764	1,238,464	1,238,470	291,040	947,427	718,302	667,740	51,169	667,176	667,176
Solids Flowrate (kg/hr)	0	24,852	0	0	0	38,658	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	186	15	15	13	95	57	57	57	66	66	66	58	104	22	104	21
Pressure (MPa, abs)	0.11	0.11	0.10	0.16	0.31	0.10	0.10	0.10	0.10	0.10	0.10	0.10	3.35	0.24	3.35	15.27
Enthalpy (kJ/kg) ^A	451.88		62.80	11.49	85.68		230.24	230.24	238.24	238.24	238.24	230.78	74.45	93.20	72.32	-188.93
Density (kg/m ³)	1.0		1,003.1	2.2	3.3		1.4	1.4	1.4	1.4	1.4	1.4	47.9	996.0	47.9	691.2
V-L Molecular Weight	36.851		18.015	32.205	32.205		38.303	38.303	38.303	38.303	38.303	38.303	41.873	18.016	41.920	41.920
V-L Flowrate (lb _{mol} /hr)	121,530	6,998	3,567	512	512	1	112,627	71,283	71,284	16,752	54,532	41,344	35,157	6,262	35,088	35,088
V-L Flowrate (lb/hr)	4,478,480	126,072	64,254	16,492	16,492	26	4,313,927	2,730,345	2,730,359	641,632	2,088,718	1,583,585	1,472,115	112,809	1,470,870	1,470,870
Solids Flowrate (lb/hr)	0	54,790	0	0	0	85,227	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	367	59	59	56	203	135	135	135	150	150	150	136	219	72	219	70
Pressure (psia)	15.3	15.5	14.7	23.2	45.0	14.8	14.8	14.8	14.7	14.7	14.7	14.8	485.8	35.2	485.8	2,214.7
Enthalpy (Btu/lb) ^A	194.3		27.0	4.9	36.8		99.0	99.0	102.4	102.4	102.4	99.2	32.0	40.1	31.1	-81.2
Density (lb/ft ³)	0.064		62.622	0.135	0.204		0.089	0.089	0.087	0.087	0.087	0.089	2.989	62.179	2.992	43.148

Exhibit 3-88 Stream Table for Case 7 (Continued)

Exhibit 3-89 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Case 7

Exhibit 3-90 Heat and Mass Balance, Power Block Systems for Case 7

	HHV	Sensible + Latent	Power	Total
	Heat In G	J/hr (MMBtu/hr)		
Coal	6,683 (6,334)	5.6 (5.3)		6,688 (6,339)
Combustion Air		69.9 (66.3)		69.9 (66.3)
Raw Water Makeup		122.3 (115.9)		122.3 (115.9)
Limestone		0.54 (0.51)		0.54 (0.51)
Auxiliary Power			851 (807)	851 (807)
Totals	6,683 (6,334)	198.3 (188.0)	851 (807)	7,732 (7,329)
	Heat Out 0	GJ/hr (MMBtu/hr)		
Boiler Loss		60.6 (57.4)		60.6 (57.4)
Bottom Ash		0.6 (0.6)		0.6 (0.6)
Fly Ash + FGD Ash		2.4 (2.3)		2.4 (2.3)
MAC Cooling		430.0 (407.6)		430.0 (407.6)
ASU Vent		66.0 (62.6)		66.0 (62.6)
Condenser		3,062 (2,902)		3,062 (2,902)
CO ₂ Cooling		539 (511)		539 (511)
CO ₂		-126 (-119)		-126 (-119)
Wet FGD Cooling		466 (442)		466 (442)
Process Condensate		42 (40)		42 (40)
Cooling Tower Blowdown		58.6 (55.6)		58.6 (55.6)
Process Losses*		362.1 (343.2)		362.1 (343.2)
Power			2,829 (2,682)	2,829 (2,682)
Totals		4,903 (4,647)	2,829 (2,682)	7,732 (7,329)

Exhibit 3-91 Cases 7 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Carbon In		Carbon Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	157,385 (346,974)	CO ₂ Product	159,691 (352,058)
Air (CO ₂)	437 (963)	FGD Product	224 (495)
FGD Reagent	2,522 (5,560)	Separated Air	428 (944)
		Convergence Tolerance*	0 (0)
Total	160,344 (353,497)	Total	160,344 (353,497)

Exhibit 3-92 Case 7 Carbon Balance

*by difference

Exhibit 3-93 Case 7 Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	6,187 (13,641)	Gypsum	6,141 (13,539)
		CO ₂ Product	46 (101)
		Convergence Tolerance*	0 (0)
Total	6,187 (13,641)	Total	6,187 (13,641)

*by difference

Exhibit 3-94 Case 7 Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m ³ /min (gpm)	m³/min (gpm)	m³/min (gpm)	m ³ /min (gpm)
FGD Makeup	0.49 (129)	0.0 (0)	0.49 (129)	0.0 (0)	0.49 (129)
BFW Makeup	0.37 (97)	0.0 (0)	0.37 (97)	0.0 (0)	0.37 (97)
Cooling Tower	35.1 (9,269)	3.44 (907)	31.7 (8,362)	7.89 (2,085)	23.76 (6,277)
Total	35.9 (9,495)	3.44 (907)	32.5 (8,587)	7.89 (2,085)	24.62 (6,503)

Plant Outp	ut	
Steam Turbine Power	785,900	kW _e
Gross Power	785,900	kWe
Auxiliary Lo	ad	
Coal Handling and Conveying	500	kW _e
Limestone Handling & Reagent Preparation	1,200	kW _e
Pulverizers	3,690	kW _e
Ash Handling	710	kWe
Primary Air Fans	790	kWe
Forced Draft Fans	1,010	kWe
Induced Draft Fans	6,030	kW _e
Air Separation Unit Main Air Compressor	124,190	kWe
ASU Auxiliaries	1,000	kWe
Baghouse	90	kW _e
FGD Pumps and Agitators	4,000	kWe
CO ₂ Compression	72,520	kWe
Condensate Pumps	1,050	kWe
Boiler Feedwater Booster Pumps ²	N/A	kW _e
Miscellaneous Balance of Plant ³	2,000	kW _e
Steam Turbine Auxiliaries	400	kWe
Circulating Water Pumps	9,010	kWe
Cooling Tower Fans	5,260	kWe
Transformer Losses	3,000	kWe
Total	236,450	kW _e
Plant Perform	ance	
Net Auxiliary Load	236,450	kW _e
Net Plant Power	549,450	kWe
Net Plant Efficiency (HHV)	29.6%	
Net Plant Heat Rate (HHV)	12,163 (11,528)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	246,282 (542,960)	kg/hr (lb/hr)
Thermal Input ¹	1,856,362	kW _{th}
Condenser Duty	3,062 (2,902)	GJ/hr (MMBtu/hr)
Raw Water Usage	32.5 (8,587)	m ³ /min (gpm)
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)
2 - Boiler feed pumps are turbine driven		

Exhibit 3-95 Case 7 Performance Summary

3 - Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

		Department:	NETL Office of	Program Plann	ing and Ana	vsis							Cost Base:	June 2007	
		Project:	Advancing Oxy	combustion Te	chnology	, 0.0							Prepared:	13-Apr-12	
		Case:	Case 7 - Oxyco	mbustion Boile	er								. repare al	x \$1,000	
		Plant Size:	549	MW, net		Capital (Charge Factor	0.158	Capacity	Factor	0.85				
				,			J								
			Equipment	Material	Lab	or	Bare	Eng'g	CM H.O. &	Proce	ss Cont.	Proj	ect Cont.	TOTAL PLA	ANT COST
Acct	No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
1		COAL HANDLING SYSTEM													
	1.1	Coal Receive & Unload	3,922	0	1,792	0	5,714	8.9%	510	0%	0	15.0%	934	7,158	13
	1.2	Coal Stackout & Reclaim	5,069	0	1,149	0	6,218	8.8%	544	0%	0	15.0%	1,014	7,776	14
	1.3	Coal Conveyors & Yd Crus	4,713	0	1,136	0	5,849	8.8%	513	0%	0	15.0%	954	7,316	13
	1.4	Other Coal Handling	1,233	0	263	0	1,496	8.7%	131	0%	0	15.0%	244	1,871	3
	1.5	Sorbent Receive & Unload	162	0	49	0	210	8.8%	19	0%	0	15.0%	34	263	0
	1.6	Sorbent Stackout & Reclaim	2,610	0	478	0	3,089	8.7%	269	0%	0	15.0%	504	3,861	7
	1.7	Sorbent Conveyors	931	201	228	0	1,361	8.7%	118	0%	0	15.0%	222	1,701	3
	1.8	Other Sorbent Handling	563	132	295	0	990	8.8%	87	0%	0	15.0%	162	1,239	2
	1.9	Coal & Sorbent Hnd.Foundations	0	4,823	6,084	0	10,906	9.3%	1,020	0%	0	15.0%	1,789	13,715	25
		SUBTOTAL 1.	\$19,203	\$5,156	\$11,474	\$0	\$35,833		\$3,211		\$0		\$5,857	\$44,900	\$82
2		COAL PREP & FEED SYSTEMS													
	2.1	Coal Crushing & Drying	2,269	0	442	0	2,711	8.7%	236	0%	0	15.0%	442	3,389	6
	2.2	Prepared Coal Storage & Feed	5,809	0	1,268	0	7,077	8.7%	619	0%	0	15.0%	1,154	8,850	16
	2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment	4,446	192	923	0	5,561	8.7%	484	0%	0	15.0%	907	6,953	13
	2.6	Sorbent Storage & Feed	536	0	205	0	741	8.9%	66	0%	0	15.0%	121	928	2
	2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation	0	569	478	0	1,047	9.2%	96	0%	0	15.0%	171	1,314	2
		SUBTOTAL 2.	\$13,059	\$761	\$3,316	\$0	\$17,136		\$1,502		\$0		\$2,796	\$21,434	\$39
3		FEEDWATER & MISC. BOP SYSTEMS							. ,						
	3.1	Feedwater System	21,694	0	7,008	0	28,702	8.8%	2,513	0%	0	15.0%	4,682	35,897	65
	3.2	Water Makeup & Pretreating	5,466	0	1,759	0	7,225	9.4%	677	0%	0	20.0%	1,581	9,483	17
	3.3	Other Feedwater Subsystems	6,642	0	2,807	0	9,448	8.9%	842	0%	0	15.0%	1,544	11,834	22
	3.4	Service Water Systems	1,071	0	583	0	1,654	9.3%	154	0%	0	20.0%	362	2,170	4
	3.5	Other Boiler Plant Systems	8,195	0	8,091	0	16,286	9.4%	1,528	0%	0	15.0%	2,672	20,486	37
	3.6	FO Supply Sys & Nat Gas	271	0	338	0	609	9.3%	57	0%	0	15.0%	100	765	1
	3.7	Waste Treatment Equipment	2,954	0	1,684	0	4,638	9.7%	449	0%	0	20.0%	1,017	6,105	11
	3.8	Misc. Power Plant Equipment	2,874	0	878	0	3,751	9.6%	360	0%	0	20.0%	822	4,934	9
		SUBTOTAL 3.	\$49,167	\$0	\$23,148	\$0	\$72,315		\$6,580		\$0		\$12,780	\$91,674	\$167
4		PC BOILER & ACCESSORIES													
	4.1	PC (Oxycombustion) Boiler	173,264	0	97,219	0	270,482	9.7%	26,199	10%	27,048	10.0%	32,373	356,102	648
	4.2	ASU/Oxidant Compression	115,048	0	94,130	0	209,178	9.7%	20,261	0%	0	10.0%	22,944	252,383	459
	4.3	Open	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.4	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.5	Primary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.7	Major Component Rigging	0	w/4.1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
		SUBTOTAL 4.	\$288,312	\$0	\$191,349	\$0	\$479,661		\$46,460		\$27,048		\$55,317	\$608,486	\$1,107

Exhibit 3-96 Case 7 Capital Costs

		Equipment	Matorial	اد ا	or	Bare	Engla	CM HO &	Proc	es Cont	Proi	act Cont		NT COST
Acct No	Item/Description	Cost	Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW
54		003	0031	2		Licelea	,,,	*	,,,		,,,		Ŧ	4 /111
5 4	Absorber Vessels & Accessories	53 675	0	11 555	0	65 231	9.5%	6 174	0%	0	10.0%	7 140	78 545	143
5.0	Other EGD	2,803	0	3 176	0	5 980	9.6%	576	0%	0	10.0%	656	7 211	13
5.2	Bag House & Accessories	13 302	0	8 442	0	21 744	9.6%	2 080	0%	0	10.0%	2 382	26 207	48
5.0	Other Particulate Removal Materials	870	0	0,442	0	1 820	9.6%	2,000	0%	0	10.0%	2,302	20,207	40
5.6	Gunsum Dewatering System	5 /10	0	021	0	6 340	9.0%	500	0%	0	10.0%	694	7 633	4
5.0	Marouni Demound System	3,413	0	321	0	0,340	0.00/		070	0	0.0%	034	7,000	14
5.0	niercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.1	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.9	Open	0	0	0 ¢05.005	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBIOTAL 5A.	\$76,079	\$0	\$25,035	\$0	\$101,114		\$9,604		\$0		\$11,072	\$121,790	\$222
5B	CO2 REMOVAL & COMPRESSION	5 570		105			100/	00.4			15.00/		7 000	
5B.1	CO2 Condensing Heat Exchanger	5,573	0	465	0	6,038	10%	604	0%	0	15.0%	996	7,638	14
5B.2	CO2 Compression & Drying	42,687	0	34,925	0	77,612	10%	7,761	0%	0	20.0%	17,075	102,448	186
5B.3	CO2 Pipeline											0	0	0
5B.4	CO2 Storage											0	0	0
5B.5	CO2 Monitoring											0	0	0
	SUBTOTAL 5B.	\$48,259	\$0	\$35,391	\$0	\$83,650		\$8,365		\$0		\$18,071	\$110,086	\$200
6	NITROGEN EXPANDER/GENERATOR													
6.1	Nitrogen Expander/Generator	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.2	2 Nitrogen Expander/Generator Accessories	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.3	3 Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
6.4	Nitrogen Expander/Generator Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 6.	\$0	\$0	\$0	\$0	\$0		\$0		\$0		\$0	\$0	\$0
7	HRSG, DUCTING & STACK									-				
7.1	Flue Gas Recycle Heat Exchanger	1,145	0	96	0	1,241	10%	124	0%	0	15.0%	205	1,570	3
7.2	2 SCR System	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
7.3	3 Ductwork	9,301	0	5,976	0	15,276	8.7%	1,334	0%	0	15.0%	2,492	19,102	35
7.4	1 Stack	1,476	0	864	0	2,340	9.6%	224	0%	0	10.0%	256	2,820	5
7.9	HRSG, Duct & Stack Foundations	0	860	977	0	1,836	9.3%	171	0%	0	20.0%	401	2,409	4
	SUBTOTAL 7.	\$11,922	\$860	\$7,911	\$0	\$20,693		\$1,853		\$0		\$3,354	\$25,900	\$47
8	STEAM TURBINE GENERATOR									-				
8.1	Steam TG & Accessories	62,249	0	8,261	0	70,510	9.6%	6,751	0%	0	10.0%	7,726	84,988	155
8.2	2 Turbine Plant Auxiliaries	419	0	898	0	1,317	9.7%	128	0%	0	10.0%	145	1,590	3
8.3	3 Condenser & Auxiliaries	7,142	0	2,632	0	9,774	9.5%	929	0%	0	10.0%	1,070	11,773	21
8.4	Steam Piping	20,359	0	10,038	0	30,397	8.3%	2,537	0%	0	15.0%	4,940	37,874	69
8.9	TG Foundations	0	1,312	2,073	0	3,385	9.4%	319	0%	0	20.0%	741	4,444	8
	SUBTOTAL 8.	\$90,169	\$1,312	\$23,902	\$0	\$115,383		\$10,663		\$0		\$14,622	\$140,668	\$256
9	COOLING WATER SYSTEM			-										
9.1	Cooling Towers	12,920	0	4,023	0	16,943	9.5%	1,608	0%	0	10.0%	1,855	20,407	37
9.2	2 Circulating Water Pumps	2,282	0	176	0	2,457	8.6%	210	0%	0	10.0%	267	2,934	5
9.3	Girc. Water System Auxiliaries	607	0	81	0	688	9.4%	65	0%	0	10.0%	75	828	2
9.4	Circ. Water Piping	0	4,813	4,664	0	9,477	9.2%	873	0%	0	15.0%	1,553	11,903	22
9.5	5 Make-up Water System	520	0	695	0	1,216	9.5%	115	0%	0	15.0%	200	1,531	3
9.6	Component Cooling Water System	481	0	383	0	863	9.4%	81	0%	0	15.0%	142	1,086	2
9.9	Circ. Water System Foundations	0	2,909	4,622	0	7,531	9.4%	709	0%	0	20.0%	1,648	9,888	18
	SUBTOTAL 9.	\$16,810	\$7,722	\$14,644	\$0	\$39,176		\$3,662		\$0		\$5,739	\$48,576	\$88

Exhibit 3-96 Case 7 Capital Costs (continued)

		Equipment	Matorial	Lah	or	Baro	Eng'g	CM H O &	Proce	see Cont	Proi	act Cont		NT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Frected	%	Total	%	Total	%	Total	\$	\$/kW
10	ASH/SPENT SORBENT HANDLING SYS	003	003	2		Licelea			70		70		¥ I	4
10	Ash Coolers	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.	Cyclone Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.2	B HGCU Ash Letdown	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.0	High Temperature Ash Pining	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.	Other Ash Recovery Equipment		0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
10.0	S Ash Storage Silos	676	0	2 083	0	2 750	0.7%	260	0%	0	10.0%	303	3 331	6
10.0	Ash Transport & Feed Equipment	4 377	0	2,003	0	2,753	9.7%	838	0%	0	10.0%	970	10,668	10
10.1	Misc. Ash Handling Equipment	4,377	0	4,403	0	0,000	9.5%	030	0%	0	0.0%	970	10,000	19
10.0		0	161	190	0	250	0.076	22	070	0	20.0%	77	450	1
10.3		\$5.052	\$161	¢6 756	0	\$11 060	9.370	\$1 120	0 /0	0 ¢0	20.076	\$1.240	¢14 457	¢26
11		\$5,055	\$101	\$0,750	φU	\$11,909		φI,I39		φU		\$1,34 3	\$14,457	\$20
11		1 950	0	201	0	2 159	0.20/	200	00/	0	7 50/	177	2 524	F
11.	Generator Equipment	1,800	0	301	0	2,158	9.3%	200	0%	0	7.5%	700	2,534	5
11.4	2 Station Service Equipment	6,708	0	2,204	0	8,913	9.6%	852	0%	0	1.5%	732	10,497	19
11.3	Switchgear & Motor Control	7,713	0	1,311	0	9,023	9.3%	835	0%	0	10.0%	986	10,845	20
11.4	Conduit & Cable Tray	0	4,835	16,719	0	21,555	9.6%	2,063	0%	0	15.0%	3,543	27,160	49
11.		0	9,124	17,613	0	26,737	8.4%	2,253	0%	0	15.0%	4,349	33,339	61
11.6	Protective Equipment	261	0	888	0	1,149	9.8%	112	0%	0	10.0%	126	1,388	3
11.7	Standby Equipment	1,443	0	33	0	1,476	9.5%	140	0%	0	10.0%	162	1,777	3
11.8	3 Main Power Transformers	8,293	0	140	0	8,432	7.6%	641	0%	0	10.0%	907	9,980	18
11.9	Electrical Foundations	0	373	915	0	1,289	9.5%	122	0%	0	20.0%	282	1,693	3
	SUBTOTAL 11.	\$26,274	\$14,333	\$40,125	\$0	\$80,731		\$7,218		\$0		\$11,263	\$99,213	\$181
12	INSTRUMENTATION & CONTROL												1	
12.1	PC Control Equipment	w/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.2	2 Combustion Turbine Control	N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
12.3	3 Steam Turbine Control	w/8.1	0	w/8.1	0	0	0%	0	0%	0	0.0%	0	0	0
12.4	Other Major Component Control	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
12.5	5 Signal Processing Equipment	W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
12.6	6 Control Boards, Panels & Racks	564	0	338	0	902	9.6%	87	0%	0	15.0%	148	1,137	2
12.7	7 Computer Accessories	5,695	0	995	0	6,690	9.5%	637	0%	0	10.0%	733	8,060	15
12.8	3 Instrument Wiring & Tubing	3,088	0	6,125	0	9,212	8.5%	785	0%	0	15.0%	1,500	11,497	21
12.9	Other I & C Equipment	1,609	0	3,651	0	5,260	9.7%	512	0%	0	10.0%	577	6,350	12
	SUBTOTAL 12.	\$10,955	\$0	\$11,109	\$0	\$22,065		\$2,021		\$0		\$2,958	\$27,043	\$49
13	IMPROVEMENTS TO SITE													
13.1	Site Preparation	0	55	1,098	0	1,153	9.9%	114	0%	0	20.0%	253	1,520	3
13.2	2 Site Improvements	0	1,823	2,264	0	4,087	9.8%	401	0%	0	20.0%	898	5,386	10
13.3	3 Site Facilities	3,267	0	3,222	0	6,489	9.8%	637	0%	0	20.0%	1,425	8,551	16
	SUBTOTAL 13.	\$3,267	\$1,878	\$6,584	\$0	\$11,729		\$1,152		\$0		\$2,576	\$15,458	\$28
14	BUILDINGS & STRUCTURES													
14.1	Boiler Building	0	8,815	7,752	0	16,567	9.0%	1,488	0%	0	15.0%	2,708	20,763	38
14.2	2 Turbine Building	0	12,726	11,860	0	24,586	9.0%	2,214	0%	0	15.0%	4,020	30,819	56
14.3	Administration Building	0	638	675	0	1,313	9.1%	119	0%	0	15.0%	215	1,646	3
14.4	Circulation Water Pumphouse	0	138	110	0	248	8.9%	22	0%	0	15.0%	40	310	1
14.5	Water Treatment Buildings	0	705	643	0	1,349	9.0%	121	0%	0	15.0%	220	1,690	3
14.6	Machine Shop	0	427	287	0	713	8.9%	63	0%	0	15.0%	117	893	2
14.7	Warehouse	0	289	290	0	579	9.0%	52	0%	0	15.0%	95	726	1
14.8	Other Buildings & Structures	0	236	201	0	437	9.0%	39	0%	0	15.0%	72	548	1
14.9	Waste Treating Building & Str.	0	445	1,351	0	1,796	9.4%	170	0%	0	15.0%	295	2,261	4
	SUBTOTAL 14.	\$0	\$24,420	\$23,169	\$0	\$47,589		\$4,288		\$0		\$7,781	\$59,658	\$109
	Total Cost	\$658,530	\$56,601	\$423,913	\$0	\$1,139,044		\$107,717		\$27,048		\$155,534	\$1,429,344	\$2,601

