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LTA-SOFC: Characteristics
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Voltage Threshold 0.78V @1,000°C, Hydrogen, Gen 3.1 LTA-SOFC



Direct Coal Power Using Liquid Tin Anode 
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All Forms of Coal Will Make Soot – damage 
to Ni anode SOFC
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Liquid Tin Anode Fuel Cell Direct Coal – 3 Alternative Configurations

Insitu GasifierElectrochemical Looping External Gasifier
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LTA- SOFC Electrochemical Looping - Tin 
Bath Concept for MW coal plant

► Separates fuel cleaning and reaction gases from Power Production module.
► Direct Coal-biomass feed into anode
► Tubular configuration without ceramic porous separator
► Carbon dioxide sequestrationq
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LTALTA--SOFC Coal Tin Bath Power Plant ConceptSOFC Coal Tin Bath Power Plant Concept

High-Level PFD of LTASOFC with CCS Most thoroughly analyzedg
Exhaust 

RecuperatorRecuperator
Air Compressor

Steam System
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Steam System
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Purge750°C
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Most thoroughly analyzed 
concept to-date

 63% System 
efficiency with CO2 
capture and 
compression
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Claus Sulfur to 
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►Tin provides separation of 
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►Requires development of 
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►High tin recirculation rate 
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current break
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LTA-SOFC Coal Tin Bath System Cost 
Estimate

Preliminary System Cost Structure (2007 $)
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LTALTA--SOFC InSOFC In--situ Gasification Concept situ Gasification Concept 

►► Tubular same as current Tubular same as current 
Gen 3 cellsGen 3 cellsGen 3 cellsGen 3 cells

►► Tin anode contained by Tin anode contained by 
porous ceramic separator porous ceramic separator 
and electrolyteand electrolyteand electrolyteand electrolyte

►► Direct Fuel Conversion Direct Fuel Conversion 
through internal through internal 

ff

Separator

gasificationgasification

Air Electrolyte
Cathode

Liq Tin (500 micron)
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LTALTA--SOFC InSOFC In--situ Gasification Concept situ Gasification Concept 

Exhaust

High Level of PFD of Insitu Gasifier

Uses cells with porous separator 
like existing CellTech Gen 3
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Exhaust 

Recuperator
Air Compressor

N2 
Bleedin

g

like existing CellTech Gen 3
• No direct contact between tin anode 

and solid fuel.
• Gasification is driven by CO2 and 

H20 produced by cells (no Oxy plant
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Syngas 
Cooling

Claus
Unit

Sulfur to 
Markets

H20 produced by cells (no Oxy plant 
required).

• Isolated anodes allow cell voltage 
build up.

• Ash, tar and carbon clogging of 
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, gg g
separator could be an issue.

• Volatile metal oxides in coal impact 
on cells unknown. 

• Could test concept with Gen 3.1 cells 
Storage

Slag / Ash to 
Disposal

and lab gasifier.
• Cathode air flow may increase to 

remove cell heat load.
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LTA-SOFC Gen 3 for direct coal
Gasification cell using porous separator
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LTALTA--SOFC External Gasification Concept SOFC External Gasification Concept 

►► Tubular same as current Tubular same as current 
Gen 3 cellsGen 3 cellsGen 3 cellsGen 3 cells

►► Tin anode contained by Tin anode contained by 
porous ceramic separator porous ceramic separator 
and electrolyteand electrolyteand electrolyteand electrolyte

►► Direct Fuel Conversion Direct Fuel Conversion 
through internal through internal 

ff
Uses cells with porous separator like existing 
C llT h G 3

Separator

gasificationgasificationCellTech Gen 3
•Compatible with existing gasifiers
•Reduced gas clean-up (Sulfur, CO)
•Lowest efficiency

Air Electrolyte
Cathode

Liq Tin (500 micron)
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Issues related to coal impurityIssues related to coal impurity

 Impact on liquid tin anodeImpact on liquid tin anode

 Impact on electrolyteImpact on electrolytep yp y

 Impact on other cell componentsImpact on other cell components
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Fuel ImpurityFuel Impurity
Impact on Liquid Tin AnodeImpact on Liquid Tin AnodeImpact on Liquid Tin AnodeImpact on Liquid Tin Anode