Exhibit 3-96 Case 7 Capital Costs (continued)

Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$9,513	\$17
1 Month Maintenance Materials	\$1,426	\$3
1 Month Non-fuel Consumables	\$794	\$1
1 Month Waste Disposal	\$313	\$1
25% of 1 Months Fuel Cost at 100% CF	\$1,892	\$3
2% of TPC	\$28,587	\$52
Total	\$42,523	\$77
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$16,315	\$30
0.5% of TPC (spare parts)	\$7,147	\$13
Total	\$23,462	\$43
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$214,402	\$390
Financing Costs	\$38,592	\$70
Total Overnight Costs (TOC)	\$1,749,223	\$3,184
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,983,619	\$3,610

Exhibit 3-97 Case 7 Owner's Costs

Case: Cocycombustion Boiled Primary/Secondary Fuel: Illinois #6 Biruminous Coal Fuel Cost (\$MM Btu): 11.522 Primary/Secondary Fuel: Jone 2007 TPI Year: 201 Capacity Factor (%): 85 Co2 Captured (IPD): 15.486 Operating Labor Rate (base): S34.65 Shour 201 Operating Labor Rate (base): S34.65 Shour 20 Operating Labor Rate (base): S34.65 Shour 20 Operating Labor Rate (base): S34.65 Shour 20 Operating Labor Rate (base): 20 2.0 2.0 Operating Labor Rete: 2.0 2.0 2.0 Operating Labor Rete: 2.0 2.0 2.0 Operating Labor Cost (calc'd) 5.524.319 10.0 10 Marinemance Labor Cost (calc'd) 5.524.319 10.00 14.0 Marinemance Labor Cost (calc'd) 3.806.079 6.20 17.65 Administrating & Support Labor (calc'd) 3.806.079 6.20 17.65 Administrating Costs (calc'd)	Case: Case 7 - Oxycombustion Boiled Heat Rate (Btu/kWh): Plant Size (MWe): 549.45 Heat Rate (Btu/kWh): Primary/Secondary Fuel: Illinois / 6 Bituminous Coal Book Life (yrs): Design/Construction 5 years Book Life (yrs): Dool (PD): Operating Labor Pater: June 2007 TPI Year: Co2 Captured (PD): Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 Operating Labor Cost (calc'd) 14.0 14.0 14.0 14.0 Annual Operating Jabos 14.0 14.0 3.805.079 9 Property Taxes and Insurance 2.558.679 2.554.319 3.605.079 3.605.079 Annual Operating Labor Cost (calc'd) 3.805.079 9.695.988 4.4.0 14.0 14.0 14.0 ItoTAL FixED OPERATING COSTS 47,612.275 47,612.275	11,528 1.64 30 2012 15,480 (W-net 10.05 17.65 2.252
Plant Size (MWe): 53.45 Heat Rate (Btu/Wh): 11.522 Primary/Secondary Fuel: Illinois #6 Bruminous Coal Fuel Cost (\$MM Btu): 11.622 Primary/Secondary Fuel: Illinois #6 Bruminous Coal Fuel Cost (\$MM Btu): 11.622 Design/Construction 5 yeams Book Life (yrs): 33 TPC (Plant Cost) Year: Janc 2007 TPI Year: 2017 Capacity Factor (%): 85 CO2 Captured (TPD): 16.486 Operating Labor Rate (base): \$34.65 \$I/our Operating Labor Requirements per Shift: units/mod. Total Plant Labor Overhead Charge: 2.0 2.0 2.0 2.0 0 Operating Labor Requirements per Shift: units/mod. Total Plant 10.0 10.0 Lab Techts etc. 2.0 2.0 2.0 2.0 10.0 Maintenance abor Cost (calc'd) 9.665, \$867, 526.431 10.00 10.0 10.0 Maintenance abor Cost (calc'd) 9.665, \$867, 526.491 5 5/kWh-net Annual Operating Labor Cost (calc'd) 9.665, \$867, 526.20 50.50,	Plant Size (MWe): 549.45 Heat Rate (Btu/kWh): Primary/Secondary Fuel: Illinois #6 Bituminous Coal Fuel Cost (\$/MB Hu): Design/Construction 5 years Book Life (tyrs): TPC (Plant Cost) Year: June 2007 TPI Year: Capacity Factor (%): 85 CO2 Captured (TPD): OPERATING & MAINTENANCE LABOR Operating Labor Rude (base): \$34.65 Operating Labor Rude (base): \$34.65 \$/hour Operating Labor Rude (base): \$34.65 \$/hour Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 2.0 Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 2.0 Operating Labor Cost (calc'd) 14.0 14.0 14.0 Annual Operating Labor Cost (calc'd) 5,524,319 3.805,079 Property Taxes and Insurance 28,586,879 170TAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 5 \$ \$ Muintenance Mater	11,528 1.64 30 2012 15,480 (W-net 10.05 17.65 2.252
Primary/Secondary Fuel: Illinois 65 Bituminous Coal Fuel Cost (SMM Bu): 1.5: Design/Construction 5 years Book Life (yrs): .23' Capacity Factor (%): 85 CO2 Captured (IPD): 15.48' Operating Labor Rate (base): \$3.465 \$/hour .20' Operating Labor Rate (base): \$3.465 \$/hour	Primary/Secondary Fuel: Illinois #6 Bituminous Coal Fuel Cost (\$/MM Btu): Design/Construction 5 years Book Life (yrs): Cost (\$/MM Btu): Capacity Factor (%): 85 CO2 Captured (TPD): CO2 Captured (TPD): OPERATING & MAINTENANCE LABOR Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 Operating Labor Cost (calc'd) 1.0 1.0 1.0 1.0 Lab Tech's etc. 2.0 2.0 2.0 2.0 Operating Labor Cost (calc'd) 5.524,319 Maintenance Labor Cost (calc'd) 9,635,998 Administrative & Support Labor (calc'd) 3.805,079 9,695,998 Administrative & Support Labor (calc'd) 3.805,079 Vperty Taxes and Insurance 28,586,879 2.0 2.0 2.0 VARIABLE OPERATING COSTS 47,612,275 47,612,275 47,612,275 VARIABLE OPERATING COSTS 5.5/4 5.6	(W-net 10.05 17.65
Design/Construction 5 years Book Life (yrs): 33 TPC (Plant Cost) Year: June 2007 TPI Year: 2201 Capacity Factor (%): 85 CO2 Captured (TPD): 15.460 OPERATING & MAINTENANCE LABOR CO2 Captured (TPD): 15.460 Operating Labor Rate (base): \$34.65 \$1/000 \$0.000 Operating Labor Requirements per Shift: units/mod. Total Plant \$0.000 Operating Labor Requirements per Shift: units/mod. Total Plant \$0.000 Skilled Operator 2.0 2.0 \$0.000 Operating Labor Cost (calc'd) \$5.524,319 10.00 Harmerance Labor Cost (calc'd) \$3.806,079 63.200 Maintenance Labor Cost (calc'd) \$3.806,079 52.00 TOTAL Operating Cost (calc'd) \$14,544,111 0.00352 Consumables Consumption Unit Initial 10/04 Maintenance Material Costs (calc'd) \$1.60,662 0.00032 Consumables Cost \$14,544,111 0.00352 Consumables Cost <	Design/Construction 5 years Book Life (yrs): TPC (Plant Cost) Year: June 2007 TPI Year: Co2 Captured (TPD): Capacity Factor (%): 85 CO2 Captured (TPD): CO2 Captured (TPD): OPERATING & MAINTENANCE LABOR Operating Labor Rate (base): \$34.65 \$/hour CO2 Captured (TPD): Operating Labor Rate (base): \$34.65 \$/hour CO2 Captured (TPD): CO2 Captured (TPD): Operating Labor Requirements per Shift: units/mod. Total Plant Silled Operator 2.0 2.0 Operating Labor Requirements per Shift: units/mod. Total Plant Silled Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 CO2 2.0 CO2 CO2 CO2 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO4 CO4 Si S	30 2012 15,480 (W-net 10.05 17.65
TPC (Plant Cost) Year: June 2007 TPI Year: 2017 Capacity Factor (%): 85 CO2 Captured (TPD): 15,480 OPERATING & MAINTENANCE LABOR Operating Labor Rate (base): \$34,65 Shour 0 Operating Labor Rate (base): \$34,65 Shour 0 0 Operating Labor Rate (base): \$23,65 Shour 0 0 Operating Labor Rate (base): 20,0 0 0 0 Operating Labor Rate (base): 20,0 2,0 0 0 Operating Labor Rate (base): 20,0 2,0 0 0 Operating Labor Rate (base): 20,0 2,0 0 0 Operating Labor Cost (calc'd) 10,0 1,0 1,0 1,0 Annual Operating Labor Cost (calc'd) 3,805,076 6,83 1,00 1,2,0 1,2,0 TOTAL Operating Costs (calc'd) 3,805,076 6,83 1,00 1,2,0 1,6,66,82 0,0003 TOTAL FixED OPERATING Costs (calc'd) 54,412,4711 0,00055 54,412,872 0	TPC (Plant Cost) Year: June 2007 TPI Year: TPI Year: Coperating Labor 85 CO2 Captured (TPD): 0 OPerATING & MAINTENANCE LABOR Operating Labor Requirements per Shift: 00% of base 0 Operating Labor Requirements per Shift: 00% of base 0 0 Operating Labor Requirements per Shift: 00% of base 0 0 Operator 2.0 2.0 0 0 Operator 2.0 2.0 0 0 Foreman 1.0 1.0 1.0 0 0 TOTAL Operating Jobs 14.0 14.0 14.0 0 Annual Operating Labor Cost (calc'd) 9,685.988 3,805.079 9,865.988 3,805.079 Property Taxes and Insurance 2.8,586.879 2.8,586.879 100 14.0 \$,524,319 Maintenance Material Costs (calc'd) 9,685.988 47,612,275 \$,524,319 \$,856 VARIABLE OPERATING COSTS 47,612,275 \$,524,319 \$,545,4111 \$,552,4111 \$,552,52,411 \$,556,411 <td< td=""><td><u>2012</u> 15,480 (W-net 10.05 17.65</td></td<>	<u>2012</u> 15,480 (W-net 10.05 17.65
Capacity Factor (%): 85 CO2 Captured (TPD): 15,480 OPERATING & MAINTENANCE LABOR Operating Labor Requirements per Shit: 334.65 \$/hour Operating Labor Requirements per Shit: 300.00 % of base Coperating Labor Requirements per Shit: unitsmod. Total Plant Skilled Operator 2.0 2.0 2.0 Operating Labor Requirements per Shit: unitsmod. Total Plant Skilled Operator 9.0 9.0 9.0 Operating Labor Cost (calcid) 14.0 14.0 S/kW-net <td>Capacity Factor (%): 85 CO2 Captured (TPD): OPERATING & MAINTENANCE LABOR </td> <td><u>(W-net</u> 10.05 17.65</td>	Capacity Factor (%): 85 CO2 Captured (TPD): OPERATING & MAINTENANCE LABOR	<u>(W-net</u> 10.05 17.65
OPERATING & MAINTENANCE LABOR Operating Labor State (base): State (base): <thstate (base):<="" th=""> <thstate (base):<="" th=""> Stat</thstate></thstate>	OPERATING & MAINTENANCE LABOR Operating Labor Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Burden: 30.00 % of base 0 Labor Overhead Charge: 25.00 % of labor 0 Operating Labor Requirements per Shift: units/mod. Total Plant 0 Skilled Operator 2.0 2.0 0 0 Operating Labor Requirements per Shift: units/mod. Total Plant 0 0 Lab Tech's etc. 2.0 2.0 0	<u>⟨W-net</u> 10.05 17.65
OPERATING & MAINTENANCE LABOR Sates Operating Labor 334.65 Operating Labor Rate (base): 334.65 Operating Labor Requirements per Shift: units/mod. Coperating Labor Requirements per Shift: units/mod. Operating Labor Requirements per Shift: units/mod. Total Plant Operation 2.0 2.0 Operation 9.0 9.0 Foreman 1.0 1.0 I.bb Tech's etc. 2.0 2.0 TOTAL Operating Labor Cost (calc'd) 9.69,988 17.66 Maintenance Labor Cost (calc'd) 9.69,988 17.66 Administrative & Support Labor Cost (calc'd) 9.69,988 17.66 YARIABLE OPERATING COSTS 47,612,275 66.65 VARIABLE OPERATING COSTS 47,612,275 66.65 Consumables Consumption Unit Initial ////////////////////////////////////	OPERATING & MAINTENANCE LABOR Operating Labor \$\$34.65 Operating Labor Rate (base): \$\$34.65 Synder 25.00 Operating Labor Requirements per Shift: units/mod. Operating Labor Requirements per Shift: units/mod. Operating Labor Requirements per Shift: units/mod. Operator 2.0 Operator 2.0 Operator 2.0 TOTAL Operating Jobs 14.0 Annual Operating Labor Cost (calc'd) \$\$\$24,319 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$\$14,544,111 Consumables Consumption Unit Maintenance Material Costs (calc'd) \$\$14,544,111 Consumables Cost \$\$ VARIABLE OPERATING COSTS \$\$14,544,111 Muintenance (ton) 0 6,183 1.08 \$\$0 \$\$2,074,831 Chemicals </td <td><u>⟨₩-net</u> 10.05 17.65</td>	<u>⟨₩-net</u> 10.05 17.65
Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 \$/hour Coperating Labor Rate (base): \$34.65 \$/hour Coperating Labor Rate (base): \$34.65 \$/hour Coperating Labor Rate (intermets per Shift: units/mod. Total Plant	Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Rate (base): \$34.65 \$/hour Image: State Sta	<u>⟨₩-net</u> 10.05 17.65
Operating Labor Requirements per Shift: S34.65 Shour Operating Labor Requirements per Shift: units/mod. Total Plant Operating Labor Cost (calc/d) 1.0 1.0 TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc/d) 9,985,988 17.85 Administrative & Support Labor (calc/d) 3,805,079 6.32 Property Taxes and Insurance 28,566,879 52.02 TOTAL FIXED OPERATING COSTS 47,612,275 86.65 VariAble OPERATING COSTS 5 5/kWh-net Maintenance Material Costs (calc/d) 0 6.183 1.08 \$0 2.0000000 Consumption Uniti Initial ////>// Day Cost \$ \$/kWh-net Maintenance Labor Cost (calc/d) 0 6.183	Operating Labor Rate (base): \$34.65 \$/hour Operating Labor Burden: 30.00 % of base 1 Labor Overhead Charge: 25.00 % of labor 1 Operating Labor Requirements per Shift: units/mod. Total Plant 1 Skilled Operator 2.0 2.0 1 1 Operating Labor Requirements per Shift: units/mod. Total Plant 1 1 Lab Tech's etc. 2.0 2.0 1	<u>⟨₩-net</u> 10.05 17.65
Operating Labor Durden: 30.00 % of base Labor Overhead Charge: 25.00 % of labor Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Labor Deprator 2.0 2.0 TOTAL Operating Jabor Cost (calc'd) 5.524,319 10.0 Maintenance Labor Cost (calc'd) 9,85,998 17.6 Annual Operating Labor Cost (calc'd) 9,85,998 17.6 Ammistrative & Support Labor (calc'd) 9,85,998 17.6 Argenza and Insurance 28,586,879 5.20 TOTAL FIXED OPERATING COSTS 47,612,275 86.62 VARIABLE OPERATING COSTS 51,4544,111 0.00051 Chemicals 0 6,183 1.08 0.2,074,831 0.00001 Maintenance Material Costs (calc'd) 11011 1000 51,606,962 0.00003 Mut & WT Chem. (b) 0 29,928 0.17 S0 51,606,962 0.00000 <t< td=""><td>Operating Labor Burden: 30.00 % of base Labor Overhead Charge: 25.00 % of labor Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 9,695,998 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$// Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial //Day Cost \$// Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals MU & WT Chem. (lb) 0 22,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 6,57</td><td><u>⟨₩-net</u> 10.05 17.65</td></t<>	Operating Labor Burden: 30.00 % of base Labor Overhead Charge: 25.00 % of labor Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 9,695,998 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$// Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial //Day Cost \$// Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals MU & WT Chem. (lb) 0 22,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 6,57	<u>⟨₩-net</u> 10.05 17.65
Labor Overhead Charge: 25.00 % of labor Operating Labor Requirements per Shift: units/mod. Total Plant Operator 9.0 9.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) 5.524.319 10.0 Maintenance Labor Cost (calc'd) 5.524.319 10.0 YOTAL FIXED OPERATING COSTS 47,612,275 86.65 VARIABLE OPERATING COSTS 47,612,275 86.65 Variet / 1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00055 Mu & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,666,962 0.00035 Carbon (He Removal) (lb) 0 0 6,183 1.08 \$0 \$2,074,831 0.00005 Chemicals 0 0 6,183 1.08 \$0 0.00000 Mu & WT Chem. (lb) 0 29,928	Labor Overhead Charge: 25.00 % of labor Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 514,544,111 Consumables Consumption Unit Initial /Day Cost \$ \$ \$/ Water (/1000 gallons) 0 6,183 1.08 \$ \$ \$/ Chemicals 0 21,63 \$ \$ \$0 \$ \$ \$/ MU & WT Chem. (lb) 0 229,928 0.17 \$ \$ \$ \$,60,6962 \$ \$ \$/	<u>(W-net</u> 10.05 17.65
Operating Labor Requirements per Shift: Units/mod. Total Plant. Skilled Operator 2.0 2.0 2.0 Operator 9.0 9.0 9.0 Forteman 1.0 1.0 1.0 Lab Tech's etc. 2.0 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 14.0 Annual Operating Labor Cost (calc'd) 9.695.998 17.66 Property Taxes and Insurance 2.8566.879 6.2.00 TOTAL FIXED OPERATING COSTS 47,612.275 86.66 VARIABLE OPERATING COSTS 47,612.275 86.66 Variantenance Material Costs (calc'd) 514,544,111 0.00351 Consumables Consumption Unit Initial 70.47,831 0.00051 Chemicals 0 6,183 1.08 \$2,074,831 0.00051 MU as WT Chem. (b) 0 29,928 0.17 \$31,606,962 0.00000 Chemicals 0 0 0.00051 \$4,412.872 0.00005 MU as WT Chem. (b) 0	Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$ Maintenance Material Costs (calc'd) \$ Muaintenance Material Costs (calc'd) \$ Muintenance Material Costs (calc'd) \$ Muaintenance Material Costs (calc'd) \$ Muaintenance Material Costs (calc'd) \$ MU & WT Chem. (lb) 0 29,928 0.17 MU & WT Chem. (⟨W-net 10.05 17.65
Operating Labor Requirements per Shift: Units/mod. Total Plant Operator 2.0 2.0 2.0 Operator 9.0 9.0 9.0 Total Dechs etc. 2.0 2.0 2.0 TOTAL Operating Jobs 14.0 10.0 14.0 TOTAL Operating Jobs 14.0 14.0 5.524.319 10.00 Maintenance Labor Cost (calc'd) 9.695.998 17.66 5.524.319 10.00 Maintenance Labor Cost (calc'd) 3.805.079 6.92 7.693 6.92 YARIABLE OPERATING COSTS 47,612.275 86.60 9.695.998 17.66 Variatenance Material Costs (calc'd) \$.524.311 0.00055 9.695.998 17.66 Consumables Consumption Unit Initial 0.00055 9.695.998 17.66 Maintenance Material Costs (calc'd) \$.524.311 0.00055 9.695.998 17.66 9.6183 1.08 50 \$2.074.831 0.00055 Consumables Initial ////>//>//>//>/>/>/>/>/>/>/>/>/>/>/>/	Operating Labor Requirements per Shift: units/mod. Total Plant Skilled Operator 2.0 2.0 2.0 Operator 9.0 9.0 9.0 9.0 Foreman 1.0 1.0 1.0 1.0 Lab Tech's etc. 2.0 2.0 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 14.0 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 3,805,079 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 28,586,879 28,586,879 Property Taxes and Insurance 28,586,879 47,612,275 47,612,275 VARIABLE OPERATING COSTS 47,612,275 \$// \$// Maintenance Material Costs (calc'd) \$14,544,111 \$// \$// Consumables Consumption Unit \$// \$// Mu & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 0 1.05 \$0 \$0 \$0 \$0 <td< td=""><td><u>k</u>W-net 10.05 17.65</td></td<>	<u>k</u>W-net 10.05 17.65
Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 10.0 Maintenance Labor Cost (calc'd) 9,695,998 17,66 Administrative & Support Labor (calc'd) 3,805,079 6.92 TOTAL FIXED OPERATING COSTS 47,612,275 86.67 VARIABLE OPERATING COSTS 5,144,544,111 0.00355 Consumption Unit Initial //Day Cost \$ Maintenance Material Costs (calc'd) 6,183 1.08 \$0 \$2,074,831 0.000355 Consumption Unit Initial //Day Cost \$ \$/kWh-net Maintenance (non) 0 6,183 1.08 \$0 \$2,074,831 0.000355 Consumption Unit Initial //Day Cost \$ \$/kWh-net Mais Ware (1000 0 6,	Skilled Operator 2.0 2.0 Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 5,524,111 Consumables Consumption Unit Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Muite (Initial /Day Cost \$ \$/M Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 MU& WT Chem. (Ib) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 0 6,183 1.08 \$0 \$0 MU & WT Chem. (Ib) 0 224,989 <td>kW-net 10.05 17.65</td>	kW-net 10.05 17.65
Operator 9.0 9.0 9.0 Foreman 1.0 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) 5,524,319 10.0 Maintenance Labor Cost (calc'd) 9,695,998 17.65 Administrative & Support Labor (calc'd) 9,895,998 17.65 Property Taxes and Insurance 28,586,879 52.00 TOTAL FIXED OPERATING COSTS 47,612,275 86.62 VARIABLE OPERATING COSTS 47,612,275 86.62 Variate and the surance 1000 1010 1010 Consumables Consumption Unit 10101 0.00051 Chemicals 0 6,183 1.08 \$0 \$2,074,831 0.00002 Carbon (Hg Removal) (b) 0 6,183 1.08 \$0 0.00000 Carbon (Hg Removal) (b) 0 0 138,78 \$0 \$0 0.00000 Carbon (Hg Removal) (b) 0 0 138,78	Operator 9.0 9.0 Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 9,695,998 Annual Operating Labor Cost (calc'd) 9,695,998 3,805,079 Property Taxes and Insurance 28,586,879 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 Variables Consumption Unit Initial /Day Cost \$ \$/M Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals	kW-net 10.05 17.65
Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) 5,524,319 10.0 Maintenance Labor Cost (calc'd) 9,695,998 17,66 Administrative & Support Labor (calc'd) 3,805,079 6.92 YARIABLE OPERATING COSTS 47,612,275 86.67 VARIABLE OPERATING COSTS 5 \$/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Consumption Unit Initial // Day Cost \$ \$/kWh-net Maintenance Material Costs (calc'd) \$16,683 1.08 \$0,00035 Consumables Consumption Unit Initial 0.00035 Mu & WT Chem. (b) 0 29,928 0.17 \$0 \$1,606,962 0.00003 Carbon (Hg Removal) (b) 0 0 1.05 \$0 \$0 0.00000 Mu & WT Chem. (b) 0 0 1.05 \$0 \$0	Foreman 1.0 1.0 Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 3,805,079 Property Taxes and Insurance 28,586,879 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 Variables Consumption Unit Initial /Day Cost \$ Maintenance Material Costs (calc'd) \$14,544,111 \$ Variables Consumption Unit Initial /Day Cost \$ \$ Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals \$ \$ \$ \$ MU& WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 <t< td=""><td>kW-net 10.05 17.65</td></t<>	kW-net 10.05 17.65
Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) 5,524,319 10.00 Maintenance Labor Cost (calc'd) 9,695,998 17.66 Arnnual Operating Labor Cost (calc'd) 9,695,998 17.66 Administrative & Support Labor (calc'd) 3,805,079 6.92 Property Taxes and Insurance 28,586,879 52.02 TOTAL FIXED OPERATING COSTS 47,612,275 86.62 VARIABLE OPERATING COSTS 47,612,275 86.62 Consumables Consumption Unit Initial 0.00055 Consumables Consumption Unit Initial 0.00055 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00000 Carbon (Hg Removal) (lb) 0 0 6.183 10.08 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 0.000000	Lab Tech's etc. 2.0 2.0 TOTAL Operating Jobs 14.0 14.0 TOTAL Operating Jobs 14.0 14.0 Maintenance Labor Cost (calc'd) 5,524,319 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 3,805,079 Property Taxes and Insurance 28,586,879 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$ Maintenance Material Costs (calc'd) \$ Maintenance Material Costs (calc'd) \$ Muser (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals	kW-net 10.05 17.65
TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) 5,524,319 10.00 Maintenance Labor Cost (calc'd) 9,695,998 17.66 Administrative & Support Labor (calc'd) 3,805,079 6.92 Property Taxes and Insurance 225,586,879 52.02 TOTAL FIXED OPERATING COSTS 47,612,275 86.66 VARIABLE OPERATING COSTS 514,544,111 0.00355 Consumables Consumption Unit Initial 70ay Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00051 Chemicals 0 6,183 1.08 \$0 \$0,00000 \$0.00000 Mu & WT Chem. (b) 0 29,928 0.17 \$0 \$1,606,962 0.00000 Carbon (Hg Removal) (b) 0 0 1.05 \$0 \$0 0.00000 Suffuric acid, H2SO4 (ton) 0 0 1.05 \$0 0.00000 Suffuric acid, H2SO4 (ton) 0 0 0.000 \$0 0.00000	TOTAL Operating Jobs 14.0 14.0 Annual Operating Labor Cost (calc'd) \$ \$ Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 Variables Consumption Unit Initial // Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial // Maintenance Material Costs (calc'd) \$14,544,111 Chemicals 5 Mu & WT Chem. (lb) 0 29,928 0.17 MU & WT Chem. (lb) 0 22,928 0.17 Mu & WT Chem. (lb) 0 0 1.05 \$0 MEA Solvent (ton) 0 0 3.80 \$0 Mu & WT Chem. (lb) 0 0 3.80 \$0 Mu & WT Chem. (lb) 0 0 1.05 \$0 \$0	kW-net 10.05 17.65
SixW-net Annual Operating Labor Cost (calc'd) 5,524,319 10.05 Maintenance Labor Cost (calc'd) 9,695,998 17.65 Administrative & Support Labor (calc'd) 3,805,079 6.93 Property Taxes and Insurance 225,586,879 52.00 TOTAL FIXED OPERATING COSTS 47,612,275 86.66 VARIABLE OPERATING COSTS 5 5/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.00352 Consumption Unit Initial Day Cost \$14,544,111 0.00352 Mu & WT Chem. (lb) 0 6,183 1.08 \$0 \$2,074,831 0.00051 Umestone (ton) 0 6,677 21.63 \$0 \$2,074,831 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 0.249,89 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 0.000 \$0 \$0 0.000000 Subtotal C	Annual Operating Labor Cost (calc'd) 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$,14,544,111 Consumables Consumption Unit Initial /Day Cost \$,14,544,111 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 6,183 1.08 \$0 \$0 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 0 1.05 \$0 \$0 ME A Solvent (ton) 0 0 1.05 \$0 \$0 Carbon (Hg Removal) (lb) 0 0 1.38,78 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0	kW-net 10.05 17.65
Annual Operating Labor Cost (calc'd) \$ \$/kW-net Annual Operating Labor Cost (calc'd) 9,695,998 17.64 Administrative & Support Labor (calc'd) 3,805,079 6,92 Property Taxes and Insurance 28,688,879 52.02 TOTAL FIXED OPERATING COSTS 47,612,275 86.64 VARIABLE OPERATING COSTS 47,612,275 86.64 Variables 514,544,111 0.00355 Consumables Consumption Unit Initial // Day Cost Cost \$ Mu & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00003 Limestone (tron) 0 6,183 1.08 \$0 \$2,074,831 0.00000 Carbon (Hg Removal) (lb) 0 1.05 \$0 \$0 0.00000 MEA Solvent (ton) 0 0 1.05 \$0 0.00000 Suffuric acid, H2SO4 (ton) 0 0 0 30 \$0 0.00000 Suffuric acid, H2SO4 (ton) 0 0 0	Annual Operating Labor Cost (calc'd) \$ \$ \$ Maintenance Labor Cost (calc'd) 9,695,998 9,695,998 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 28,586,879 28,586,879 Property Taxes and Insurance 28,586,879 47,612,275 47,612,275 VARIABLE OPERATING COSTS 47,612,275 5 5 VARIABLE OPERATING COSTS \$ \$ \$ VARIABLE OPERATING COSTS \$ \$ \$ Maintenance Material Costs (calc'd) \$ \$ \$ Maintenance Material Costs (calc'd) \$ \$ \$ Muare (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals \$ \$ \$ \$ MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 \$ Limestone (ton) 0 0 1.05 \$0 \$ \$ MU & WT Chem. (lb) 0 0 1.05 \$ \$	kW-net 10.05 17.65
Annual Operating Labor Cost (calc'd) 5,524,319 10,00 Maintenance Labor Cost (calc'd) 9,695,998 17,60 Administrative & Support Labor (calc'd) 3,805,079 6,92 Property Taxes and Insurance 28,586,879 52,02 IOTAL FIXED OPERATING COSTS 47,612,275 86,62 VARIABLE OPERATING COSTS 47,612,275 86,62 Variationance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Consumption Unit Initial Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Chemicals 0 6,183 1.08 \$0 \$2,074,831 0.00057 Chemicals 0 6,183 1.08 \$0 \$1,606,962 0.00038 Limestone (ton) 0 66,72 21,63 \$0 \$0 0.00000 Carbon (Hg Removal) (Ib) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (Ib) 0 0 1.05 \$0 \$0 0.00000 Subtotal Chemica	Annual Operating Labor Cost (calc'd) 5,524,319 Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$ VARIABLE OPERATING COSTS \$ VARIABLE OPERATING COSTS \$ VARIABLE OPERATING COSTS \$ Variables Consumption Unit Initial // Day Cost Consumables Consumption Unit Initial // Mu & WT Chem. (lb) 0 0 6,183 MU & WT Chem. (lb) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>10.05</td></t<>	10.05
Maintenance Labor Cost (calc'd) 9,695,986 17.66 Administrative & Support Labor (calc'd) 3,805,079 6.93 Property Taxes and Insurance 28,586,879 52.03 VARIABLE OPERATING COSTS 47,612,275 86.66 VARIABLE OPERATING COSTS \$14,544,111 0.00356 Maintenance Material Costs (calc'd) \$14,544,111 0.00356 Consumables Consumption Unit Initial Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00005 MU & WT Chern. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00003 MU & WT Chern. (lb) 0 6,67 21.63 \$0 \$4,412,872 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.38.78 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0<	Maintenance Labor Cost (calc'd) 9,695,998 Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS 47,612,275 Variables \$ Variables \$ Consumables Consumption Unit Initial //Day Cost Support (1000 gallons) 0 0 6,183 MU & WT Chem. (lb) 0 0 0 0 657 21.63 \$0 \$1,606,962 Limestone (ton) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.65
Administrative & Support Labor (calc'd) 3.805.079 6.93 Property Taxes and Insurance 28.586.879 52.03 TOTAL FIXED OPERATING COSTS 47,612,275 86.65 VARIABLE OPERATING COSTS \$ \$ Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Consumption Unit Initial Mut & WT Chem. (lb) 0 6,183 1.08 \$0 \$2,074,831 0.00057 Chemicals MUt & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00003 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.00000 Caustic Soda, NaOH (ton) 0 0 1.38.78 \$0 \$0 0.00000 Custic Soda, NaOH (ton) 0 0 1.05 \$0 0.00000 Custic Soda, NaOH (ton) 0 0 1.29.89 \$0 \$0 0.00000 Custic Soda, NaOH (ton) 0 0 1.05 \$0 \$0 0.000000 0.00000	Administrative & Support Labor (calc'd) 3,805,079 Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$ VARIABLE OPERATING COSTS \$ Variables \$ Consumables \$ Initial /Day Cost \$ Maintenance Material Costs (calc'd) \$ State, 5/4 Water (/1000 gallons) 0 6,183 1.08 \$ \$ MU & WT Chem. (lb) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.018 0 0 0 0 0 0 0 0 <td< td=""><td>0.00</td></td<>	0.00
Property Taxes and Insurance 28,586,879 52.00 TOTAL FIXED OPERATING COSTS 47,612,275 86.64 VARIABLE OPERATING COSTS \$ \$/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.0035 Consumables Consumption Unit Initial /Day Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00057 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00035 Limestone (ton) 0 6,57 21.63 \$0 \$4,412,872 0.00106 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Guifuric acid, H2SO4 (ton) 0 0 1.38,78 \$0 \$0 0.00000 Armonia, 19% soln (ton) 0 0 1.29,80 \$0 \$0 0.00000 Subtotal Chemicals \$0 0 0 0 0.00000 \$0 0.00000 Subtotal Chemicals 0 0	Property Taxes and Insurance 28,586,879 TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$ VARIABLE OPERATING COSTS \$ Variables \$ Consumables \$ Initial /Day Cost \$ Maintenance Material Costs (calc'd) \$ Initial /Day Cost \$ Mu & WT Chem. (lb) 0 0 657 21.63 \$0 MU & WT Chem. (lb) 0 0 657 21.63 \$0 MEA Solvent (ton) 0 0 0 0 138.78 Sulfuric acid, H2SO4 (ton) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \$0	6.93
TOTAL FIXED OPERATING COSTS 47,612,275 86.6f VARIABLE OPERATING COSTS \$ \$/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.0035f Consumables Consumption Unit Initial ////////////////////////////////////	TOTAL FIXED OPERATING COSTS 47,612,275 VARIABLE OPERATING COSTS \$// VARIABLE OPERATING COSTS \$// Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial Vater (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 2249.89 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 0 138.78 \$0 \$0 Activated C, MEA (lb) 0 0 0 138.78 \$0 \$0 MU & SUT Chemicals 0 0 0 0 0 0 \$0 <	52.03
VARIABLE OPERATING COSTS \$ \$/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Consumption Unit Initial //Day Cost \$ \$/kWh-net Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00057 Chemicals MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,666,962 0.00035 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.01000 Carbon (Hg Removal) (lb) 0 0 2249,89 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 0.00000 Currorsion Inhibitor 0 0 0.0000 \$0 0.000000	VARIABLE OPERATING COSTS \$// Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial Vater (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Artivated C, MEA (lb) 0 0 129.80 \$0 \$0 Artivated C, MEA (lb) 0 0 129.80 \$0 \$0 Artivated C, MEA (lb) 0 0 129.80	86.65
VARIABLE OPERATING COSTS \$ \$/kWh-net Maintenance Material Costs (calc'd) \$ \$14,544,111 0.00355 Consumables Consumption Unit Initial /Day Cost \$ \$14,544,111 0.00355 Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00035 Chemicals 0 0 29,928 0.17 \$0 \$1,666,962 0.00035 Carbon (Hg Removal) (lb) 0 29,928 0.17 \$0 \$1,666,962 0.00000 Carbon (Hg Removal) (lb) 0 0 2249,89 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 138,78 \$0 \$0 0.00000 Corresion Inhibitor 0 0 138,78 \$0 \$0 0.00000 Armonia, 19% solt (on) 0 0 129,803 \$0 \$0 0.00000 Subtotal Chemicals 0 0 0 0 0 0 0 0 0 0 0	VARIABLE OPERATING COSTS \$// Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial Vater (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Corrosion Inhibitor 0 0 138.78 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 1.05 \$0 \$0 Artivated C, MEA (lb) 0 0 1.05 \$0 \$0 MU & WT Chemia, 19% soln (ton) 0 0 1.05 \$0 \$0	
Maintenance Material Costs (calc'd) \$ \$/kWh-net Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Initial /Day Cost \$ \$/kWh-net Water (/1000 gallons) 0 6.183 1.08 \$0 \$2,074,831 0.0005' Chemicals 0 \$16,666,962 0.00035 Immestone (ton) 0 657 21.63 \$0 \$4,412,872 0.01010 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 138.78 \$0 \$0 0.00000 Corrosion Inhibitor 0 0 0 0 0.00000 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 1.05 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0	Maintenance Material Costs (calc'd) \$ \$/} Maintenance Material Costs (calc'd) \$ \$14,544,111 Consumables Consumption Unit Initial Initial /Day Cost Cost \$ \$/} Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 2249.89 \$0 \$0 MEA Solvent (ton) 0 0 0 243.88 \$0 \$0 Corrosion Inhibitor 0 0 0 138.78 \$0 \$0 Activated C, MEA (lb) 0 0 0 129.80 \$0 \$0 Additional Chemicals \$0 0 0 129.80 \$0 \$0 M	
Maintenance Material Costs (calc'd) \$14,544,111 0.00355 Consumables Consumption Unit Initial /Day Cost \$14,544,111 0.00355 Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00057 Chemicals 0 6,183 1.08 \$0 \$2,074,831 0.00057 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.000356 Limestone (ton) 0 657 21,63 \$0 \$4,412,872 0.00106 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433,68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 1.05 \$0 \$0 0.00000 Artwated C, MEA (lb) 0 0 0 1.05 \$0 \$0 0.00000 Subtotal Chemicals 0 0 0 0 575,94 \$0	Maintenance Material Costs (calc'd) \$14,544,111 Consumables Consumption Unit Initial Initial /Day Cost Cost \$ Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 249,893 \$0 \$0 Corrosion Inhibitor 0 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 129.80 \$0 \$0 Artivated C, MEA (lb) 0 0 129.80 \$0 \$0 MU & WT Chemicals \$0 0 0 1.05 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 0 0 50 \$0	Wh-net
Consumables Consumption Unit Initial //Day Cost \$ \$/kWh-net Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.00057 Chemicals	Consumables Consumption Unit Initial /// Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals 0 6,183 1.08 \$0 \$2,074,831 MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 138.78 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 100 \$0 \$0 Artivated C, MEA (lb) 0 0 129.80 \$0 \$0 Mumonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Mumonia, 19% soln (ton) 0 0 <td< td=""><td>0.00355</td></td<>	0.00355
Consumables Consumption Unit Initial Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.0005 Chemicals 0 6,183 1.08 \$0 \$2,074,831 0.0005 Chemicals 0 0 6,183 1.08 \$0 \$2,074,831 0.0005 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.00106 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Caustic Add, NaOH (ton) 0 0 138.78 \$0 \$0 0.00000 Caustic Add, NaOH (ton) 0 0 0 0.00 \$0 \$0 0.00000 Caustic Add, NaOH (ton) 0 0 138.78 \$0 \$0 0.00000 Caustic Add, H2SO4 (ton) 0 0 0.00 \$0 \$0 0.00000	Consumables Consumption Unit Initial Initial /Day Cost Cost \$ \$// Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals	
Initial /Day Cost Cost \$ \$/kWn-net Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.0005 Chemicals	Initial /Day Cost Cost \$ \$// Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,074,831 Chemicals	
Water (1/000 gallons) 0 6,183 1.08 \$0 \$2,074,831 0.0005' Chemicals MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.0003' Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.0010' Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.0000' MU & WT Chem. (ton) 0 0 2249.89 \$0 \$0 0.0000' Caustic Soda, NaOH (ton) 0 0 138.78 \$0 \$0 0.0000' Corrosion Inhibitor 0 0 0 138.78 \$0 \$0 0.0000' Artivated C, MEA (lb) 0 0 1.05 \$0 \$0 0.0000' Subtotal Chemicals \$0 \$6,019,835 0.00147' \$0 \$0 0.0000' Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000' Scr Catalyst Replacement w/equip. 0.0 5775.9	Water (/1000 gallons) 0 6,183 1.08 \$0 \$2,0/4,831 Chemicals \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 105 \$0 \$0 Activated C, MEA (lb) 0 0 129.80 \$0 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 \$0 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 \$0	Wh-net
Chemicals Chemicals MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.0003 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.00106 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 0.00000 MEA Solvent (ton) 0 0 2249.88 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 0.00 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 1.05 \$0 \$0 0.00000 Subtotal Chemicals S0 \$6,019,835 0.00147 0 0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Subtotal Other S0 \$0 <	Chemicals MU & WT Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 105 \$0 \$0 Activated C, MEA (lb) 0 0 129.80 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Other Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0	0.00051
MO & WI Chem. (lb) 0 29,928 0.17 \$0 \$1,606,962 0.00003 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.00106 Carbon (Hg Removal) (lb) 0 0 0 1.05 \$0 \$0 0.00000 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 0.00 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 0 0.00	MU & W1 Chem. (ib) 0 29,928 0.17 \$0 \$1,606,962 Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 105 \$0 \$0 Activated C, MEA (lb) 0 0 129.80 \$0 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 \$0 Other	0.00000
Limestone (ton) 0 657 21.63 \$0 \$4,412,872 0.00100 Carbon (Hg Removal) (b) 0 0 1.05 \$0 \$0 0.00000 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 0.00000 Carbon (Hg Removal) (b) 0 0 2249.89 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 138.78 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00147 0.00000 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.555 \$0 \$0 0.00000 Subtotal Other \$0 0 0 0.00 \$0 \$0	Limestone (ton) 0 657 21.63 \$0 \$4,412,872 Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0.000 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Other	0.00039
Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 \$0 0.00000 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 0.00000 Corrosion Inhibitor 0 0 0 138.78 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Artivated C, MEA (lb) 0 0 129.80 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$0 \$0 0.00000 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Subtotal Other w/equip. 0.0 0 0.000	Carbon (Hg Removal) (lb) 0 0 1.05 \$0 \$0 MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Other	0.00108
MEA Solvent (ton) 0 0 2249.89 \$0 \$0 \$0 0.00000 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 0.00000 Corrosion Inhibitor 0 0 0 138.78 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00000 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.575.94 \$0 \$0 0.00000 Subtotal Other \$0 \$0 0.00000 \$0 \$0 0.00000 Waste Disposal \$0 \$0 0.422 \$0 \$0 </td <td>MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$0 \$0 Other 0 0 6.55 \$0 \$0</td> <td>0.00000</td>	MEA Solvent (ton) 0 0 2249.89 \$0 \$0 Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$0 \$0 Other 0 0 6.55 \$0 \$0	0.00000
Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 0.00000 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 0.00000 Corrosion Inhibitor 0 0 0.00 \$0 \$0 0.000000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00000 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Subtotal Other \$0 0.000 \$0 \$0 0.00000 \$0 \$0 0.00000 Waste Disposal 0 0 0.422 \$0 \$0 0.00002 \$0 \$0.000002 Flyash (ton) 0 127 16.23 \$0 \$637,587 0.00016 \$0 \$0.000072 \$0	Caustic Soda, NaOH (ton) 0 0 433.68 \$0 \$0 Sulfuric acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$0 Other 0 0 6.55 \$0 \$0	0.00000
Sulturic acid, H2SO4 (ton) 0 0 0 138.78 \$0 \$0 0.00000 Corrosion Inhibitor 0 0 0.000 \$0 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Armonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00147 Other Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.577.5.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.000 \$0 \$0 0.00000 Waste Disposal \$0 \$0 0.000000 \$0 \$0 0.000000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.000000	Sulturic acid, H2SO4 (ton) 0 0 138.78 \$0 \$0 Corrosion Inhibitor 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$0 Other 0 0 6.55 \$0 \$0	0.00000
Corrosion Inhibitor 0 0 0.000 \$0 \$0 0.00000 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00147 Other \$0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.00 \$0 0.00000 Subtotal Other \$0 \$0 0.00000 \$0 \$0 0.00000 Waste Disposal \$0 \$0 0.422 \$0 \$0 0.00002 Bottom Ash (ton) 0 127 16.23 \$0 \$2,550,288 0.00002 By-products & Emissions \$0 \$0	Corrosion Inhibitor 0 0 0.00 \$0 \$0 Activated C, MEA (lb) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$0 Other 0 0 6.55 \$0 \$0	0.00000
Activated C, MEA (lb) 0 0 1.05 \$0 \$0 0.00000 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00000 Other \$0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.000 \$0 \$0 0.00000 Waste Disposal \$0 \$0 0.00000 \$0 \$0 0.00000 Waste Disposal \$0 \$0 0.027 16.23 \$0 \$2,550,288 0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00007 By-products & Emissions \$0 \$0 0.000 \$0 \$0 0.00000 Subtotal By-Products \$0 0 0.000 \$0 \$0 0.00000 Subtotal By-Pr	Activated C, MEA (ib) 0 0 1.05 \$0 \$0 Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 Other 50 \$0 \$0 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0	0.00000
Ammonia, 19% soln (ton) 0 0 129.80 \$0 \$0 0.00000 Subtotal Chemicals \$0 \$6,019,835 0.00147 Other 0 0 6.55 \$0 \$0 0.00000 Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.000 \$0 \$0 0.00000 Subtotal Other \$0 0.000 \$0 \$0 0.00000 Waste Disposal \$0 0.00000 Flyash (ton) 0 507 16.23 \$0 \$0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 By-products & Emissions \$0 \$0.00000 \$0 \$0 0.00000 Subtotal Solid Waste Disposal \$0 0.0000 \$0 \$0 0.000000 \$0 \$0 0.000000<	Ammonia, 19% soin (ton) 0 0 129.80 \$0 \$0 Subtotal Chemicals \$0 \$6,019,835 \$0 \$6,019,835 \$0	0.00000
Subtral Chemicals \$0 \$6,019,835 0.0014/ Other Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.000 \$0 \$0 0.00000 Subtotal Other \$0 0 0.00 \$0 \$0 0.00000 Waste Disposal \$0 0.00000 \$0 \$0 0.00000 Flyash (ton) 0 0 0.42 \$0 \$0 0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00000 By-products & Emissions \$0 127 16.23 \$0 \$0.00000 Subtotal Solid Waste Disposal \$0 \$0 0.00000 \$0 \$0.00000 Subtotal Solid Waste Disposal \$0 \$0 0.00000 \$0 0.000000 Subtotal By-	Subtral Chemicals \$0 \$0,019,835 Other Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0	0.00000
Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.00 \$0 \$0 0.00000 Subtotal Other \$0 0 0.00 \$0 \$0 0.00000 Waste Disposal \$0 0.000000 \$0 \$0 0.00000 Flyash (ton) 0 0 0.42 \$0 \$0 0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00000 By-products & Emissions \$0 127 16.23 \$0 \$3,187,875 0.00000 Subtotal Solid Waste Disposal \$0 \$0 0.00 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.00 \$0 \$0 0.000000 Subtotal By-Products \$0 0 0.00000 \$0 <t< td=""><td>Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0</td><td>0.00147</td></t<>	Supplemental Fuel (MMBtu) 0 0 6.55 \$0 \$0	0.00147
Supponential Fuer (MMBRU) 0 0 0.33 \$0 \$0 0.00000 SCR Catalyst Replacement w/equip. 0.0 5775.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.00 \$0 \$0 0.00000 Subtotal Other \$0 0 0.00 \$0 \$0 0.00000 Waste Disposal \$0 0.000000 \$0 \$0 0.00000 Flyash (ton) 0 0 0.42 \$0 \$0 0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00000 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00076 \$3,187,875 0.00076 By-products & Emissions \$0 \$0 0.0000 \$0 \$0 0.00000 Subtotal Solid Waste Disposal \$0 0 0.000 \$0 \$0 0.000000 Subtotal By-Products \$0 0 0.000 \$0		0.00000
SCR Catalyst Replacement W/equip. 0.0 57/5.94 \$0 \$0 0.00000 Emission Penalties 0 0 0.00 \$0 \$0 0.00000 Subtotal Other \$0 0 0.00 \$0 \$0 0.00000 Waste Disposal \$0 0.042 \$0 \$0 0.00000 Flyash (ton) 0 507 16.23 \$0 \$2,550,288 0.00000 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00078 By-products & Emissions \$0 0 0.000 \$0 \$0 0.00000 Subtotal By-Products \$0 \$		0.00000
Emission Penalties 0 0 0.000 \$0 \$0 0.00000 Subtotal Other \$0 \$0 \$0 \$0 \$0 \$0 0.00000 Waste Disposal \$0 0 0.42 \$0 \$0 0.00000 Flyash (ton) 0 507 16.23 \$0 \$2,550,288 0.00002 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00078 By-products & Emissions 0 0 0.00 \$0 \$0 0.00000 Subtotal Bolid Waste Disposal \$0 \$0,00000 \$0 \$0 0.00000 Subtotal Solid Waste Disposal \$0 0.00000 \$0 \$0 0.00000 Subtotal By-products 0 0 0.000 \$0 \$0 0.00000 Subtotal By-Products \$0 \$0 0.00000 \$0 \$0 0.00000 Coal Ellel (tons) 0	SUK Catalyst Replacement w/equip. 0.0 57/5.94 \$0 \$0	0.00000
Subtotal Otner \$0 \$0 \$0 0.00000 Waste Disposal	Emission Penalties 0 0 0 00 \$0 \$0	0.00000
Waste Disposal 0 0.42 \$0 \$0 0.0000 Flyash (ton) 0 507 16.23 \$0 \$2,550,288 0.00062 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00078 By-products & Emissions	Suptotal Other \$0 \$0	0.00000
Spent Mercury Catalyst (Ib) 0 0 0.42 \$0 \$0 0.00000 Flyash (ton) 0 507 16.23 \$0 \$2,550,288 0.00062 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00078 By-products & Emissions		0.0007-
Fiyasn (ton) 0 507 16.23 \$0 \$2,550,288 0.00062 Bottom Ash (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00076 By-products & Emissions \$0 0 0.00 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.000 \$0 \$0 0.00000 Subtotal By-Products \$0 0.0000 \$0 \$0 0.00000 Subtotal By-Products \$0 0.0000 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal EllEl (tons) 0 6.515 38.49 \$0 50 <	Spent Mercury Catalyst (lb) 0 0 0.42 \$0 \$0	0.00000
Bottom Asn (ton) 0 127 16.23 \$0 \$637,587 0.00016 Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00076 By-products & Emissions \$0 \$0,000 \$0 \$3,187,875 0.00000 Gypsum (tons) 0 0 0.00 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.000 \$0 \$0 0.00000 Subtotal By-Products \$0 0.0000 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal EllEl (tons) 0 6.515 38.49 \$0 \$77,187,670 0.01897	Fiyash (ton) 0 50/ 16.23 \$0 \$2,550,288	0.00062
Subtotal Solid Waste Disposal \$0 \$3,187,875 0.00078 By-products & Emissions 0 0.00 \$0 \$0.00078 Gypsum (tons) 0 0 0.00 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.00 \$0 \$0 0.00000 Subtotal By-Products \$0 \$0 \$0 0.00000 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$0 \$25,826,653 0.00631 \$0 \$00 0.01292	Bottom Asn (ton) U 12/ 16.23 \$0 \$637,587	0.00016
By-products & Emissions 0 0 0.000 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.00 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.00 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$0 \$25,826,653 0.00631 Coal Ellel (tons) 0 6.515 28.49 \$0 \$77,187,670 0.01893	Subtotal Solid Waste Disposal \$0 \$3,187,875	0.00078
Gypsum (tons) 0 0 0 0.000 \$0 \$0 0.00000 Sulfur (tons) 0 0 0.00 \$0 \$0 0.00000 Subtotal By-Products \$0 \$0 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal Ellel (tons) 0 6.515 28.49 \$0 \$77,187,670 0.01893		
Sumul (toris) U U U 0.0000 Subtotal By-Products \$0 \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal Ellel (tops) 0 6.516 28.49 \$0 \$77,187,670 0.01897	Gypsum (tons) U U U Sufficiency	0 00000
Subicital By-Products \$0 \$0 0.00000 TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal Ellel (tops) 0 6.516 29.49 \$0 \$77,197,670 0.01997	Sullur (tons) 0 0 0.00 \$0 \$0	0.00000
TOTAL VARIABLE OPERATING COSTS \$25,826,653 0.00631 Coal FUEL (tons) 0 6 516 38 48 \$0 \$77,187,670 0.01993	Subtotal By-Products \$0 \$0	0.00000
I U IAL VARIABLE UFERATING 60313 \$23,520,533 0.00031 Coal FUEL (tons) 0 6.516 29.49 \$0 \$77.197.670 0.010031		0.00000 0.00000 0.00000
	Coal EllEL (tons) 0 6 546 20 40 \$0 \$77 407 570	0.00000
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$		0.00000 0.00000 0.00000 0.00631