 Molten tin fluid state:  Structure or surface cannot be Molten tin fluid state:  Structure or surface cannot be 
damaged by contaminationdamaged by contaminationdamaged by contaminationdamaged by contamination

 Gravimetric separation of ash from molten tinGravimetric separation of ash from molten tin

 Addition of tin during plant operation is feasible and loss Addition of tin during plant operation is feasible and loss 
of tin not an issueof tin not an issue

tin compounds of sulfur and halogens volatiletin compounds of sulfur and halogens volatiletin compounds of sulfur and halogens, volatiletin compounds of sulfur and halogens, volatile
tin monoxide, volatiletin monoxide, volatile
residual tin in ashresidual tin in ash

Evaluating fuel impurity impact on tin is 
a lesser issue
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Coal ImpurityCoal Impurityp yp y
Impact on ElectrolyteImpact on Electrolyte

 Yttria stabilized zirconia and phase destructionYttria stabilized zirconia and phase destruction

 Modeling for zirconia phase stabilityModeling for zirconia phase stability Modeling for zirconia phase stabilityModeling for zirconia phase stability

 Predictor for harmful elements and their listPredictor for harmful elements and their list
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Impurity Impact on Electrolyte 
Yttria stabilized zirconia and phase destruction

►► Yttria stabilized zirconiaYttria stabilized zirconia
Tetragonal Tetragonal –– low yttria, partially stabilizedlow yttria, partially stabilized
Cubic Cubic –– high yttria, fully stabilizedhigh yttria, fully stabilized

►► Phase destructionPhase destruction
Yttrium was displaced by higher CE elements and migratedYttrium was displaced by higher CE elements and migratedYttrium was displaced by higher CE elements and migrated Yttrium was displaced by higher CE elements and migrated 
to grain boundaryto grain boundary

E d t MExposed to Mo 
oxides, YSZ 
cracked

SEM/EDAXSEM/EDAX 
Indicating yttria 
migrating to 
grain boundary
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SnOSnO22 reduction by coal reduction by coal -- setupsetup

 
Gas Vent Experimental concept for Experimental concept for 

the chemical reactor that the chemical reactor that 
operates at 1000operates at 1000°°C to C to 

Pre charged

Slag 

Gravimetric

pp
separate the preseparate the pre--charged charged 
mixture of coal and tin mixture of coal and tin 
dioxide into tin and slag dioxide into tin and slag 
with a vented gaswith a vented gasPre-charged 

Mixture SnO2 + Coal
1000°C 

Separation 

Sn 

with a vented gas.with a vented gas.

Coal contaminants with potential to harm ZrO2 based electrolyte:Coal contaminants with potential to harm ZrO2 based electrolyte:
Arsenic, Chromium, Molybdenum, Manganese, Uranium, Niobium, Arsenic, Chromium, Molybdenum, Manganese, Uranium, Niobium, 
Selenium, Vanadium, Tantalum, Tellurium and TungstenSelenium, Vanadium, Tantalum, Tellurium and Tungsten

Slide 18Slide 18



Impurities found in Sn from

Element
S5 Concentration

(ppm wt)
Oxide, valance at 
highest or stable

Nernst Potential 
@1,000C

Coulombic 
Energy CE

Ag 1.1 1 -0.24 0.16
Se < 0.01 6 -0.2 2.57
Rh < 0.005 3 0.06 0.81
As 8.8 5 0.34 1.96
Cu 29 1 0 39 0 23 Impurities found in Sn from 

SnO2 reduction by coal (US 
Wyoming)

Cu 29 1 0.39 0.23
Bi 13 3 0.4 0.52
Pb 150 2 0.49 0.3
Te < 0.1 2 0.56
Ni 2.9 2 0.65 0.52
Sb 400 3 0.66 0.71
Cd < 0.05 2 0.67 0.38

Ranking of soluble elements in 
molten tin based on their Gibbs 
free energy (Nernst Potential)

Co 0.28 2 0.75 0.55
S 23 4 0.75 1.95
Sn Matrix 4 0.82 1.04
Fe 51 3 0.85 0.98
Ge < 0.01 4 0.87 1.36
In 58 3 0.89 0.67

Only those elements in coal 
with Nernst Potential less 
than 0.9 V were found in tin

W < 0.01 6 0.9 1.8
Mo < 0.01 4 0.93 1.11
P < 0.01 5 0.93 2.37
K < 0.01 1 1.01 0.13
Cr < 0.005 4 1.07 1.31
V < 0.001 5 1.07 1.67