Exhibit 3-98 Case 7 O&M Costs

Exhibit 3-99 Equipment List for Case 4, 5, 6, and 7

ACCOUNT 1 F	UEL AND SORBENT HANDLING
-------------	--------------------------

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	181 tonne (200 ton)	181 tonne (200 ton)	181 tonne (200 ton)	181 tonne (200 ton)	2 (0)
2	Feeder	Belt	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)	572 tonne/hr (630 tph)	2 (0)
3	Conveyor No. 1	Belt	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
4	Transfer Tower No. 1	Enclosed	N/A	N/A	N/A	N/A	1 (0)
5	Conveyor No. 2	Belt	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
6	As-Received Coal Sampling System	Two-stage	N/A	N/A	N/A	N/A	1 (0)
7	Stacker/Reclaimer	Traveling, linear	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1,134 tonne/hr (1,250 tph)	1 (0)
8	Reclaim Hopper	N/A	45 tonne (50 ton)	54 tonne (60 ton)	54 tonne (60 ton)	54 tonne (60 ton)	2 (1)
9	Feeder	Vibratory	191 tonne/hr (210 tph)	209 tonne/hr (230 tph)	200 tonne/hr (220 tph)	200 tonne/hr (220 tph)	2 (1)
10	Conveyor No. 3	Belt w/ tripper	381 tonne/hr (420 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	1 (0)
11	Crusher Tower	N/A	N/A	N/A	N/A	N/A	1 (0)
12	Coal Surge Bin w/ Vent Filter	Dual outlet	191 tonne (210 ton)	209 tonne (230 ton)	200 tonne (220 ton)	200 tonne (220 ton)	2 (0)
13	Crusher	Impactor reduction	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	2 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
14	As-Fired Coal Sampling System	Swing hammer	N/A	N/A	N/A	N/A	1 (1)
15	Conveyor No. 4	Belt w/tripper	381 tonne/hr (420 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	1 (0)
16	Transfer Tower No. 2	Enclosed	N/A	N/A	N/A	N/A	1 (0)
17	Conveyor No. 5	Belt w/ tripper	381 tonne/hr (420 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	408 tonne/hr (450 tph)	1 (0)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	816 tonne (900 ton)	907 tonne (1,000 ton)	907 tonne (1,000 ton)	907 tonne (1,000 ton)	3 (0)
19	Limestone Truck Unloading Hopper	N/A	N/A	36 tonne (40 ton)	36 tonne (40 ton)	36 tonne (40 ton)	1 (0)
20	Limestone Feeder	Belt	N/A	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)	1 (0)
21	Limestone Conveyor No. L1	Belt	N/A	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)	109 tonne/hr (120 tph)	1 (0)
22	Limestone Reclaim Hopper	N/A	N/A	18 tonne (20 ton)	18 tonne (20 ton)	18 tonne (20 ton)	1 (0)
23	Limestone Reclaim Feeder	Belt	N/A	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)	1 (0)
24	Limestone Conveyor No. L2	Belt	N/A	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)	82 tonne/hr (90 tph)	1 (0)
25	Limestone Day Bin	w/ actuator	N/A	336 tonne (370 ton)	327 tonne (360 ton)	327 tonne (360 ton)	2 (0)

ACCOUNT 2

COAL AND SORBENT PREPARATION AND FEED

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Coal Feeder	Gravimetric	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	6 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
2	Coal Pulverizer	Ball type or equivalent	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	45 tonne/hr (50 tph)	6 (0)
3	Limestone Weigh Feeder	Gravimetric	N/A	27 tonne/hr (30 tph)	27 tonne/hr (30 tph)	27 tonne/hr (30 tph)	1 (1)
4	Limestone Ball Mill	Rotary	N/A	27 tonne/hr (30 tph)	27 tonne/hr (30 tph)	27 tonne/hr (30 tph)	1 (1)
5	Limestone Mill Slurry Tank with Agitator	N/A	N/A	105,992 liters (28,000 gal)	105,992 liters (28,000 gal)	105,992 liters (28,000 gal)	1 (1)
6	Limestone Mill Recycle Pumps	Horizontal centrifugal	N/A	1,779 lpm @ 12m H ₂ O (470 gpm @ 40 ft H ₂ O)	1,741 lpm @ 12m H ₂ O (460 gpm @ 40 ft H ₂ O)	1,779 lpm @ 12m H ₂ O (470 gpm @ 40 ft H ₂ O)	1 (1)
7	Hydroclone Classifier	4 active cyclones in a 5 cyclone bank	N/A	454 lpm (120 gpm) per cyclone	416 lpm (110 gpm) per cyclone	454 lpm (120 gpm) per cyclone	1 (1)
8	Distribution Box	2-way	N/A	N/A	N/A	N/A	1 (1)
9	Limestone Slurry Storage Tank with Agitator	Field erected	N/A	598,095 liters (158,000 gal)	590,524 liters (156,000 gal)	590,524 liters (156,000 gal)	1 (1)
10	Limestone Slurry Feed Pumps	Horizontal centrifugal	N/A	1,249 lpm @ 9m H ₂ O (330 gpm @ 30 ft H ₂ O)	1,211 lpm @ 9m H ₂ O (320 gpm @ 30 ft H ₂ O)	1,249 lpm @ 9m H ₂ O (330 gpm @ 30 ft H ₂ O)	1 (1)

ACCOUNT 3

FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	1,389,246 liters (367,000 gal)	1,464,954 liters (387,000 gal)	1,438,456 liters (380,000 gal)	1,457,384 liters (385,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	29,526 lpm @ 213 m H ₂ O (7,800 gpm @ 700 ft H ₂ O)	30,662 lpm @ 213 m H ₂ O (8,100 gpm @ 700 ft H ₂ O)	31,797 lpm @ 213 m H ₂ O (8,400 gpm @ 700 ft H ₂ O)	30,662 lpm @ 213 m H ₂ O (8,100 gpm @ 700 ft H ₂ O)	1 (1)
3	Deaerator and Storage Tank	Horizontal spray type	2,310,146 kg/hr (5,093,000 lb/hr), 5 min. residence time	2,436,698 kg/hr (5,372,000 lb/hr), 5 min. residence time	2,392,246 kg/hr (5,274,000 lb/hr), 5 min. residence time	2,422,637 kg/hr (5,341,000 lb/hr), 5 min. residence time	1 (0)
4	Boiler Feed Pump/Turbine	Barrel type, multi-stage, centrifugal	38,611 lpm @ 3,444 m H ₂ O (10,200 gpm @ 11,300 ft H ₂ O)	40,882 lpm @ 3,444 m H ₂ O (10,800 gpm @ 11,300 ft H ₂ O)	40,125 lpm @ 3,444 m H ₂ O (10,600 gpm @ 11,300 ft H ₂ O)	40,504 lpm @ 3,444 m H ₂ O (10,700 gpm @ 11,300 ft H ₂ O)	1 (1)
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi-stage, centrifugal	11,735 lpm @ 3,444 m H ₂ O (3,100 gpm @ 11,300 ft H ₂ O)	12,113 lpm @ 3,444 m H ₂ O (3,200 gpm @ 11,300 ft H ₂ O)	12,113 lpm @ 3,444 m H ₂ O (3,200 gpm @ 11,300 ft H ₂ O)	12,113 lpm @ 3,444 m H ₂ O (3,200 gpm @ 11,300 ft H ₂ O)	1 (0)
6	LP Feedwater Heater 1A/1B	Horizontal U- tube	884,505 kg/hr (1,950,000 lb/hr)	920,793 kg/hr (2,030,000 lb/hr)	948,008 kg/hr (2,090,000 lb/hr)	911,721 kg/hr (2,010,000 lb/hr)	2 (0)
7	LP Feedwater Heater 2A/2B	Horizontal U- tube	884,505 kg/hr (1,950,000 lb/hr)	920,793 kg/hr (2,030,000 lb/hr)	948,008 kg/hr (2,090,000 lb/hr)	911,721 kg/hr (2,010,000 lb/hr)	2 (0)
8	LP Feedwater Heater 3A/3B	Horizontal U- tube	884,505 kg/hr (1,950,000 lb/hr)	920,793 kg/hr (2,030,000 lb/hr)	948,008 kg/hr (2,090,000 lb/hr)	911,721 kg/hr (2,010,000 lb/hr)	2 (0)
9	LP Feedwater Heater 4A/4B	Horizontal U- tube	884,505 kg/hr (1,950,000 lb/hr)	920,793 kg/hr (2,030,000 lb/hr)	948,008 kg/hr (2,090,000 lb/hr)	911,721 kg/hr (2,010,000 lb/hr)	2 (0)
10	HP Feedwater Heater 6	Horizontal U- tube	2,308,785 kg/hr (5,090,000 lb/hr)	2,435,791 kg/hr (5,370,000 lb/hr)	2,390,432 kg/hr (5,270,000 lb/hr)	2,422,183 kg/hr (5,340,000 lb/hr)	1 (0)
11	HP Feedwater Heater 7	Horizontal U- tube	2,308,785 kg/hr (5,090,000 lb/hr)	2,435,791 kg/hr (5,370,000 lb/hr)	2,390,432 kg/hr (5,270,000 lb/hr)	2,422,183 kg/hr (5,340,000 lb/hr)	1 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
12	HP Feedwater heater 8	Horizontal U- tube	2,308,785 kg/hr (5,090,000 lb/hr)	2,435,791 kg/hr (5,370,000 lb/hr)	2,390,432 kg/hr (5,270,000 lb/hr)	2,422,183 kg/hr (5,340,000 lb/hr)	1 (0)
13	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1 (0)
14	Fuel Oil System	No. 2 fuel oil for light off	1,135,624 liter (300,000 gal)	1,135,624 liter (300,000 gal)	1,135,624 liter (300,000 gal)	1,135,624 liter (300,000 gal)	1 (0)
15	Service Air Compressors	Flooded Screw	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2 (1)
16	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1,000 scfm)	2 (1)			
17	Closed Cycle Cooling Heat Exchangers	Shell and tube	53 GJ/hr (50 MMBtu/hr) each	2 (0)			
18	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	2 (1)
19	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1 (1)
20	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	2,650 lpm @ 64 m H ₂ O (700 gpm @ 210 ft H ₂ O)	1 (1)
21	Raw Water Pumps	Stainless steel, single suction	17,299 lpm @ 43 m H ₂ O (4,570 gpm @ 140 ft H ₂ O)	20,214 lpm @ 43 m H ₂ O (5,340 gpm @ 140 ft H ₂ O)	19,646 lpm @ 43 m H ₂ O (5,190 gpm @ 140 ft H ₂ O)	19,836 lpm @ 43 m H ₂ O (5,240 gpm @ 140 ft H ₂ O)	2 (1)
22	Filtered Water Pumps	Stainless steel, single suction	1 lpm @ 49 m H ₂ O (0 gpm @ 160 ft H ₂ O)	757 lpm @ 49 m H ₂ O (200 gpm @ 160 ft H ₂ O)	719 lpm @ 49 m H ₂ O (190 gpm @ 160 ft H ₂ O)	757 lpm @ 49 m H ₂ O (200 gpm @ 160 ft H ₂ O)	2 (1)
23	Filtered Water Tank	Vertical, cylindrical	882 liter (233 gal)	738,155 liter (195,000 gal)	681,374 liter (180,000 gal)	719,228 liter (190,000 gal)	1 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
24	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionizat ion unit	908 lpm (240 gpm)	984 lpm (260 gpm)	946 lpm (250 gpm)	984 lpm (260 gpm)	1 (1)
25	Liquid Waste Treatment System		10 years, 24-hour storm	10 years, 24-hour storm	10 years, 24-hour storm	10 years, 24-hour storm	1 (0)

ACCOUNT 4 BOILER AND ACCESSORIES

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Boiler	Supercritica l, drum, wall-fired, low NOx burners, overfire air	2,308,785 kg/hr steam @ 25.5 MPa/607°C/629°C (5,090,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	2,435,791 kg/hr steam @ 25.5 MPa/607°C/629°C (5,370,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	2,394,968 kg/hr steam @ 25.5 MPa/607°C/629°C (5,280,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	2,422,183 kg/hr steam @ 25.5 MPa/607°C/629°C (5,340,000 lb/hr steam @ 3,700 psig/1,125°F/1,165°F)	1 (0)
2	Primary Air Fan	Centrifugal	185,066 kg/hr, 3,500 m ³ /min @ 47 cm WG (408,000 lb/hr, 123,600 acfm @ 19 in. WG)	205,024 kg/hr, 2,404 m ³ /min @ 47 cm WG (452,000 lb/hr, 84,900 acfm @ 19 in. WG)	205,024 kg/hr, 2,461 m ³ /min @ 47 cm WG (452,000 lb/hr, 86,900 acfm @ 19 in. WG)	160,118 kg/hr, 1,923 m ³ /min @ 47 cm WG (353,000 lb/hr, 67,900 acfm @ 19 in. WG)	2 (0)
3	Forced Draft Fan	Centrifugal	602,824 kg/hr, 11,392 m ³ /min @ 123 cm WG (1,329,000 lb/hr, 402,300 acfm @ 48 in. WG)	667,688 kg/hr, 7,824 m ³ /min @ 123 cm WG (1,472,000 lb/hr, 276,300 acfm @ 48 in. WG)	666,781 kg/hr, 8,005 m ³ /min @ 123 cm WG (1,470,000 lb/hr, 282,700 acfm @ 48 in. WG)	521,178 kg/hr, 6,258 m ³ /min @ 123 cm WG (1,149,000 lb/hr, 221,000 acfm @ 48 in. WG)	2 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
4	Induced Draft Fan	Centrifugal	1,199,298 kg/hr, 23,279 m ³ /min @ 46 cm WG (2,644,000 lb/hr, 822,100 acfm @ 18 in. WG)	1,314,964 kg/hr, 22,571 m ³ /min @ 89 cm WG (2,899,000 lb/hr, 797,100 acfm @ 35 in. WG)	1,306,800 kg/hr, 22,416 m ³ /min @ 95 cm WG (2,881,000 lb/hr, 791,600 acfm @ 37 in. WG)	1,117,198 kg/hr, 19,272 m ³ /min @ 95 cm WG (2,463,000 lb/hr, 680,600 acfm @ 37 in. WG)	2 (0)
5	ASU Main Air Compressor	Centrifugal, multi-stage	15,744 m ³ /min @ 0.6 MPa (556,000 scfm @ 086 psia)	17,103 m ³ /min @ 0.6 MPa (604,000 scfm @ 086 psia)	16,849 m ³ /min @ 0.6 MPa (595,000 scfm @ 086 psia)	16,877 m ³ /min @ 0.6 MPa (596,000 scfm @ 086 psia)	2 (0)
6	Cold Box	Vendor design	6,532 tonne/day (7,200 tpd) of 95% purity oxygen	7,167 tonne/day (7,900 tpd) of 95% purity oxygen	6,985 tonne/day (7,700 tpd) of 95% purity oxygen	7,076 tonne/day (7,800 tpd) of 95% purity oxygen	2 (0)