M < 0 005 3 1 09 0 93 (sample S5)  Mn < 0.005 3 1.09 0.93
Zn < 0.01 2 1.1 0.49
Ga < 0.005 3 1.16 0.87
Na < 0.01 1 1.27 0.18
Nb < 0.005 5 1.4 1.41
Ta < 5 5 1.55 1.41
U < 0 005 6 1 55 1 48U < 0.005 6 1.55 1.48
Si < 0.01 4 1.77 1.8
Ti < 0.005 4 1.85 1.18
Al < 0.05 3 2.2 1
Zr < 0.005 4 2.22 1
Li < 0.005 1 2.23 0.24

Mg < 0.01 2 2.39 0.47
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Sr < 0.005 2 2.4 0.31
Be < 0.005 2 2.51 0.8
Ca < 0.01 2 2.6 0.36
Sc < 0.001 3 2.65 0.72
Y < 0.005 3 2.66 0.6
Tl 0.04 3 <0.9 0.61



Potential Coal Contaminant Solubility in Tin
at condition of tin-coal reactor

Spiked Element

Initial 
amount 

(ppm wt)

ICP-OES 
Results 

(ppm wt)

Pure Sn 
GDMS results 

(ppm wt)
Cr 4000 1098 2.7 Solubility Experiment: tin
V 4000 10 < 0.001

Mo 4000 9 < 0.01
Nb 4000 115 < 0.005
As 4000 2535 1
Mn 4000 2405 0.2

Solubility Experiment: tin 
spiked, 1,000C, 1% H2O in 
H2, 5 hours, cooled

ICP-OES analysis results: 
W 4000 60 < 0.01
Ta 4000 8 < 5
Se 4000 44.7 < 0.01
Cl 4000 < 0.01
S 4000 8 0.07

C O S a a ys s esu ts
including both dissolved and 
entrained 

Results imply the maximum S 4000 8 0.07
P 4000 203 0.08
Si 4000 5 < 0.01
Br 4000 < 0.05
I 4000 < 0.05

p y
possible solubility of impurity 
in tin at coal-tin reactor 
condition



Electrochemical testing Electrochemical testing -- setupsetup

Setup:Setup:
Gen 3.1 cellGen 3.1 cell
Hydrogen as fuelHydrogen as fuel

Tin spiked with potentialTin spiked with potentialTin spiked with potential Tin spiked with potential 
coal contaminants such coal contaminants such 
as V, As, Ta, Ti, Mo, Nb, as V, As, Ta, Ti, Mo, Nb, 
P, Cl, Si, Na and Cr, etc.P, Cl, Si, Na and Cr, etc.
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Potential Coal Contaminant Impact on LTA-SOFC

LTA-SOFC Performance with Contaminant Spiked into Tin
Constant Current = 4.8 amps, 3% H2O in H2 
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to the maximum 
possible concentration

Constant current 4.8 
amp @ 3% H2O in H2



 

LTA-SOFC Gen 3.1 
cell collectively 
spiked with V, As,spiked with V, As, 
Nb, Mo and Cr to 
1,500ppm

Post MortemPost Mortem 
analysis:

Electrolyte 
damage foundg

Oxide crystals of 
Cr, V found on YSZ 
surface
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SummarySummary

Demonstration of Feasibility of Liquid Tin Anode SOFC as Direct Demonstration of Feasibility of Liquid Tin Anode SOFC as Direct 
Coal Conversion Fuel CellCoal Conversion Fuel Cell

 Three liquid tin anode configuration concepts for direct coal conversionThree liquid tin anode configuration concepts for direct coal conversion

 Fuel impurities cause degradation / damage to electrochemical Fuel impurities cause degradation / damage to electrochemical 
componentcomponent

 Tin’s potential as a media for removing or reducing fuel contaminantsTin’s potential as a media for removing or reducing fuel contaminants Tin s potential as a media for removing or reducing fuel contaminants Tin s potential as a media for removing or reducing fuel contaminants 
including from coal, biomass and dieselincluding from coal, biomass and diesel

 Ongoing projects in progress to address individual contaminant and coal Ongoing projects in progress to address individual contaminant and coal g g p j p gg g p j p g
ashash
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