ACCOUNT 5 FLUE GAS CLEANUP

		Then only ending					
Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Fabric Filter	Single stage, high-ratio with pulse-jet online cleaning system	1,199,298 kg/hr (2,644,000 lb/hr) 99.8% efficiency	1,314,964 kg/hr (2,899,000 lb/hr) 99.8% efficiency	1,306,800 kg/hr (2,881,000 lb/hr) 99.8% efficiency	1,117,198 kg/hr (2,463,000 lb/hr) 99.8% efficiency	2 (0)
2	Absorber Module	Counter-current open spray	N/A	44,514 m ³ /min (1,572,000 acfm)	44,203 m ³ /min (1,561,000 acfm)	38,001 m ³ /min (1,342,000 acfm)	1 (0)
3	Recirculatio n Pumps	Horizontal centrifugal	N/A	155,202 lpm @ 64 m H ₂ O (41,000 gpm @ 210 ft H ₂ O)	155,202 lpm @ 64 m H ₂ O (41,000 gpm @ 210 ft H ₂ O)	132,489 lpm @ 64 m H ₂ O (35,000 gpm @ 210 ft H ₂ O)	5 (1)
4	Bleed Pumps	Horizontal centrifugal	N/A	5,451 lpm (1,440 gpm) at 20 wt% solids	5,375 lpm (1,420 gpm) at 20 wt% solids	5,375 lpm (1,420 gpm) at 20 wt% solids	2 (1)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
5	Oxidation Air Blowers	Centrifugal	N/A	21 m ³ /min @ 0.3 MPa (750 acfm @ 42 psia)	21 m ³ /min @ 0.3 MPa (740 acfm @ 42 psia)	21 m ³ /min @ 0.3 MPa (740 acfm @ 42 psia)	2 (1)
6	Agitators	Side entering	N/A	50 hp	50 hp	50 hp	5 (1)
7	Dewatering Cyclones	Radial assembly, 5 units each	N/A	1,363 lpm (360 gpm) per cyclone	1,363 lpm (360 gpm) per cyclone	1,363 lpm (360 gpm) per cyclone	2 (0)
8	Vacuum Filter Belt	Horizontal belt	N/A	43 tonne/hr (47 tph) of 50 wt % slurry	43 tonne/hr (47 tph) of 50 wt % slurry	43 tonne/hr (47 tph) of 50 wt % slurry	2 (1)
9	Filtrate Water Return Pumps	Horizontal centrifugal	N/A	833 lpm @ 12 m H ₂ O (220 gpm @ 40 ft H ₂ O)	833 lpm @ 12 m H ₂ O (220 gpm @ 40 ft H ₂ O)	833 lpm @ 12 m H ₂ O (220 gpm @ 40 ft H ₂ O)	1 (1)
10	Filtrate Water Return Storage Tank	Vertical, lined	N/A	529,958 lpm (140,000 gal)	529,958 lpm (140,000 gal)	529,958 lpm (140,000 gal)	1 (0)
11	Process Makeup Water Pumps	Horizontal centrifugal	N/A	568 lpm @ 21 m H ₂ O (150 gpm @ 70 ft H ₂ O)	454 lpm @ 21 m H ₂ O (120 gpm @ 70 ft H ₂ O)	530 lpm @ 21 m H ₂ O (140 gpm @ 70 ft H ₂ O)	1 (1)

ACCOUNT 5B

CARBON DIOXIDE RECOVERY

Equipment	Descriptio	Туре	Case 4 Design	Case 5 Design	Case 6 Design	Case 7 Design	Operating
No.	n		Condition	Condition	Condition	Condition	Qty. (Spares)
1	CO2 Compresso r	Centrifugal, or Shock Compression (Case 6)	296,205 kg/h @ 15.3 MPa (653,020 lb/h @ 2,215 psia)	326,222 kg/h @ 15.3 MPa (719,196 lb/h @ 2,215 psia)	321,202 kg/h @ 15.3 MPa (708,129 lb/h @ 2,214 psia)	321,820 kg/h @ 15.3 MPa (709,491 lb/h @ 2,215 psia)	2 (0)

ACCOUNT 7 HRSG, DUCTING & STACK												
Equipment No.	Description	Туре	Case 4 Design Condition	Case 4 Design ConditionCase 5 Design Condition		Case 7 Design Condition	Operating Qty. (Spares)					
1	Stack	Reinforced concrete with FRP liner	46 m (150 ft) high x 4.4 m (15 ft) diameter	46 m (150 ft) high x 3.6 m (12 ft) diameter	46 m (150 ft) high x 3.6 m (12 ft) diameter	46 m (150 ft) high x 3.3 m (11 ft) diameter	1 (0)					

INT 8	STEAM TURBINE	GENERATOR A		AUXII IARIES
	SIEAW IUNDINE	GENERAIUR	AND	AUAILIANIES

ACCOUNT	. 8 . 8	STEAM TURBINI	E GENERATOR AND AU	XILIARIES			
Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	Steam Turbine	Commercially available advanced steam turbine	806 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	832 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	857 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	827 MW 24.1 MPa/599°C/621°C (3,500 psig/ 1,110°F/1,150°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	900 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	920 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	950 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	920 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	3,471 GJ/hr (3,290 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	3,397 GJ/hr (3,220 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	3,735 GJ/hr (3,540 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	3,366 GJ/hr (3,190 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

ACCOUNT 9	COOLING WATER SYSTEM	

.

Equipment No.	Description	Туре	TypeCase 4 Design ConditionCase 5 Design ConditionCase 6 Design Condition		Case 7 Design Condition	Operating Qty. (Spares)	
1	Circulating Water Pumps	Vertical, wet pit	821,400 lpm @ 30 m (217,000 gpm @ 100 ft)	919,900 lpm @ 30 m (243,000 gpm @ 100 ft)	897,100 lpm @ 30 m (237,000 gpm @ 100 ft)	904,700 lpm @ 30 m (239,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evapora- tive, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 4,568 GJ/hr (4,330 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 5,138 GJ/hr (4,870 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 5,001 GJ/hr (4,740 MMBtu/hr) heat duty	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 5,043 GJ/hr (4,780 MMBtu/hr) heat duty	1 (0)

ACCOUNT	ACCOUNT 10 ASH/SPENT SORBENT RECOVERY AND HANDLING												
Equipment No.	Description	Туре	Case 4 Design ConditionCase 5 Design ConditionCase 6 Design Condition		Case 7 Design Condition	Operating Qty. (Spares)							
1	Economizer Hopper (part of boiler scope of supply)						4 (0)						
2	Bottom Ash Hopper (part of boiler scope of supply)						2 (0)						
3	Clinker Grinder		4.5 tonne/hr (5 tph)	5.4 tonne/hr (6 tph)	5.4 tonne/hr (6 tph)	5.4 tonne/hr (6 tph)	1 (1)						
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)						6 (0)						
5	Hydroejectors						12 (0)						
6	Economizer /Pyrites Transfer Tank						1 (0)						

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
7	Ash Sluice Pumps	Vertical, wet pit	189 lpm @ 17 m H ₂ O (50 gpm @ 56 ft H ₂ O)	227 lpm @ 17 m H ₂ O (60 gpm @ 56 ft H ₂ O)	227 lpm @ 17 m H ₂ O (60 gpm @ 56 ft H ₂ O)	227 lpm @ 17 m H ₂ O (60 gpm @ 56 ft H ₂ O)	1 (1)
8	Ash Seal Water Pumps	Vertical, wet pit	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	$\begin{array}{c c} 7,571 \ \text{lpm} @ 9 \ \text{m} \ \text{H}_2 \text{O} \\ (2,000 \ \text{gpm} @ 28 \ \text{ft} \\ \text{H}_2 \text{O}) \end{array} \end{array} \begin{array}{c} 7,571 \ \text{lpm} @ 9 \ \text{m} \ \text{H}_2 \text{O} \\ (2000 \ \text{gpm} @ 28 \ \text{ft} \\ \text{H}_2 \text{O}) \end{array}$		7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	1 (1)
9	Hydrobins		189 lpm (50 gpm)	227 lpm (60 gpm)	227 lpm (60 gpm)	227 lpm (60 gpm)	1 (1)
10	Baghouse Hopper (part of baghouse scope of supply)						24 (0)
11	Air Heater Hopper (part of boiler scope of supply)						10 (0)
12	Air Blower		18 m ³ /min @ 0.2 MPa (640 scfm @ 24 psi)	20 m ³ /min @ 0.2 MPa (690 scfm @ 24 psi)	19 m ³ /min @ 0.2 MPa (680 scfm @ 24 psi)	19 m ³ /min @ 0.2 MPa (680 scfm @ 24 psi)	1 (1)
13	Fly Ash Silo	Reinforce d concrete	590 tonne (1,300 ton)	635 tonne (1,400 ton)	635 tonne (1,400 ton)	635 tonne (1,400 ton)	2 (0)
14	Slide Gate Valves						2 (0)
15	Unloader						1 (0)
16	Telescoping Unloading Chute		109 tonne/hr (120 tph)	118 tonne/hr (130 tph)	118 tonne/hr (130 tph)	118 tonne/hr (130 tph)	1 (0)

ACCOUNT	AUUUNI II AUUESSOKY ELEUIKIU PLANI												
Equipment No.	Description	Туре	Case 4 Design ConditionCase 5 Design Condition		Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)						
1	STG Transformer	Oil-filled	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	1 (0)						
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 236 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 264 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 290 MVA, 3-ph, 60 Hz	24 kV/4.16 kV, 259 MVA, 3-ph, 60 Hz	1 (1)						
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 35 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 40 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 43 MVA, 3-ph, 60 Hz	4.16 kV/480 V, 39 MVA, 3-ph, 60 Hz	1 (1)						
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz	24 kV, 3-ph, 60 Hz	1 (0)						
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz	4.16 kV, 3-ph, 60 Hz	1 (1)						
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz	480 V, 3-ph, 60 Hz	1 (1)						
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3- ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3-ph, 60 Hz	750 kW, 480 V, 3- ph, 60 Hz	1 (0)						

ACCOUNT 12 INSTRUMENTATION AND CONTROL

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	N/A	N/A	N/A	1 (0)

Equipment No.	Description	Туре	Case 4 Design Condition	Case 5 Design Condition	Case 6 Design Condition	Case 7 Design Condition	Operating Qty. (Spares)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)			

3.8 CUMULATIVE CASE – COMBINATION OF EXAMINED TECHNOLOGIES

The Cumulative Case is intended to model the cumulative effect and any synergies of the proposed PC oxycombustion concepts in the cases outlined in the above sections with the intent of assessing how this scenario may contribute to meeting the DOE CO₂ capture cost target.

An outcome of this case will be to confirm current R&D program cost and performance targets as well as set new targets necessary to meet the aggressive capture target of no more than 35% increase in COE above an equivalent power plant without capture.

A process BFD for the Cumulative Case is shown in Exhibit 3-100, and the corresponding stream tables are shown in Exhibit 3-101.

Heat and Mass Balance Diagram

Heat and mass balance diagrams are shown for the following subsystems in Exhibit 3-102 and Exhibit 3-103:

- Boiler and flue gas cleanup
- Steam cycle and feed water (power block)

Energy, Carbon, Sulfur, and Water Balances

An overall plant energy balance is provided in tabular form in Exhibit 3-104. The power out is the steam turbine power after generator losses.

Carbon, sulfur, and water balances are shown in Exhibit 3-105 through Exhibit 3-107.

Performance Summary

A performance summary is provided in Exhibit 3-108.

Costing Table

Tables of capital costs, owner's costs, and O&M costs are provided in Exhibit 3-109 through Exhibit 3-110, respectively.

Equipment List

The equipment list for the Cumulative Case is shown in Exhibit 3-112.

Exhibit 3-100 Process Block Flow Diagram for Cumulative Case

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
V-L Mole Fraction																
Ar	0.0092	0.0092	0.0092	0.0107	0.0107	0.0107	0.0000	0.0000	0.0000	0.0000	0.0009	0.0006	0.0009	0.0006	0.0000	0.0092
CO ₂	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0000	0.0000	0.0000	0.0000	0.5739	0.3913	0.5739	0.3913	0.0000	0.0005
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0101	0.0101	0.0101	0.0118	0.0118	0.0118	0.0000	0.0000	0.0000	0.0000	0.3089	0.2106	0.3089	0.2106	0.0000	0.0101
N ₂	0.7729	0.7729	0.7729	0.9041	0.9041	0.9041	0.0000	0.0000	0.0000	0.0000	0.0793	0.0541	0.0793	0.0541	0.0000	0.7729
O ₂	0.2074	0.2074	0.2074	0.0728	0.0728	0.0728	1.0000	1.0000	1.0000	1.0000	0.0286	0.3377	0.0286	0.3377	0.0000	0.2074
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0085	0.0058	0.0085	0.0058	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C_2H_6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	84,136	84,136	84,136	71,921	71,921	71,921	12,216	12,216	2,871	9,345	6,151	9,022	20,024	29,369	0	1,683
V-L Flowrate (kg/hr)	2,427,837	2,427,837	2,427,837	2,036,955	2,036,955	2,036,955	390,882	390,882	91,857	299,025	212,427	304,285	691,519	990,544	0	48,557
Solids Flowrate (kg/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	191,790	0
Temperature (°C)	15	390	802	802	330	60	802	66	66	66	194	160	186	154	15	15
Pressure (MPa, abs)	0.10	1.48	1.48	1.34	0.10	0.10	0.17	0.12	0.12	0.12	0.11	0.11	0.11	0.11	0.10	0.10
Enthalpy (kJ/kg) ^A	30.57	418.79	879.64	892.22	362.08	80.46	814.08	60.21	60.21	60.21	610.91	444.66	602.54	438.82		30.57
Density (kg/m ³)	1.2	7.8	4.8	4.3	0.6	1.0	0.6	1.4	1.4	1.4	1.0	1.0	1.0	1.0		1.2
V-L Molecular Weight	28.856	28.856	28.856	28.322	28.322	28.322	31.999	31.999	31.999	31.999	34.535	33.728	34.535	33.728		28.856
V-L Flowrate (lb _{mol} /hr)	185,489	185,489	185,489	158,558	158,558	158,558	26,931	26,931	6,329	20,602	13,561	19,890	44,145	64,747	0	3,710
V-L Flowrate (lb/hr)	5,352,465	5,352,465	5,352,465	4,490,718	4,490,718	4,490,718	861,747	861,747	202,511	659,236	468,322	670,833	1,524,538	2,183,775	0	107,049
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	422,825	0
Temperature (°F)	59	734	1,475	1,475	625	140	1,475	150	151	151	380	320	367	310	59	59
Pressure (psia)	14.7	215.0	215.0	195.0	15.2	14.8	25.0	17.5	17.5	17.5	16.2	16.2	15.3	15.3	14.7	14.7
Enthalpy (Btu/lb) ^A	13.1	180.0	378.2	383.6	155.7	34.6	350.0	25.9	25.9	25.9	262.6	191.2	259.0	188.7		13.1
Density (lb/ft ³)	0.076	0.484	0.299	0.266	0.037	0.065	0.039	0.086	0.086	0.086	0.062	0.065	0.060	0.063		0.076
	A - Referer	nce conditio	ons are 32.0	02 F & 0.08	9 PSIA											

Exhibit 3-101 Stream Table for Cumulative Case

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
V-L Mole Fraction																
Ar	0.0000	0.0000	0.0009	0.0000	0.0009	0.0009	0.0009	0.0009	0.0009	0.0011	0.0011	0.0000	0.0012	0.0013	0.0013	0.0013
CO ₂	0.0000	0.0000	0.5739	0.0000	0.5739	0.5739	0.5739	0.5739	0.5739	0.7006	0.7006	0.0000	0.8114	0.8304	0.8304	0.8304
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0000	1.0000	0.3089	0.0000	0.3089	0.3089	0.3089	0.3089	0.3089	0.1564	0.1564	1.0000	0.0229	0.0000	0.0000	0.0000
N ₂	0.0000	0.0000	0.0793	0.0000	0.0793	0.0793	0.0793	0.0793	0.0793	0.0968	0.0968	0.0000	0.1121	0.1147	0.1147	0.1147
O ₂	0.0000	0.0000	0.0286	0.0000	0.0286	0.0286	0.0286	0.0286	0.0286	0.0349	0.0349	0.0000	0.0404	0.0414	0.0414	0.0414
SO ₂	0.0000	0.0000	0.0085	0.0000	0.0085	0.0085	0.0085	0.0085	0.0085	0.0103	0.0103	0.0000	0.0119	0.0122	0.0122	0.0122
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₂ H ₆	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₃ H ₈	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C ₄ H ₁₀	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (kg _{mol} /hr)	0	75,487	43,915	0	43,915	43,915	26,175	20,024	6,151	14,535	14,535	5,481	12,550	12,262	12,262	12,262
V-L Flowrate (kg/hr)	0	1,359,926	1,516,577	0	1,516,577	1,516,577	903,946	691,519	212,427	554,949	554,949	98,739	519,192	514,004	514,004	514,004
Solids Flowrate (kg/hr)	3,720	0	14,878	14,878	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°C)	15	732	177	15	177	181	181	181	181	58	318	66	21	21	272	21
Pressure (MPa, abs)	0.10	27.68	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.24	0.10	1.23	1.23	15.27	15.26
Enthalpy (kJ/kg) ^A		3,844.30	676.49		591.67	597.12	597.12	597.12	597.12	237.78	509.63	276.75	8.66	6.86	221.04	-194.91
Density (kg/m ³)		64.1	0.9		0.9	0.9	0.9	0.9	0.9	1.4	9.7	953.0	22.7	22.5	145.1	703.8
V-L Molecular Weight		18.015	34.535		34.535	34.535	34.535	34.535	34.535	38.180	38.180	18.016	41.369	41.918	41.918	41.918
V-L Flowrate (lb _{mol} /hr)	0	166,421	96,815	0	96,815	96,815	57,706	44,145	13,561	32,044	32,044	12,083	27,668	27,034	27,034	27,034
V-L Flowrate (lb/hr)	0	2,998,123	3,343,481	0	3,343,481	3,343,481	1,992,861	1,524,538	468,322	1,223,454	1,223,454	217,681	1,144,622	1,133,184	1,133,184	1,133,184
Solids Flowrate (lb/hr)	8,200	0	32,800	32,800	0	0	0	0	0	0	0	0	0	0	0	0
Temperature (°F)	59	1,350	350	59	350	359	359	359	359	136	605	151	70	70	521	70
Pressure (psia)	14.7	4,014.7	14.4	14.7	14.2	14.7	14.7	14.7	14.7	14.7	179.9	14.7	178.9	178.9	2,214.7	2,213.7
Enthalpy (Btu/lb) ^A		1,652.7	290.8		254.4	256.7	256.7	256.7	256.7	102.2	219.1	119.0	3.7	2.9	95.0	-83.8
Density (lb/ft ³)		4.004	0.057		0.057	0.058	0.058	0.058	0.058	0.088	0.604	59.492	1.414	1.403	9.059	43.935

Exhibit 3-101 Stream Table for Cumulative Case (Continued)

Exhibit 3-102 Heat and Mass Balance, Boiler and Gas Cleanup Systems for Cumulative Case

	HHV	Sensible + Latent	Power	Total								
	Heat In	GJ/hr (MMBtu/hr)										
Coal	5,204 (4,933)	4.4 (4.1)		5,209 (4,937)								
Combustion Air		75.7 (71.8)		75.7 (71.8)								
Raw Water Makeup		82.2 (77.9)		82.2 (77.9)								
Auxiliary Power			1,333 (1,263)	1,333 (1,263)								
Totals	5,204 (4,933)	162.3 (153.8)	1,333 (1,263)	6,699 (6,349)								
Heat Out GJ/hr (MMBtu/hr)												
Boiler Loss		35.8 (33.9)		35.8 (33.9)								
Bottom Ash		0.5 (0.4)		0.5 (0.4)								
Fly Ash		1.9 (1.8)		1.9 (1.8)								
MAC Cooling		0.0 (0.0)		0.0 (0.0)								
ASU Vent		163.9 (155.3)		163.9 (155.3)								
Condenser		2,618.2 (2,481.5)		2,618.2 (2,481.5)								
CO ₂ Cooling		98.1 (93.0)		98.1 (93.0)								
CO ₂		-100.2 (-95.0)		-100.2 (-95.0)								
Flue Gas Cooling		225.4 (213.6)		225.4 (213.6)								
Cooling Tower Blowdown		39.3 (37.2)		39.3 (37.2)								
Process Losses*		303.5 (287.7)		303.5 (287.7)								
Power			3,313 (3,140)	3,313 (3,140)								
Totals		3,386 (3,210)	3,313 (3,140)	6,699 (6,349)								

Exhibit 3-104 Cases 10 Energy Balance

Note: Italicized numbers are estimated

Reference conditions are 0°C (32.02°F) & 0.6 kPa (0.089 psia)

* Process losses are estimated to match the heat input to the plant and include losses from: steam turbine, combustion reactions, and gas cooling.

Carbon In		Carbon Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	122,273 (269,566)	CO ₂ Product	122,304 (269,634)
Air (CO ₂)	(CO ₂) 473 (1,043)		464 (1,023)
		Convergence Tolerance*	-22 (-48)
Total	122,746 (270,609)	Total	122,746 (270,609)

Exhibit 3-105 Cumulative Case Carbon Balance

*by difference

Exhibit 3-106 Cumulative Case Sulfur Balance

Sulfur In		Sulfur Out	
kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal	4,807 (10,598)	Gypsum	0 (0)
		CO ₂ Product	4,806 (10,596)
		Convergence Tolerance*	1 (1)
Total	4,807 (10,598)	Total	4,807 (10,598)

*by difference

Exhibit 3-107 Cumulative Case Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption		
	m ³ /min (gpm)	m³/min (gpm)	m ³ /min (gpm)	m ³ /min (gpm)	m ³ /min (gpm)		
Cooling Tower	23.5 (6,206)	1.65 (435)	21.8 (5,771)	5.28 (1,396)	16.56 (4,375)		
Total	23.5 (6,206)	1.65 (435)	21.8 (5,771)	5.28 (1,396)	16.56 (4,375)		

Plant Outp	ut			
Steam Turbine Power	624,700	kWe		
Nitrogen Expander Power	295,500	kW _e		
Gross Power	920,200	kWe		
Auxiliary Lo				
Coal Handling and Conveying	440	kWe		
Limestone Handling & Reagent Preparation	0	kWe		
Pulverizers	2,880	kWe		
Ash Handling	550	kWe		
Primary Air Fans	860	kW _e		
Forced Draft Fans	1,080	kW _e		
Induced Draft Fans	2,380	kW _e		
Air Separation Unit Main Air Compressor	269,910	kW _e		
ASU Auxiliaries	0	kW _e		
Baghouse	70	kWe		
FGD Pumps and Agitators	0	kWe		
CO ₂ Compression	76,250	kW _e		
Condensate Pumps	890	kW _e		
Boiler Feedwater Booster Pumps ²	N/A	kW _e		
Miscellaneous Balance of Plant ³	2,000	kW _e		
Steam Turbine Auxiliaries	400	kW _e		
Circulating Water Pumps	6,030	kWe		
Cooling Tower Fans	3,520	kW _e		
Transformer Losses	2,880	kW _e		
Total	370,140	kW _e		
Plant Perform	ance			
Net Auxiliary Load	370,140	kW _e		
Net Plant Power	550,060	kW _e		
Net Plant Efficiency (HHV)	38.1%			
Net Plant Heat Rate (HHV)	9,461 (8,968)	kJ/kWhr (Btu/kWhr)		
Coal Feed Flowrate	191,790 (422,825)	kg/hr (lb/hr)		
Natural Gas	N/A	kg/hr (lb/hr)		
Coal Thermal Input	1,445,623	kW _{th}		
Natural Gas Thermal Input	N/A	kW _{th}		
Thermal Input ^{1,4} (Coal + Natural Gas)	1,445,623	kW _{th}		
Condenser Duty	2,618 (2,482)	GJ/hr (MMBtu/hr)		
Raw Water Usage	21.8 (5,771)	m ³ /min (gpm)		
1 - HHV of As Received Illinois No. 6 coal is 27,135	kJ/kg (11,666 Btu/	b)		
2 - Boiler feed pumps are turbine driven				
3 - Includes plant control systems, lighting, HVAC,	and miscellaneous	low voltage loads		

Exhibit 3-108 Cumulative Case Performance Summary

		Department:	NETL Office of	Program Plann	ning and Ana	ysis							Cost Base:	June 2007	
		Project:	Advancing Oxy	combustion le	chnology								Prepared:	13-Apr-12	
		Case:	Case TOT - Cu	nulative Techr	ology Case					_				x \$1, 000	
		Plant Size:	550	MW, net		Capital	Charge Factor	0.158	Capacity	Factor	0.85				
			Environ ent	Matarial			Dawa			-	a (TOTAL DI	
A		lterr (De cerintien	Equipment	Waterial	Lab	or	Bare	Eng'g	CM H.O. &	Proce	ess Cont.	Pro	ect Cont.		ANT COST
ACCE	NO.		Cost	COSt	Direct	mairect	Erected	/0	TULAT	70	Total	70	Total	- P	\$/KVV
1			2.250	0	4 504	0	4 002	0.00/	407	00/	0	45.00/	000	0.400	44
_	1.1	Coal Receive & Unioad	3,359	0	1,534	0	4,893	8.9%	437	0%	0	15.0%	800	6,130	11
_	1.2		4,341	0	984	0	5,325	8.8%	466	0%	0	15.0%	869	6,659	12
_	1.3	Coal Conveyors & Yd Crus	4,036	0	973	0	5,009	8.8%	439	0%	0	15.0%	817	6,266	11
_	1.4	Other Coal Handling	1,056	0	225	0	1,281	8.7%	112	0%	0	15.0%	209	1,602	3
	1.5	Sorbent Receive & Unload	0	0	0	0	0	8.8%	0	0%	0	15.0%	0	0	0
	1.6	Sorbent Stackout & Reclaim	0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
_	1.7	Sorbent Conveyors	0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
	1.8	Other Sorbent Handling	0	0	0	0	0	8.8%	0	0%	0	15.0%	0	0	0
	1.9	Coal & Sorbent Hnd.Foundations	0	3,891	4,908	0	8,799	9.3%	823	0%	0	15.0%	1,443	11,065	20
		SUBTOTAL 1.	\$12,792	\$3,891	\$8,625	\$0	\$25,308		\$2,277		\$0		\$4,138	\$31,722	\$58
2		COAL PREP & FEED SYSTEMS					1								
	2.1	Coal Crushing & Drying	1,924	0	375	0	2,298	8.7%	201	0%	0	15.0%	375	2,874	5
	2.2	Prepared Coal Storage & Feed	4,925	0	1,075	0	6,000	8.7%	525	0%	0	15.0%	979	7,504	14
	2.3	Slurry Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.4	Misc. Coal Prep & Feed	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.5	Sorbent Prep Equipment	0	0	0	0	0	8.7%	0	0%	0	15.0%	0	0	0
	2.6	Sorbent Storage & Feed	0	0	0	0	0	8.9%	0	0%	0	15.0%	0	0	0
	2.7	Sorbent Injection System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.8	Booster Air Supply System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	2.9	Coal & Sorbent Feed Foundation	0	456	383	0	839	9.2%	77	0%	0	15.0%	138	1,054	2
		SUBTOTAL 2.	\$6,849	\$456	\$1,833	\$0	\$9,138		\$803		\$0		\$1,491	\$11,432	\$21
3		FEEDWATER & MISC. BOP SYSTEMS													
	3.1	Feedwater System	15,550	0	5,023	0	20,573	8.8%	1,801	0%	0	15.0%	3,356	25,730	47
	3.2	Water Makeup & Pretreating	4,122	0	1,327	0	5,449	9.4%	511	0%	0	20.0%	1,192	7,151	13
	3.3	Other Feedwater Subsystems	4,760	0	2,012	0	6,772	8.9%	604	0%	0	15.0%	1,106	8,482	15
	3.4	Service Water Systems	808	0	440	0	1,248	9.3%	116	0%	0	20.0%	273	1,636	3
	3.5	Other Boiler Plant Systems	5,707	0	5,634	0	11,340	9.4%	1,064	0%	0	15.0%	1,861	14,265	26
	3.6	FO Supply Sys & Nat Gas	254	0	318	0	572	9.3%	53	0%	0	15.0%	94	719	1
	3.7	Waste Treatment Equipment	1,085	0	619	0	1,704	9.7%	165	0%	0	20.0%	374	2,243	4
	3.8	Misc. Power Plant Equipment	2,699	0	825	0	3,524	9.6%	338	0%	0	20.0%	772	4,635	8
		SUBTOTAL 3.	\$34,985	\$0	\$16,196	\$0	\$51,181		\$4,652		\$0		\$9,028	\$64,861	\$118
4		PC BOILER & ACCESSORIES													
	4.1	USC PC (Oxycombustion) Boiler	183,592	0	92,200	0	275,791	9.7%	26,713	25%	68,948	10.0%	37,145	408,598	743
	4.2	ASU (Advanced Membrane)/Oxidant Compression	66,843	0	54,689	0	121,532	9.7%	11,772	0%	0	10.0%	13,330	146,634	267
	4.3	Open	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.4	Boiler BoP (w/ID Fans)	0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	4.5	Primary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.6	Secondary Air System	w/4.1	0	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.7	Major Component Rigging	0	w/4.1	w/4.1	0	0	0%	0	0%	0	0.0%	0	0	0
	4.8	PC Foundations	0	w/14.1	w/14.1	0	0	0%	0	0%	0	0.0%	0	0	0
	-	SUBTOTAL 4	\$250.434	\$0	\$146 889	\$0	\$397 323		\$38 485		\$68 948		\$50 476	\$555 232	\$1 009

Exhibit 3-109 Cumulative Case Capital Costs

		Equipment	Material	Labor		Bare	Engia CM H.O. &		Process Cont.		Project Cont		TOTAL PL	ANT COST
Acct No.	Item/Description	Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
5A	FLUE GAS CLEANUP							*						
5.	1 Absorber Vessels & Accessories	0	0	0	0	0	9.5%	0	0%	0	10.0%	0	0	0
5.3	2 Other FGD	0	0	0	0	0	9.6%	0	0%	0	10.0%	0	0	0
5.3	3 Bag House & Accessories	11,138	0	7,068	0	18,206	9.6%	1,741	0%	0	10.0%	1,995	21,943	40
5.4	4 Other Particulate Removal Materials	738	0	789	0	1,527	9.6%	147	0%	0	10.0%	167	1,842	3
5.5	5 Gypsum Dewatering System	0	0	0	0	0	9.4%	0	0%	0	10.0%	0	0	0
5.0	6 Mercury Removal System	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.	7 Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.8	8 Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
5.	9 Open	0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	SUBTOTAL 5A.	\$11.876	\$0	\$7.858	\$0	\$19.734		\$1.888		\$0		\$2,162	\$23,784	\$43
5B	CO2 REMOVAL & COMPRESSION	4 , 0 0		<i>4</i> ,,,,,,	+ -	* · • , · • ·		+.,				, ,,,,,	4 =0,10	T
5B.1	CO2 Condensing Heat Exchanger	3.239	0	270	0	3.509	10%	351	0%	0	15.0%	579	4,439	8
5B 2	CO2 Compression & Drving	31 973	0	10 030	0	42 003	10%	4 017	0%	0	20.0%	9 204	55 224	100
5B 3	CO2 Additional BEW Heat Exchanger	4 962	0	414	0	5 376	10%	538	0%	0	20.0%	1 183	7 097	13
5B 3	CO2 Pipeline	1,002	Ŭ		Ŭ	0,010		000	070	Ŭ	201070	.,	0	.0
5B 4	CO2 Storage											0	0	0
5B 5	CO2 Monitoring											0	0	0
00.0	SUBTOTAL 5B	\$40 173	\$0	\$10 715	\$0	\$50 888		\$4 906		\$0		\$10 966	\$66 760	\$121
6	NITROGEN EXPANDER/GENERATOR	<i>\\\\\\\\\\\\\</i>	φ¢	<i><i></i></i>	ψU	<i>\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		φ4,000		ψU		\$10,000	400,100	
6	1 Nitrogen Expander/Generator	38 008	0	16 289	0	54 297	9.6%	5 100	0%	0	10.0%	5 950	65 445	110
6.	2 Nitrogen Expander/Generator Accessories	00,000	0	10,200	0	04,201	1.0%	0,100	0%	0	0.0%	0,000	00,440	0
6.	2 Compressed Air Piping	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.	4 Nitragon Expander/Concreter Foundations	0	0	0	0	0	10%	0	0%	0	0.0%	0	0	0
0.4		00 ect	0	¢16 390	0	¢54.207	1076	¢E 100	070	0 ¢0	0.076	¢5 050	ÉCE AAE	0 €110
7	HRSG DUCTING & STACK	\$30,000	\$ 0	\$10,209	4 0	\$J4,297		φ 0 ,199		φU		40,900	\$05,445	\$11 3
7	1 Flue Gas Recycle Heat Exchanger	0	0	0	0	0	10.0%	0	0%	0	15.0%	0	0	0
7.	2 ASI I Superheater	11 588	0	890	0	12 556	10.0%	1 256	20%	2 511	15.0%	2 448	18 771	34
7.		18,431	0	1 530	0	12,000	10.0%	1,200	10%	1 007	15.0%	2,440	27 550	50
7.		20 707	0	1,333	0	22 /36	10.0%	2 244	0%	1,337	15.0%	3,535	27,333	52
7.	5 SCP System	20,707	0	1,723	0	22,430	00/	2,244	0%	0	0.0%	3,702	20,301	 0
7.	6 Ductwork	8 457	0	5 434	0	13 801	8 7%	1 213	1.0%	1 380	15.0%	2 474	18.067	34
7.	7 Stock	1 206	0	3,434	0	2 070	0.770	1,213	0%	1,303	10.0%	2,474	2 404	54
7.	1 Sldck	1,300	021	704	0	2,070	9.070	190	0%	0	20.0%	227	2,494	5
7.3		001 000	6001	¢11 277	0	¢73.607	9.370	¢7 073	070	¢E 907	20.076	000 \$10 934	2,320 ¢09,501	4 €170
8	STEAM TURBINE GENERATOR	400,40 9	403 I	\$11,377	4 0	\$12,091		\$1,013		\$3,097		\$12,034	\$90,00 I	φ17 9
8	1 Steam TG & Accessories	53 183	0	7 058	0	60 241	9.6%	5 768	15%	9.036	10.0%	7 504	82 549	150
0. 8 /	2 Turbine Plant Auxiliaries	359	0	767	0	1 125	9.7%	100	0%	0,000	10.0%	122	1 358	130
9	3 Condenser & Auviliaries	6 /31	0	2 370	0	8 801	9.7%	836	0%	0	10.0%	964	1,550	10
0.	4 Stoom Dining	14 522	0	7 161	0	21 694	9.370	1 910	0%	0	15.0%	2 5 2 4	27 019	19
0.4		14,523	1 126	1,101	0	21,004	0.370	1,010	0%	0	10.0%	3,324	27,010	49
0.3		¢74.405	f1 120	¢10.125	0	2,900	9.4%	¢0 706	0%	0 026	20.0%	¢10 751	\$125 220	(()) () () () () () () () ()
0	SUBIUTAL 6.	\$74,495	\$1,120	\$19,133	\$ 0	\$94,755		\$0,790		\$9,030		\$12,751	\$125,339	 φ220
9		0 757		3 030	0	12 705	0.5%	1 215	0%	0	10.0%	1 /01	15 /10	20
9.	2 Circulating Water Pumps	5,157	0	3,030	0	1 740	9.5%	1,210	0%	0	10.0%	1,401	2 079	20
9.	2 Circ Water System Auxiliaries	1,010	0	124	0	1,740	0.0%	149 50	0%	0	10.0%	109	2,070	4
9.	4 Circ Water Diping	400	2 700	2 504	0	230	9.4 /0	50 673	0%	0	15.0%	1 100	0.171	17
9.4	H Olic, Water Pipling	0	3,708	5,594	0	1,302	9.2%	0/3	0%	0	15.0%	1,190	9,171	17
9.	Component Cooling Water System	410	0	548	0	958	9.5%	91	0%	0	15.0%	157	1,206	2
9.0	Component Cooling Water System	3/1	0	295	0	5000	9.4%	62	0%	0	15.0%	109	837	2
9.9		C40.001	2,287	3,033	0	5,920	9.4%	0.700	0%	0	20.0%	1,295	1,//2	14
	SUBIOTAL 9.	\$12,621	۵۵,995 ا	\$11,294	\$0	\$29,910		\$2,796		\$0		\$4,406	\$37,112	\$67

Exhibit 3-109 Cumulative Case Capital Costs (continued)

			Equipment	Material	Lat	or	Bare Eng'g CM H.O. &		Process Cont.		Project Cont.		TOTAL PL	ANT COST	
Acc	ct No. Item/Description		Cost	Cost	Direct	Indirect	Erected	%	Total	%	Total	%	Total	\$	\$/kW
10	ASH/SPENT SORBENT HANDLING	SYS													
	10.1 Ash Coolers		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.2 Cyclone Ash Letdown		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.3 HGCU Ash Letdown		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.4 High Temperature Ash Piping		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.5 Other Ash Recovery Equipment		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	10.6 Ash Storage Silos		587	0	1,809	0	2,396	9.7%	233	0%	0	10.0%	263	2,892	5
	10.7 Ash Transport & Feed Equipment		3.800	0	3,892	0	7.692	9.5%	727	0%	0	10.0%	842	9,261	17
	10.8 Misc. Ash Handling Equipment		0	0	0	0	0	0.0%	0	0%	0	0.0%	0	0	0
	10.9 Ash/Spent Sorbent Foundation		0	140	164	0	304	9.3%	28	0%	0	20.0%	66	398	1
		SUBTOTAL 10.	\$4.387	\$140	\$5.865	\$0	\$10.391		\$989		\$0		\$1.171	\$12,552	\$23
11	ACCESSORY ELECTRIC PLANT		† 1,000		4 -,	÷-	4 ,				**		. .,	•,	4 =0
	11 1 Generator Equipment		1 640	0	266	0	1 907	9.3%	177	0%	0	7.5%	156	2 239	4
	11.2 Station Service Equipment		8 143	0	2 676	0	10,819	9.6%	1 035	0%	0	7.5%	889	12 742	23
	11.3 Switchgear & Motor Control		9 362	0	1 591	0	10,010	9.3%	1,000	0%	0	10.0%	1 197	13 164	20
	11.4 Conduit & Cable Tray		0,002	5 869	20 295	0	26 164	9.6%	2 504	0%	0	15.0%	4 300	32,969	60
	11.5 Wire & Cable		0	11 075	20,233	0	32 456	8.4%	2,304	0%	0	15.0%	5 279	40 469	74
	11.6 Protective Equipment		261	11,075	21,000	0	1 1/0	0.4%	2,700	0%	0	10.0%	126	1 388	3
	11.7 Standby Equipment		1 201	0	20	0	1,143	0.5%	112	0%	0	10.0%	146	1,500	3
	11.7 Standby Equipment		7,447	0	105	0	7,555	9.5 /o	575	0%	0	10.0%	015	1,000	3
	11.0 Main Power Hanslonners		7,447	220	120	0	1,572	0.5%	575	0%	0	10.0%	015	0,902	10
	TT.9 Electrical Foundations		¢00.457	\$47.0CE	/ 00	0	1,100	9.5%	105	0%	0	20.0%	242 \$42.450	1,400	د ۵۵۵۵
10		SUBTUTAL 11.	\$28,157	\$17,200	\$48,037	<u>۵</u> ۵	\$93,460	2	\$8,383		Ф О		\$13,150	\$114,992	\$209
12	12.1 DC Control Equipment		w/10 7	0	w/10 7	0		00/	0	00/	0	0.00/	0	0	0
	12.1 PC Control Equipment		W/12.7	0	W/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
	12.2 Combustion Turbine Control		N/A	0	N/A	0	0	0%	0	0%	0	0.0%	0	0	0
	12.3 Steam Turbine Control		w/8.1	0	w/8.1	0	0	0%	0	0%	0	0.0%	0	0	0
	12.4 Other Major Component Control		0	0	0	0	0	0%	0	0%	0	0.0%	0	0	0
	12.5 Signal Processing Equipment		W/12.7	0	w/12.7	0	0	0%	0	0%	0	0.0%	0	0	0
	12.6 Control Boards, Panels & Racks		597	0	358	0	955	9.6%	92	0%	0	15.0%	157	1,204	2
	12.7 Computer Accessories		6,031	0	1,054	0	7,085	9.5%	675	0%	0	10.0%	776	8,536	16
	12.8 Instrument Wiring & Tubing		3,270	0	6,487	0	9,757	8.5%	831	0%	0	15.0%	1,588	12,176	22
	12.9 Other I & C Equipment		1,704	0	3,867	0	5,571	9.7%	543	0%	0	10.0%	611	6,725	12
		SUBTOTAL 12.	\$11,602	\$0	\$11,766	\$0	\$23,368	1	\$2,140		\$0		\$3,133	\$28,641	\$52
13	IMPROVEMENTS TO SITE										-				
	13.1 Site Preparation		0	53	1,066	0	1,120	9.9%	110	0%	0	20.0%	246	1,476	3
	13.2 Site Improvements		0	1,770	2,199	0	3,969	9.8%	390	0%	0	20.0%	872	5,231	10
	13.3 Site Facilities		3,173	0	3,129	0	6,301	9.8%	618	0%	0	20.0%	1,384	8,304	15
		SUBTOTAL 13.	\$3,173	\$1,824	\$6,394	\$0	\$11,390)	\$1,119		\$0		\$2,502	\$15,011	\$27
14	BUILDINGS & STRUCTURES														
	14.1 Boiler Building		0	8,751	7,695	0	16,446	9.0%	1,477	0%	0	15.0%	2,688	20,612	37
	14.2 Turbine Building		0	12,577	11,722	0	24,299	9.0%	2,188	0%	0	15.0%	3,973	30,460	55
	14.3 Administration Building		0	629	665	0	1,294	9.1%	117	0%	0	15.0%	212	1,622	3
	14.4 Circulation Water Pumphouse		0	109	86	0	195	8.9%	17	0%	0	15.0%	32	244	0
	14.5 Water Treatment Buildings		0	543	495	0	1,037	9.0%	93	0%	0	15.0%	170	1,300	2
	14.6 Machine Shop		0	421	283	0	703	8.9%	62	0%	0	15.0%	115	880	2
	14.7 Warehouse		0	285	286	0	571	9.0%	52	0%	0	15.0%	93	716	1
	14.8 Other Buildings & Structures		0	233	198	0	431	9.0%	39	0%	0	15.0%	70	540	1
	14.9 Waste Treating Building & Str.		0	433	1,314	0	1,747	9.4%	165	0%	0	15.0%	287	2,199	4
		SUBTOTAL 14.	\$0	\$23,979	\$22,744	\$0	\$46,723		\$4,210		\$0		\$7,640	\$58,573	\$106
		Total Cost	\$590,041	\$55,507	\$345,016	\$0	\$990,564		\$93,715		\$83,881		\$141,796	\$1,309,956	\$2,381

Exhibit 3-109 Cumulative Case Capital Costs (continued)
Owner's Costs	\$1,000	\$/kW
Preproduction Costs		
6 Months All Labor	\$8,723	\$16
1 Month Maintenance Materials	\$1,240	\$2
1 Month Non-fuel Consumables	\$243	\$0
1 Month Waste Disposal	\$243	\$0
25% of 1 Months Fuel Cost at 100% CF	\$1,473	\$3
2% of TPC	\$26,199	\$48
Total	\$38,121	\$69
Inventory Capital		
60 day supply of fuel and consumables at 100% CF	\$11,998	\$22
0.5% of TPC (spare parts)	\$6,550	\$12
Total	\$18,548	\$34
Initial Cost for Catalyst and Chemicals	\$0	\$0
Land	\$900	\$2
Other Owner's Costs	\$196,493	\$357
Financing Costs	\$35,369	\$64
Total Overnight Costs (TOC)	\$1,599,387	\$2,908
TASC Multiplier	1.134	
Total As-Spent Cost (TASC)	\$1,813,705	\$3,297

Exhibit 3-110 Cumulative Case Owner's Costs

		INITIAL	& ANNUAL	O&M EXPE	INSES		
Case:	Case TOT - Cumul	lative Technol	ogy Case				
Plant Size	(MWe):	550.06			Heat Rate (B	tu/kWh):	8,968
Primary/Se	condary Fuel:	Illinois #6 Bi	tuminous Co	al	Fuel Cost (\$/I	MM Btu):	1.64
Design/Con	struction	5 years			Book Life (yr	s):	30
TPC (Plant	Cost) Year:	June 2007			TPI Year:		2012
Capacity Fa	actor (%):	85			CO2 Captured	(TPD):	11,856
OPERATING	3 & MAINTENANCE	<u>E LABOR</u>					
Operating L	_abor						
Operating	Labor Rate (base):		\$34.65	\$/hour			
Operating	Labor Burden:		30.00	% of base			
Labor Ove	rhead Charge:		25.00	% of labor			
Operating	Labor Requirements	s per Shift:	units/mod.		Total Plant		
	Skilled Operator		2.0		2.0		
	Operator		9.0		9.0		
	Foreman		1.0		1.0		
	Lab Tech's etc.		2.0		2.0		
	TOTAL Operating	Jobs	14.0		14.0		
						\$	\$/kW-net
Annual Op	erating Labor Cost	(calc'd)				5,524,319	10.04
Maintenan	ce Labor Cost (calo	c'd)				8,432,078	15.33
Administra	ative & Support Labo	or (calc'd)				3,489,099	6.34
Property T	axes and Insurance)				26,199,125	47.63
TOTAL FI	XED OPERATING	COSTS				43,644,621	79.35
VARIABLE	OPERATING COST	<u>s</u>				•	A 11 14 1
						\$	\$/kWh-net
Maintenan	ce Material Costs (calc'd)				\$12,648,216	0.00309
0	h l	0		11	11411		
Consuma	<u>bles</u>	Consu	mption	Unit	Initial	¢	¢//JA/h mot
Consuma	bles	Consu Initial	nption /Day	Unit Cost	Initial Cost	\$ \$1,204,202	\$/kWh-net
Water (/10	<u>bles</u> 000 gallons)	Consu Initial	nption /Day 4,155	Unit Cost 1.08	Initial Cost \$0	\$ \$1,394,303	\$/kWh-net 0.00034
Water (/10 Chemicals	bles 000 gallons)	Consul Initial 0	mption /Day 4,155	Unit Cost 1.08	Initial Cost \$0	\$ \$1,394,303	\$/kWh-net
Consuma Water (/10 Chemicals MU & W	bles 000 gallons) T Chem. (lb)	Consul Initial 0	mption /Day 4,155 20,112	Unit Cost 1.08 0.17	Initial Cost \$0 \$0	\$ \$1,394,303 \$1,079,892	\$/kWh-net 0.00034 0.00026
Consuma Water (/10 Chemicals MU & W Limeston	bles 000 gallons) T Chem. (lb) ne (ton)	Consur Initial 0 0 0 0	mption /Day 4,155 20,112 0	Unit Cost 1.08 0.17 21.63	Initial Cost \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0	\$/kWh-net 0.00034 0.00026 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I	bles 000 gallons) T Chem. (Ib) ne (ton) Hg Removal) (Ib)	Consur Initial 0 0 0 0	mption /Day 4,155 20,112 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249 89	Initial Cost \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol	bles 00 gallons) T Chem. (Ib) he (ton) Hg Removal) (Ib) vent (ton)	Consur Initial 0 0 0 0 0 0	mption /Day 4,155 20,112 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89	Initial Cost \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S	bles 00 gallons) T Chem. (Ib) Hg Removal) (Ib) Vent (ton) Soda, NaOH (ton)	Consul Initial 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a	bles 00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a labilitor	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic 3 Sulfuric a Corrosion	bles 00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C. MEA (lb)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosion Activated	bles 00 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a. 19% sola (ton)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 0.17 21.63 1.05 2249.89 433.68 138.78 0.00 1.05	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemic	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alvst Replacement	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775 94	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement D Penalties	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor HC, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other rossal	Consur Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor I C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emission	bles 000 gallons) T Chem. (lb) te (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) n Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Mo Flyash (t Bottom A	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement n Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Bottom A	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Bottom A	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emission Waste Dis Spent Me Flyash (t Bottom A By-produc Gypsum	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor d C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Botypsum Sulfur (to	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor A C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Bottom A By-produc Gypsum	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor A C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.00000
Consuma Water (/10 Chemicals MU & W Limestor Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Bottom A By-produc Gypsum Sulfur (to	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor A C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) ms) CABLE OPERATIN	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00000
Consuma Water (/10 Chemicals MU & W Limeston Carbon (I MEA Sol Caustic S Sulfuric a Corrosior Activated Ammonia Other Supplem SCR Cat Emissior Waste Dis Spent Me Flyash (t Bottom A By-produc Gypsum Sulfur (to TOTAL VAR Coal FUEL	bles 000 gallons) T Chem. (lb) the (ton) Hg Removal) (lb) Vent (ton) Soda, NaOH (ton) Soda, NaOH (ton) acid, H2SO4 (ton) a Inhibitor A C, MEA (lb) a, 19% soln (ton) Subtotal Chemica ental Fuel (MMBtu) alyst Replacement alyst Replacement Penalties Subtotal Other sposal ercury Catalyst (lb) on) Subtotal Solid W ts & Emissions (tons) SIABLE OPERATIN (tons)	Consul Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nption /Day 4,155 20,112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unit Cost 1.08 21.63 1.05 2249.89 433.68 138.78 0.00 1.05 129.80 6.55 5775.94 0.00 0.42 16.23 16.23 16.23 16.23	Initial Cost \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$ \$1,394,303 \$1,079,892 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	\$/kWh-net 0.00034 0.00026 0.000000

Exhibit 3-111 Cumulative Case O&M Costs

ACCOUNT 1 FUEL AND SORBENT HANDLING					
Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)	
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	181 tonne (200 ton)	2 (0)	
2	Feeder	Belt	572 tonne/hr (630 tph)	2 (0)	
3	Conveyor No. 1	Belt	1,134 tonne/hr (1,250 tph)	1 (0)	
4	Transfer Tower No. 1	Enclosed	N/A	1 (0)	
5	Conveyor No. 2	Belt	1,134 tonne/hr (1,250 tph)	1 (0)	
6	As-Received Coal Sampling System	Two-stage	N/A	1 (0)	
7	Stacker/Reclaimer	Traveling, linear	1,134 tonne/hr (1,250 tph)	1 (0)	
8	Reclaim Hopper	N/A	36 tonne (40 ton)	2 (1)	
9	Feeder	Vibratory	154 tonne/hr (170 tph)	2 (1)	
10	Conveyor No. 3	Belt w/ tripper	318 tonne/hr (350 tph)	1 (0)	
11	Crusher Tower	N/A	N/A	1 (0)	
12	Coal Surge Bin w/ Vent Filter	Dual outlet	154 tonne (170 ton)	2 (0)	
13	Crusher	Impactor reduction	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	2 (0)	
14	As-Fired Coal Sampling System	Swing hammer	N/A	1 (1)	
15	Conveyor No. 4	Belt w/tripper	318 tonne/hr (350 tph)	1 (0)	
16	Transfer Tower No. 2	Enclosed	N/A	1 (0)	
17	Conveyor No. 5	Belt w/ tripper	318 tonne/hr (350 tph)	1 (0)	

Exhibit 3-112 Equipment List for Cumulative Case

.

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	726 tonne (800 ton)	3 (0)

ACCOUNT 2 COAL AND SORBENT PREPARATION AND FEED

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Coal Feeder	Gravimetric	36 tonne/hr (40 tph)	6 (0)
2	Coal Pulverizer	Ball type or equivalent	36 tonne/hr (40 tph)	6 (0)

ACCOUNT 3 FEEDWATER AND MISCELLANEOUS SYSTEMS AND EQUIPMENT

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	897,143 liters (237,000 gal)	2 (0)
2	Condensate Pumps	Vertical canned	21,577 lpm @ 244 m H ₂ O (5,700 gpm @ 800 ft H ₂ O)	1 (1)
3	Deaerator and Storage Tank	Horizontal spray type	1,495,948 kg/hr (3,298,000 lb/hr), 5 min. tank	1 (0)
4	Boiler Feed Pump/Turbine	Barrel type, multi- stage, centrifugal	24,984 lpm @ 3,871 m H ₂ O (6,600 gpm @ 12,700 ft H ₂ O)	1 (1)
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi- stage, centrifugal	7,571 lpm @ 3,871 m H ₂ O (2,000 gpm @ 12,700 ft H ₂ O)	1 (0)
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	639,565 kg/hr (1,410,000 lb/hr)	2 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	639,565 kg/hr (1,410,000 lb/hr)	2 (0)
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	639,565 kg/hr (1,410,000 lb/hr)	2 (0)
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	639,565 kg/hr (1,410,000 lb/hr)	2 (0)
10	HP Feedwater Heater 6	Horizontal U-tube	1,496,855 kg/hr (3,300,000 lb/hr)	1 (0)
11	HP Feedwater Heater 7	Horizontal U-tube	1,496,855 kg/hr (3,300,000 lb/hr)	1 (0)
12	HP Feedwater heater 8	Horizontal U-tube	1,496,855 kg/hr (3,300,000 lb/hr)	1 (0)
13	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1 (0)
14	Fuel Oil System	No. 2 fuel oil for light off	1,135,624 liter (300,000 gal)	1 (0)
15	Service Air Compressors	Flooded Screw	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2 (1)
16	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1,000 scfm)	2 (1)
17	Closed Cycle Cooling Heat Exchangers	Shell and tube	176 GJ/hr (167 MMBtu/hr) each	2 (0)
18	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	69,273 lpm @ 30 m H ₂ O (18,300 gpm @ 100 ft H ₂ O)	2 (1)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
19	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1 (1)
20	Fire Service Booster Pump	Two-stage horizontal centrifugal	$\begin{array}{c} 2,650 \text{ lpm } @ \ 64 \text{ m } \text{H}_2\text{O} \\ \text{gpm } @ \ 210 \text{ ft } \text{H}_2\text{O} \end{array} (700$	1 (1)
21	Raw Water Pumps	Stainless steel, single suction	12,795 lpm @ 43 m H ₂ O (3,380 gpm @ 140 ft H ₂ O)	2 (1)
22	Filtered Water Pumps	Stainless steel, single suction	1 lpm @ 49 m H ₂ O (0 gpm @ 160 ft H ₂ O)	2 (1)
23	Filtered Water Tank	Vertical, cylindrical	596 liter (158 gal)	1 (0)
24	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionization unit	606 lpm (160 gpm)	1 (1)
25	Liquid Waste Treatment System		10 years, 24-hour storm	1 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Boiler	Supercritical, drum, wall-fired, low NO _x burners, overfire air	1,496,855 kg/hr steam @ 29.0 MPa/741°C/768°C (3,300,000 lb/hr steam @ 4,200 psig/1,365°F/1,415°F)	1 (0)
2	Primary Air Fan	Centrifugal	117,027 kg/hr, 2,093 m ³ /min @ 47 cm WG (258,000 lb/hr, 73,900 acfm @ 19 in. WG)	2 (0)
3	Forced Draft Fan	Centrifugal	380,110 kg/hr, 6,813 m ³ /min @ 123 cm WG (838,000 lb/hr, 240,600 acfm @ 48 in. WG)	2 (0)
4	Induced Draft Fan	Centrifugal	834,156 kg/hr, 15,348 m ³ /min @ 46 cm WG (1,839,000 lb/hr, 542,000 acfm @ 18 in. WG)	2 (0)
5	ASU Main Air Compressor	Centrifugal, multi- stage	18,264 m ³ /min @ 1.5 MPa (645,000 scfm @ 215 psia)	2 (0)
6	Advanced Membrane ASU	Vendor design	5,171 tonne/day (5,700 tpd) of 100% purity oxygen	2 (0)
7	Nitrogen Expander	Centrifugal, multi- stage	15,631 m ³ /min @ 0.1 MPa (552,000 scfm @ 015 psia)	2 (0)
8	Recuperator	Single pass, multi- stage	1,308 GJ/hr (1,240 MMBtu/hr), Inlet N ₂ temperature 330°C (625°F), Inlet O ₂ temperature 802°C (1,475°F), N ₂ temperature decrease 270°C (485°F), O ₂ temperature decrease 736°C (1,325°F)	1 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)	
1	Fabric Filter	Single stage, high-ratio with pulse-jet online cleaning system	834,156 kg/hr (1,839,000 lb/hr) 99.8% efficiency	2 (0)	

ACCOUNT 5 FLUE GAS CLEANUP

ACCOUNT 5B CARBON DIOXIDE RECOVERY

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	CO ₂ Compressor	Centrifugal	246,475 kg/h @ 15.3 MPa (543,385 lb/h @ 2,214 psia)	2 (0)

ACCOUNT 7 HRSG, DUCTING & STACK

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)	
1	Stack	Reinforced concrete with FRP liner	46 m (150 ft) high x 3.6 m (12 ft) diameter	1 (0)	

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Steam Turbine	Commercially available advanced steam turbine	658 MW 27.6 MPa/732°C/760°C (4,000 psig/ 1350°F/1400°F)	1 (0)
2	Steam Turbine Generator	Hydrogen cooled, static excitation	730 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1 (0)
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	2,880 GJ/hr (2,730 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1 (0)

ACCOUNT 8 STEAM TURBINE GENERATOR AND AUXILIARIES

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Circulating Water Pumps	Vertical, wet pit	605,700 lpm @ 30 m (160,000 gpm @ 100 ft)	2 (1)
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 3,376 GJ/hr (3,200 MMBtu/hr) heat duty	1 (0)

ACCOUNT 9 COOLING WATER SYSTEM

ACCOUNT 10 ASH/SPENT SORBENT RECOVERY AND HANDLING

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	Economizer Hopper (part of boiler scope of supply)			4 (0)
2	Bottom Ash Hopper (part of boiler scope of supply)			2 (0)
3	Clinker Grinder		4.5 tonne/hr (5 tph)	1 (1)
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)			6 (0)
5	Hydroejectors			12 (0)
6	Economizer /Pyrites Transfer Tank			1 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
7	Ash Sluice Pumps	Vertical, wet pit	151 lpm @ 17 m H ₂ O (40 gpm @ 56 ft H ₂ O)	1 (1)
8	Ash Seal Water Pumps	Vertical, wet pit	7,571 lpm @ 9 m H ₂ O (2,000 gpm @ 28 ft H ₂ O)	1 (1)
9	Hydrobins	151 lpm (4		1 (1)
10	Baghouse Hopper (part of baghouse scope of supply)			24 (0)
11	Air Heater Hopper (part of boiler scope of supply)			10 (0)
12	Air Blower		15 m ³ /min @ 0.2 MPa (530 scfm @ 24 psi)	1 (1)
13	Fly Ash Silo	Reinforced concrete	499 tonne (1,100 ton)	2 (0)
14	Slide Gate Valves			2 (0)
15	Unloader			1 (0)
16	Telescoping Unloading Chute		91 tonne/hr (100 tph)	1 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	STG Transformer	Oil-filled	24 kV/345 kV, 300 MVA, 3-ph, 60 Hz	1 (0)
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 408 MVA, 3-ph, 60 Hz	1 (1)
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 61 MVA, 3-ph, 60 Hz	1 (1)
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self- cooled	24 kV, 3-ph, 60 Hz	1 (0)
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1 (1)
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1 (1)
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1 (0)

Equipment No.	Description	Туре	Design Condition	Operating Qty. (Spares)
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	1 (0)
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1 (0)
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1 (0)

ACCOUNT 12 INSTRUMENTATION AND CONTROL

3.9 COMPARATIVE PERFORMANCE SUMMARY

This study was designed to incorporate advanced oxycombustion technologies anticipated to improve cost and/or performance over an oxycombustion system composed of currently available technologies. The performance summaries for all cases are shown in Exhibit 3-113. In the seven cases examining advanced technology, the net plant efficiency changes over the current state-of-the-art for oxycombustion technology (29.3% HHV) in the range from -0.1% to +3.7% absolute percentage points (excluding the cumulative case).

In Cases 1, 1A, and the Cumulative Case, all of which utilize an advanced membrane ASU, the auxiliary loads as well as the gross power production are comparatively larger than the remaining cases. Auxiliary loads are larger than a cryogenic ASU because the membrane system pressurizes the feed air to ~215 psia compared to ~85 psia for a conventional ASU, has no intercooling, and has a lower O_2 yield such that more feed air is required per mass of O_2 product. The high auxiliary power in the advanced membrane cases is not so detrimental since much of this compression power is recovered in a hot gas expander and the ASU heat input is partially recovered in the boiler feedwater system. The net result is similar to what is seen in gas turbine operation, except the compression load and gross power production of the hot gas expander are explicitly accounted for here. Case 1A uses natural gas to provide the heating for the membrane system and so the overall system efficiency of this case includes this heat input even though it does not explicitly contribute to power production.

C	Dasa Casa	Core 1	Casa 14	Coso 2	Coso 4	Casa F	Casa C	Casa 7	Casa 10	
Case	Base Case	Case 1	Case 1A	Case 3	Case 4	Case 5	Case 6	Case /	Case 10	
	Current	Advanced	Advanced	USC w/Advanced		Advanced	Advanced CO ₂	Ovurfuel Poiler	Cumulativa	
Description	Technology	Integration	Integration	Material	co-sequestration	Recycle	Compression	Oxyruer Boller	Cumulative	
Description		integration	megration	l Blant O:	itout					1
Stoom Turbing Power	700 800	620 500	662 200	765 000	765 500	700 600	814 000	785 000	624 700	kW
Advanced Membrane Expander Power	7.90,800	345 200	272,400	703,900 N/A	N/A	/ 30,000	014,000	733,900 N/A	295 500	kW/
Gross Bower	700 800	965 700	034 700	765.900	765 500	790.600	814 000	785 900	293,300	kWo
GIUSS FOWEI	790,000	303,700	554,700	Auxiliary	705,500	730,000	014,000	785,500	520,200	KW6
Coal Handling and Conveying	500	480	440	480	480	500	500	500	440	kW
Limestone Handling & Reagent Preparation	1 210	1 100	930	1.090	0	1 210	1 190	1 200	0	kW-
Elliestone Handling & Reagent Preparation	3 740	3 390	2 860	3 380	3 450	3 740	3,680	3,690	2 880	kW
Ash Handling	720	650	550	650	660	720	710	710	550	kW
Primany Air Fans	1 010	910	770	910	1 /10	980	1.010	710	860	kW/
Forced Draft Fans	1,010	1 150	990	1 150	1,410	1 240	1,010	1.010	1.080	kW
Induced Draft Fans	7.080	6 330	5 390	6 380	3,610	6,610	7,270	6,030	2 380	kW
Air Separation Unit Main Air Compressor	125 720	315 240	296 100	113 350	115 970	125 880	123 950	124 190	2,000	kW/
	1 000	0	230,100	1 000	1 000	1 000	1 000	1,000	203,310	kW/
Bachouse	90	90	70	80	90	90	90	90	70	kW
EGD Pumps and Aditators	4 050	3 680	3 230	3 650	0	4 050	3 990	4.000	0	kWe
CO ₂ Compression	73 410	64 170	55 550	65.070	67 770	73 620	98 700	72 520	76 250	kW-
Condensate Pumps	1 040	810	880	960	1 020	1 040	1 070	1.050	890	kW-
Boiler Feedwater Booster Pumps	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	kW-
Miscellaneous Balance of Plant ^{2,3}	2 000	2 000	2 000	2 000	2 000	2 000	2,000	2,000	2 000	kW-
Steam Turbine Auxiliaries	400	400	400	400	400	400	400	400	400	kW.
Circulating Water Pumps	9 160	7 730	7 310	7 990	8 170	9 180	8 930	9.010	6.030	kW-
Cooling Tower Fans	5.340	4.510	4.270	4,670	4,770	5,360	5,220	5,260	3.520	kWe
Transformer Losses	3 030	3,000	3 040	2,880	2 880	3 030	3 160	3,000	2 880	kWa
Total	240.780	415.640	384,780	216.090	215.480	240.650	263.880	236.450	370.140	kW _e
	-,		,	Plant Perfo	rmance	- 1	,	,	, -	0
Net Auxiliary Load	240.780	415.640	384,780	216.090	215.480	240.650	263.880	236.450	370,140	kWe
Net Plant Power	550.020	550.060	549.920	549,810	550.020	549,950	550,120	549.450	550.060	kW _e
Net Plant Efficiency (HHV)	29.3%	32.2%	33.0%	32.4%	31.7%	29.2%	29.7%	29.6%	38.1%	
Net Plant Heat Rate (HHV)	12.300 (11.658)	11.167 (10.584)	10.904 (10.335)	11.120 (10.540)	11.347 (10.754)	12.317 (11.675)	12,124 (11,492)	12,163 (11,528)	9,461 (8,968)	kJ/kWhr (Btu/kWhr)
Coal Feed Flowrate	249,312 (549,638)	226,371 (499,062)	190,935 (420,941)	225,320 (496,745)	229,991 (507,043)	249,640 (550,361)	245,804 (541,905)	246,282 (542,960)	191,790 (422,825)	kg/hr (lb/hr)
Natural Gas	N/A	N/A	15,544 (34,268)	N/A	N/A	N/A	N/A	N/A	N/A	kg/hr (lb/hr)
Coal Thermal Input ¹	1,879,193	1,706,276	1,439,182	1,698,356	1,733,562	1,881,666	1,852,755	1,856,362	1,445,623	kW _{th}
Natural Gas Thermal Input ⁴	N/A	N/A	226,458	N/A	N/A	N/A	N/A	N/A	N/A	kW _{th}
Thermal Input (Coal + Natural Gas)	1,879,193	1,706,276	1,665,640	1,698,356	1,733,562	1,881,666	1,852,755	1,856,362	1,445,623	kW _{th}
Condenser Duty	3,079 (2,918)	2,831 (2,683)	2,821 (2,674)	2,648 (2,510)	3,160 (2,995)	3,088 (2,927)	3,398 (3,221)	3,062 (2,902)	2,618 (2,482)	GJ/hr (MMBtu/hr)
Raw Water Withdrawal	33.0 (8,729)	27.6 (7,304)	27.2 (7,186)	29.6 (7,822)	30.2 (7,976)	33.2 (8,777)	32.2 (8,499)	32.5 (8,587)	21.8 (5,771)	m ³ /min (gpm)
1 - HHV of as-received Illinois No. 6 coal is 2	7,135 kJ/kg(11,666 l	Btu/lb)								
2 - Boiler feed pumps are turbine driven										
3 - Includes plant control systems, lighting, H	HVAC, and miscellar	neous low voltage loa	ids							
4 - HHV of natural gas is 22,549 Btu/lb										

Exhibit 3-113 Plant Performance Summary

Exhibit 3-114 Case Efficiency Summary

<u>Efficiency</u>

The overall system energy efficiencies (based on HHV) are shown in Exhibit 3-114. The primary conclusions regarding plant efficiencies that can be drawn are:

- Among the conventional ASU-based cases, Case 3 (USC steam cycle) shows the highest improvement in plant efficiency compared to SC oxycombustion technology (base case). The improvement is 3.1 efficiency percentage points (9.6 percent heat rate improvement), which is what can be expected for similar upgrades in steam conditions in all PC plants.
- Excluding the advanced membrane ASU cases, Case 4 (co-sequestration) shows the second highest improvement in plant efficiency compared to the base case. The improvement is 2.4 efficiency percentage points, or 7.8 percent heat rate improvement. Not only is there a savings in auxiliary loads because an FGD is no longer required, but additional heat can be recovered from the flue gas. When a wet FGD is used, the flue gas is quenched down to ~150°F; without an FGD useful sensible heat from the flue gas can be recovered in the boiler feedwater system, increasing the overall system efficiency by maintaining a high level of available heat. It should be noted that this system requires advanced materials that do not yet exist which are capable of withstanding the extremely high sulfur coals especially, advanced materials may be required in the boiler through to the compression system and may add significant cost.
- Of the two advanced membrane cases (excluding the cumulative case), Case 1A (natural gas preheater integration) has the greatest efficiency improvement at 3.7 absolute percentage points (11 percent heat rate improvement). Due to the high temperature and high pressure operation of the advanced membrane system, a significant amount of power and heat recovery from the vitiated air is possible, offsetting some of the input energy to the system by generating power in a manner similar to that of a natural gas combined cycle. However, the 90% CO₂ capture requirement limits the thermodynamic performance of this cycle in a unique way. The amount of natural gas required to completely preheat the membrane feed would result in an excessive amount of vented CO₂, decreasing overall CO₂ capture below 90%. Therefore, a regenerative heat exchanger immediately prior to the vitiated gas expander was used to perform a portion of the preheat in an effort to reduce the amount of vented CO₂ (to maintain a 90% capture rate).
- Case 1 (advanced membrane with boiler heat integration) shows a 2.9 absolute percentage points (9.2 percent heat rate) improvement over the base case. Due to the high temperature and high pressure operation of the membrane, a significant amount of power and heat recovery from the vitiated air is possible, offsetting some of the thermal input required by the process by using a hot gas expander to produce additional power. Providing the required heat from the coal-fired boiler results in a higher coal feed rate than Case 1A, which leads to increased O₂ demand and higher auxiliary loads (including CO₂ compression). The result is a lower overall efficiency than Case 1A where the required heat is provided using natural gas, but a higher overall CO₂ capture efficiency.

- In Case 6, advanced CO₂ compression technology increases plant efficiency by 0.4 percentage points (14 percent of heat rate) compared to the current oxycombustion technology case. While the shock wave compression technology has the potential for recovering significant levels of heat from two-stage compressors, two-stage compression as expected was found to require more total power than the typical 8-stage compression with intercooling. The amount of compression heat that could be integrated back into the system was not found to significantly offset the higher compression power requirements of the shock compression technology, despite the more efficient shock compression stage efficiencies.
- Case 5 using the advanced recycle concept was found to have nearly no impact on efficiency. The reason for this lies not in Case 5 but in the relatively small detrimental effect of the preheat process that occurs in the base case. In the base case, heat was extracted from the steam cycle and sent directly, and entirely, to the boiler. This study assumed the base case system was adiabatic with a few exceptions (e.g. 1% boiler heat loss). As a result, the extracted heat for recycle is largely retained in the overall system and placed in the boiler where additional benefit may still be realized. The small heat loss and the small amount of heat extracted from the feedwater system leads to negligible change in system performance in the base case. Any reduction in auxiliary fan loads resulting from advanced recycle was found to be insignificant.
- Case 7 using an advanced oxycombustion boiler showed low levels of improvement in plant efficiency nearing ~0.3 percent absolute compared to the base case. The benefits of the oxycombustion boiler are: its smaller design (saving capital cost), its ability to reduce the FGR required, and its ability to promote heat transfer at higher temperatures (higher adiabatic flame temperature tolerance). The reduction in FGR reduces the fan loads required to accommodate the recycle. These fan loads are not very significant compared to the rest of the auxiliaries so the efficiency increase due to this benefit is relatively minor. The benefit of higher boiler temperatures is largely limited by materials constraints. While a higher temperature is achievable in the boiler, higher steam conditions are not and thus limit the benefit of a higher flame temperature. Without complex CFD modeling, it is difficult to quantify the heat transfer profile of a boiler exhibiting a higher flame temperature; it is possible that additional benefits may be realized due to a more advantageous heat transfer profile, but these effects were not examined in this study.
- As expected the Cumulative Case shows the highest improvement in plant efficiency; the efficiency is increased by 8.8 percentage points absolute (23 percent heat rate improvement). If the efficiency effects of all individual cases are added together (choosing Case 1 over Case 1A for cost reasons), the result is a net improvement of 9.1 total percentage points. It can then be said that on average, over 95 percent of the potential benefit of each individual technology is realized in the Cumulative Case, suggesting that most of the benefits provided by the individual cases are mutually exclusive and all benefit oxycombustion in their own right.

Water Use

Water withdrawal was largely similar among all cases. Nearly all oxycombustion cases examined in this study increase the water use above that required for a supercritical PC plant without CCS (9.7 gpm/MW) between 50% and 65%. However, cases with an advanced membrane-based ASU only increase supercritical PC water use by ~35%. This is because a large portion of gross plant power (~33%-50%) is produced via a power cycle (hot gas expander) that does not require cooling. The heat not recovered from expander exhaust gas is allowed to leave the system without the need to cool or condense water. This reduces water losses via evaporation from a cooling tower. The combined performance enhancements of all advanced technologies reduce water withdrawal in the Cumulative Case to be only ~10% higher than a state of the art supercritical plant. The disparity in water withdrawal amongst the cases here could be reduced if the base plant incorporated dry cooling.

Air Emissions

With the sole exception of Case 1A, all oxycombustion cases in this study assumed that:

- 1. During normal operation no gas is vented through the stack, thus no air emissions, and
- 2. Geologic CO_2 sequestration can accommodate any amount of impurity in the sequestered CO_2 such that no purification is required.

These two assumptions lead to the potential for virtually zero air emissions plants, which implies 100% CO₂ capture for all cases except Case 1A.

In Case 1A, the stack emits flue gas generated by the natural gas-fired direct heater in the advanced membrane ASU system during normal operation. This results in CO_2 emissions of 205 lb/MWhnet, which equates to roughly 92% CO_2 capture. In Case 1A, sulfur, particulate matter, and mercury emissions are negligible because of the nature of the natural gas fuel. NO_x emissions for this case are also assumed to be negligible since natural gas combustion temperatures in the ASU system only reach 1,475°F.

In all cases, it was assumed that no CO_2 purification is required for geologic sequestration. It should be noted that if CO_2 purification is required, there will likely be additional CO_2 emissions from the purification process. The emissions constituent type and amount has yet to be determined and will depend largely on the component targeted for reduction in the CO_2 product. In previous NETL studies of CO_2 purification it has been estimated that as much as 10% of the total CO_2 generated may be lost as fugitive emissions from the purification process.

3.10 COMPARATIVE ECONOMIC SUMMARY

<u>Capital Cost</u>

Total Overnight Cost (TOC) highlights are presented below. Normalized TOC (expressed in \$/kW) for all cases including the Current Oxycombustion Technology case are shown in Exhibit 3-115.

• Case 4 (co-sequestration) has the lowest TOC among the individual technology cases at \$2,927/kW. The Case 4 TOC is \$292/kW (or 9 percent) lower than the current technology case. The major reason for this cost reduction is that current technology uses

an FGD unit to capture sulfur oxides, while the Case 4 technology eliminates the FGD unit by sequestering the sulfur oxides. This reduction in cost entails some technical risk since the boiler and flue gas recycle must be made of materials that are resistant to corrosion from sulfur-containing gases; this is reflected in the increased process contingency in the boiler and ductwork equipment accounts. These sulfur resistant materials are also more expensive, further offsetting some of the cost savings associated with elimination of the FGD unit.

- Case 1A (advanced membrane ASU integrated with natural gas-fired direct heater) has the second lowest TOC of all cases except the Cumulative Case at \$3,023/kW. The TOC for Case 1A is \$196/kW (or 6 percent) lower than current technology. Case 1 (advanced membrane ASU integrated with boiler steam cycle) has the third lowest TOC at \$3,137/kW. The TOC for Case 1 is \$82/kW (or 2.5 percent) lower than current technology. The lower costs can be attributed to the substitution of the advanced membrane technology for the more expensive ASU in both cases. In this study, it was assumed that the membrane can be constructed for 30% less capital cost than an equivalent size cryogenic ASU. **This is the goal set forth by an NETL-sponsored research and development project on membrane technology**. The authors acknowledge it is possible that the cost to manufacture and install an advanced membrane may ultimately be different. Exhibit 3-35 & Exhibit 3-47 each provide a cost breakdown that can be manipulated at the reader's discretion to recalculate COE based on variable membrane-based ASU capital cost assumptions.
- Case 3 (USC steam cycle) has the highest TOC of all cases. It is \$26/kW (or ~1 percent) higher than the current technology case. The higher cost is due to the fact that specialty materials able to withstand higher boiler and steam turbine operating temperatures and pressures are needed for construction. USC technology entails risk; it has not been demonstrated at commercial scale in the U.S. Exhibit 3-116 shows how the increase in efficiency resulting from the USC conditions translates into a lower COE; the efficiency improvement outweighs the increase in cost for a net decrease in COE.
- Case 6 (Advanced CO₂ Compression) has a TOC that is \$68/kW (or 2 percent) less than the current technology. Although the Advanced Compressor has a larger gross power requirement than a conventional compressor, its TOC per unit horsepower is less than the conventional compressor TOC. However, the increase in the remaining plant TOC to provide the additional power to run the compressor and the additional heat exchangers required to recover interstage heat partially offset the savings resulting from the compressor.
- Case 5 and 7 have TOC's that are less than 1.1% lower than the current technology case; therefore, aside from any compounded efficiency increases due to coupling these advanced technologies, these cases on their own offer no significant capital cost advantage over current technology.
- The Cumulative Case has the lowest TOC of all the cases at \$2,908/kW. The Cumulative Case combines all of the advanced technologies which results in a significantly more efficient power plant. The advanced technologies have not yet been demonstrated and so have more technical risk than current technology. This risk was captured by the increased process contingencies in the advanced technology accounts, however as more

information is gathered on these technologies, the cost accounts broken out in this report can be readily adjusted to recalculate revised costs. Under the current set of assumptions, the TOC for the Cumulative Case is \$311/kW (or 10 percent) lower than that of current technology (Base Case). Major reasons for this cost reduction in comparison to current technology are:

- 1. The Cumulative Case is a significantly more efficient plant as a result of coupling performance-enhancing technologies. It requires 23% less thermal input than the current technology case to achieve the same output, which reduces the overall plant size. Depending on economies of scale, this can reduce the normalized TOC by 15-17%, all else being equal.
- 2. The elimination of the cost of FGD.
- 3. The substitution of an advanced membrane ASU for the more expensive conventional ASU. In accordance with a goal set forth by an NETL-sponsored R&D effort on advanced membrane technology, it was assumed that the membrane-based ASU is 30% less expensive than an equivalent cryogenic ASU.

These cost reductions are partially offset by an increase in boiler material and ductwork costs since special materials of construction are required for these items, which have not been demonstrated at commercial scale. Cost reductions are also offset by the increased contingency added due to the risk and uncertainty of the performance of undemonstrated technologies.

As mentioned previously, there is one technology included in the Cumulative Case that does not increase the efficiency of the oxycombustion plant – Advanced Recycle. If the cost savings of this technology do not outweigh its associated efficiency penalty, eliminating it from the Cumulative Case may decrease the TOC and COE even further.

Exhibit 3-115 Total Overnight Cost

Cost of Electricity

The COE for each case, excluding TS&M costs, is shown in Exhibit 3-116. The COE components are also shown in tabular form in Exhibit 3-117. TS&M costs are excluded from the

total because they are not included in the DOE goal of limiting the COE increase over a SC PC non-capture plant to 35 percent. The following observations can be made:

- The COE is dominated by capital charges in all cases. The capital cost component of COE comprises 55–65 percent for all cases, including the current technology case. As a result, the ranking of cases from highest to lowest COE generally conforms to the differences in TOC noted above.
- The fuel cost component is the second largest component, representing ~20 percent of the COE. Fuel costs for all cases are similar with the exception of the natural gas-based advanced membrane ASU case (26 percent). The cost of natural gas is significantly higher than coal (\$6.55/MMBtu versus \$1.64/MMBtu), which is reflected in the relative fuel cost of Case 1A. High natural gas costs are also the reason that, despite Case 1A having a TOC ~3.5% lower than Case 1 and a heat rate ~2.2% lower, Case 1A has a higher COE.
- The TS&M component of COE in the CO₂ capture cases is about 6 percent of the total COE. TS&M costs are virtually the same for all cases, but have not been included in the total COE as described above.

The following observations can also be made with regard to COE (excluding TS&M):

- Among the CO₂ capture cases, the Cumulative Case has the lowest COE at \$78.15/MWh. It is 32.7 percent higher (refer to Exhibit 3-117) than that of the non-capture current technology case (air-fired, SC, no carbon capture) and therefore meets the DOE goal of less than 35 percent increase in COE.
- Co-sequestration (Case 4) has the second lowest COE at \$82.02/MWh, 39 percent higher than that of the non-capture current technology case.
- Advanced membrane ASU boiler integration (Case 1) has the third lowest COE of \$87.19/MWh, 48 percent higher than that of the non-capture current technology case.
- Advanced membrane NG integration, USC steam cycle, no recycle re-heat, advanced CO₂ compression, and reduced recycle (Cases 1A, 3, 5, 6, and 7) have about the same COE as the current oxycombustion technology case (all within 3 percent). Advanced membrane with the NG preheat system has a COE of \$91.12/MWh, USC steam cycle has a COE of \$89.31/MWh, the advanced recycle (no re-heat) has a COE of \$91.03/MWh, the advanced CO₂ compression has a COE of \$89.34/MWh, and the Advanced Boiler w/Reduced Recycle has a COE of \$89.96/MWh. These are all comparable to the \$91.07/MWh for the current technology case.
- While the shock compression equipment is expected to have a major decrease in cost per unit compression power, the required compression power for shock compression was found to be higher than conventional compression. The required increase in gross plant output to provide the additional compression power increases the plant TOC (excluding the compressor) offsetting the savings in the compressor TOC.

Exhibit 3-116 First Year Cost of Electricity

Exhibit 3-117 Increases in Cost of Electricity Over Non-Capture Reference Case

	First Year Cost of Electricity (\$/MWh)						
Study Case	Capital	Fixed O&M	Variable O&M	Fuel	TS&M	Total (Less TS&M)	COE (%) ^a
Non-Capture Reference, Air-fired SC w/o CCS	31.68	7.97	5.03	14.22	0.00	58.90	-
Current OF Technology, O2-fired SC w/ASU & CCS	53.72	11.81	6.47	19.08	5.83	91.07	54.6
Case 1, O ₂ -fired SC w/Boiler Adv. Membrane & CCS	52.35	11.53	5.99	17.32	5.60	87.19	48.0
Case 1A, O ₂ -fired SC w/NG Adv. Membrane & CCS	50.45	11.23	5.63	23.81	5.25	91.12	54.7
Case 3, O ₂ -fired USC w/ASU & CCS	54.15	11.81	6.10	17.25	5.58	89.31	51.6
Case 4, O ₂ -fired SC w/ASU & Co-Sequestration	48.85	10.79	4.78	17.60	5.67	82.02	39.3
Case 5, O ₂ -fired SC w/ASU, Wet Recycle & CCS	53.66	11.80	6.47	19.11	5.91	91.03	54.5
Case 6 O ₂ -fired SC w/ASU & Shock Compression	52.59	11.60	6.34	18.81	5.87	89.34	51.7
Case 7, O ₂ -fired SC w/ASU, Adv. Boiler & CCS	53.13	11.65	6.32	18.87	5.89	89.96	52.7
Cumulative Technology Case	48.52	10.66	4.30	14.68	5.28	78.15	32.7

^aRelative to non-capture reference case

Cost of CO₂ Avoided

The cost of CO_2 avoided for each case is shown in Exhibit 3-118. The exhibit was produced using the equation presented in Section 2.6.3 and represents the cost of CO_2 avoided relative to a SC air-fired PC plant with no CO_2 capture. The CO_2 avoided cost trends are similar to the COE trends as noted above. This is a result of relatively consistent CO_2 emissions between the cases and the capital intensive nature of the technologies. Both COE and CO_2 avoided costs track closely to the technology capital costs. The natural gas-based advanced membrane ASU case (Case 1A) has the highest cost of CO_2 avoided of all the cases at \$44/tonne (\$40/ton). This is due to the CO_2 emissions (less CO_2 captured) resulting from venting natural-gas-generated CO_2 in the ASU process. The lowest cost of CO_2 avoided results from the cumulative technology case and is \$24/tonne (\$22/ton).

3.11 RECOMMENDATIONS FOR FUTURE RESEARCH

The results of this report suggest that both cost and performance improvements need to be made in multiple technologies applicable to the oxycombustion pathway for CO_2 capture if the DOE capture goal is to be met. Not all of the advanced technologies were found to have equivalent cost or performance improvements. In the interest of allocating R&D funding in the most costeffective manner, future research should be conducted in the areas that provide the most opportunity for improvement.

This section discusses the major conclusions of this study regarding how future research and development should focus on developing oxycombustion-specific technologies for the most beneficial improvements in performance and cost. Based on the results of this study, improvements in the following technologies should have the largest positive impact on oxycombustion:

- Oxygen Supply: Advanced membrane-based air separation technology shows promise due to its high temperature and high pressure operation, which allows for a relatively high amount of heat and power recovery. Membrane system integration, membrane performance enhancements, and capital cost reduction should be the main areas of focus for this technology area based on the results of this study.
- <u>Sulfur-Tolerant Materials</u>: Research should be conducted to develop sulfur-tolerant materials to handle the recycled flue gas in systems with reduced flue gas desulfurization. It is understood that completely eliminating the FGD may not be possible in the near-term because of materials constraints and potential restrictions on sequestration, however if continual progress is made in these areas, system efficiency will continue to increase in proportion.
- <u>Oxycombustion Boilers</u>: As sulfur-tolerant materials are developed, smaller oxycombustion-based boiler designs with enhanced heat transfer may become more effective. Sulfur-tolerant materials will allow less recycle, less flue gas desulfurization requirements, and therefore higher efficiencies all while decreasing the boiler size, and potentially cost depending on the premium for exotic material.
- <u>Advanced Steam Conditions</u>: While not specific to oxycombustion, raising steam conditions in the Rankine cycle also has a beneficial effect on oxycombustion systems. Advancing steam conditions in the Rankine cycle can maximize the benefit of the potentially high temperatures of the oxycombustion process and should be taken into consideration when designing oxycombustion-specific boiler designs.

DOE's National Energy Technology Laboratory is currently funding multiple projects in all of the above categories.

This page intentionally left blank

4. <u>REFERENCES</u>

- 1. Karl, T.R., Trenberth, K.E. Modern Global Climate Change, *Science*, Vol 302, December 5, 2003, pp. 1719-1723.
- 2. Houghton et al. {Eds} (2001). Climate Change 2001: The Scientific Basis, Cambridge University Press.
- 3. Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers, Part 1-A Preliminary Systems Evaluation, ALSTOM Power Inc., Windsor, CT, US DOE NETL, Pittsburgh PA, May 2003.
- 4. Advanced Low/Zero Emission Boiler Design and Operation, Task 3 Techno-Economic Study, American Air Liquide, Countryside II, US DOE NETL, Pittsburgh PA, November 2004, DE-FC26-02NT41586.
- 5. Oxy Combustion Processes for CO₂ Capture from Power Plants, IEA Greenhouse Gas R&D Programme, Prepared by Mitsui Babcock, Report 2005/0, July 2005
- 6. http://en.wikipedia.org/wiki/Image:Composition_comparison.JPG
- 7. Ciferno, J. Pulverized Coal Oxycombustion Power Plants, DOE/NETL-2007/1291, Revision 2, August 2008.
- "Gas Turbines Procurement Part 2: Standard Reference Conditions and Ratings", ISO 3977-2:1997 and "Gas Turbines Acceptance Tests", ISO 2314:1989, Edition 2, International Organization for Standardization, Geneva, Switzerland, http://www.iso.org/iso/en/xsite/copyright.html.
- 9. 2004 Keystone Coal Industry Manual. Published by Coal Age.
- 10. Ciferno, J., "Pulverized Coal Oxycombustion Power Plants, Final Results", revised August 2008.
- 11. Pulverized Coal Oxycombustion Power Plants. DOE/NETL-2007/1291. Volume 1: Bituminous Coal to Electricity. Final Report. Revision 3, February, 2010.
- 12. Ciferno, J., "Pulverized Coal Oxycombustion Power Plants, Final Results", revised August 2008.
- A.R. Smith and J. Klosek, A Review of Air Separation Technologies and Their Integration with Energy Conversion Processes, *Fuel Processing Technology* 70, 2001 pp. 115–134.
- 14 Kobayashi, H.S., Van Hassel, B. CO₂ Reduction by Oxy-Fuel Combustion: Economics and Opportunities, GCEP Advance Coal Workshop, March 15, 2005, Provo, Utah.
- 15. King, C. J. *Separation Processes*. 2nd ed. New York, NY: McGraw-Hill, 1980. ISBN: 9780070346123.

- 16. David, M., Fuentes, F. "Gas Production Technologies: Competing Processes and Expected Improvements," Capture & Geological Storage of CO₂, October 3-5, 2007, Paris.
- 17. Adapted from "Pulverized Coal Oxycombustion Power Plants, Volume 1: Bituminous Coal to Electricity Final Report, Revision 2," August 2008.
- 18. Source: http://www.ramgen.com/apps_overview.html.
- 19. Lawlor, S. CO₂ Compression Using Supersonic Shock Wave Technology, Project NT42651, Ramgen Power Systems, March 26, 2009.
- 20. Baldwin, P. "Low-Cost, High-Efficiency CO₂ Compressor", Carbon Management Conference, Washington, DC, Dec. 5, 2007.
- 21. Robertson, A., et al. *Conceptual Design of Supercritical O*₂-*Base PC Boiler Final Report*. Foster Wheeler Power Group, Inc., November, 2006.
- 22. "Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity." Final Report No. DOE/NETL-2010/1397, November 2010.
- 23. "ITM Oxygen for Gasification", Air Products and Chemicals, Inc., Gasification Technologies 2004, Washington, DC, http://www.gasification.org/Docs/2006_Papers/54ARMS.pdf, October 2004.
- 24 "American Association of Cost Engineers." http://www.aacei.org/ (Accessed: 6/09/2010)
- 25. "Impact of Impurities on CO₂ Capture, Transport, and Storage," IEA GHG Report Number Ph 4-32, August 2004.
- 26. "Oxy Combustion Processes from Power Plant," IEA GHG Report Number 2005/9, July 2005.
- 27. Smith, L.A., Gupta, N., Sass, B.M., Bubenik, T.A., "Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations," Battelle Memorial Institute, 2001.
- 28. Ciferno, J. P., McIlvried, H. "CO₂ Flow Modeling and Pipe Diameter Determination," February, 2003.
- 29. Economic Evaluation of CO₂ Storage and Sink Enhancement Options, Tennessee Valley Authority, NETL and EPRI, December 2002.
- 30 Parker, N., "Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs," Institute of Transportation Studies, University of California, Davis, CA, 2004.
- 31 Gresham, R. L., Apt, J., et. al, "Implications of Compensating Property-Owners for Geologic Sequestration of CO₂," Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 1999.

- Klass, A.B., Wilson, E.J., "Climate Change and Carbon Sequestration: Assessing a Liability Regime for Long-Term Storage of Carbon Dioxide," 58 Emory Law Journal 103, 2008
- 33 Senate Bill No. 2095, 61st Legislative Assembly of North Dakota, January 6th, 2009
- House Bill No. 661, Louisiana House of Representatives Regular Session, 2009
- 35 Enrolled Act No. 20 (Original House Bill No. 58), 60th Legislature of the State of Wyoming, General Session, 2009
- 36 Overview of Monitoring Requirements for Geologic Storage Projects. IEA Greenhouse Gas R&D Programme, Report Number PH4/29, November 2004
- 37. "Pulverized Coal Oxycombustion Power Plants, Volume 1: Bituminous Coal to Electricity Final Report, Revision 2," August 2008.