Natural Gas-Fueled Distributed Generation SOFC Systems

Performance and Cost of Electricity

Prepared for:

10th Annual SECA Meeting Pittsburgh, PA, USA

Date: July 14th, 2009

- 1 Background, Objective, and Approach
- 2 System Definition
- 3 Heat & Material Balances
- 4 Cost Analysis
- 5 Conclusions

Interest in fuel cells for distributed generation has waxed and waned.

- Around 2000, interest in DG peaked:
 - Low natural gas cost (Henry Hub ~\$2/MMBTU)
 - Prospect of suitable new generation technologies
- Fuel cells were thought to be a good fit:
 - Low emissions
 - High efficiency
 - Small scale
- But:
 - Fuel cells were not ready
 - Natural gas cost rose (Henry Hub >\$4/MMBTU)

DOE wanted to understand the performance & cost state-of-the-art SOFC in DG applications.

- Basis for analysis:
 - 5 MW_e grid-connected system
 - SOFC stack technology available commercially 2020
 - Relevant energy cost (EIA projections)
 - Appropriate operating strategies (incl. CHP)
 - Consider cost implications of DG operation
- Based on detailed performance & cost analysis
- Allow comparison with central generation options such as IGCC and IGFC
- Consider potential impact of CCS requirements

We used our established fuel cell system model to project NG DG SOFC system performance and cost.

- 1 Background, Objective, and Approach
- 2 System Definition
- 3 Heat & Material Balances
- 4 Cost Analysis
- 5 Conclusions

The application and scale dictates a simple and efficient flowsheet.

- Stack technology: atmospheric w/ separated flows
- Relatively small system:
 - Simple maintenance
 - Easy siting / permitting
 - Low cost
- This means:
 - Avoid wet scrubbing / adsorption processes
 - Minimize # of unit operations
 - Minimize water consumption
 - Avoid noisy components (compressors)

The SOFC stack assumptions used are consistent state-of-the-art stacks and with other recent studies.

- Performance consistent with state-of-the-art planar technology:
 - Polarization similar to current performance
 - Durability and temperature range consistent with DOE program targets for 2015
 - Case with small (125 cm²) and large (2000 cm²) cells

Key Stack Performance Characteristics

Stack Temperature	650 – 800°C	Fuel Utilization (single pass / overall)	70% / 86%
Cell Voltage	0.83V	Anode Recycle	60%
Cell Current Density	$0.50~\mathrm{A/cm^2}$	Cathode Stoichiometry	2.86

Several carbon capture options are technically possible.

- Sorbent capture from exhaust
- Water gas shift + capture from syngas
- Oxyfuel combustion of anode exhaust + whole gas capture

- 1 Background, Objective, and Approach
- 2 System Definition
- 3 Heat & Material Balances
- 4 Cost Analysis
- 5 Conclusions

To achieve high efficiency, significant recuperation is necessary.

Syngas recycle is critical to the system water balance: it provides steam for the reformer.

~58% efficiency (HHV) is achievable in simple-cycle configuration.

	System Performance (5 MW DG System)	
Fuel Cell Stack	Fuel Utilization (single pass, overall)	70% / 86%
	Anode Recycle	60%
	Cathode Stoichiometry	2.86
	Stack Temperature	650 – 800°C
	Cell Voltage	0.83 V
	Fuel Cell Gross Power	5.7 MW
Reformer	Steam / Carbon Ratio	3
	Methane Slip	7%
	Water Use	800 gpd
ВоР	Blower Power	230kW
	Other Parasitic Loads	50 kW
System	Exhaust Temperature	315 °C
	System Efficiency (HHV Basis)	57.6%

Cell voltage and stack temperature rise have the greatest impact on efficiency.

Sensitivity of System Efficiency (5 MW DG System) **57.6**% 0.77 0.85 V Fuel Cell Voltage Stack 75 – 200°C Stack AT Anode Recycle 40 - 75% Fuel Utilization 60 %— 85% Stack Heat Loss 50 %— 200% **Reformer** Steam / Carbon Ratio 2 - 3.5**BoP** Other Parasitic Loads 25 – 250 kW Blower Efficiency 50%- 85% **54%** 56% 60% 58%

Oxyfuel combustion & whole anode gas capture likely presents the most realistic CCS option.

- 1 Background, Objective, and Approach
- 2 System Definition
- 3 Heat & Material Balances
- 4 Cost Analysis
- 5 Conclusions

The cost analysis followed a well-established methodology, building on several previous studies.

- Bottom-up activity-based stack cost analysis
- BoP equipment costs via scaling from quotes
- Costs were escalated to 2007 based on DoC's PPI
- A uniform 42.5% installation factor was used

The cost analysis indicates that installed CAPEX would be around \$870/kW

The LCOE from NGDG SOFC systems ranges from 7 to 9.5 cents/kWh.

Gas price, carbon capture, and stack degradation most strongly impact LCOE for DG systems.

- 1 Background, Objective, and Approach
- 2 System Definition
- 3 Heat & Material Balances
- 4 Cost Analysis
- 5 Conclusions

Technically spectacular NGDG SOFC systems appear feasible...

- State-of-the-art SOFC enable highly efficient, simple-cycle, systems:
 - $\sim 58\%$ efficiency (HHV basis)
 - Water use ~7 gal/MWh
 - CO₂ emissions 340 g/kWh (CCS technically possible)
 - Very low noise, local air emissions
- But degradation should be reduced to $\sim 0.5\%/1,000$ hrs or less

... and in some selected market segments their cost could be attractive.

- In high-volume production:
 - CAPEX ~\$870/kW (2007\$)
 - LCOE 7.2 9.3 ¢/kWh
 - Strong function of gas price, capacity factor
- This range is likely competitive in selected market segments (CHP, incentives, local conditions)
- It is not broadly competitive with central generation
- If deep carbon reductions are required(>60%):
 - CCS would be required
 - NG DG would likely be uncompetitive

Acknowledgement

- Thanks to Wayne Surdoval and Mark Williams for guidance,
- to Jim Powers and Phil Khore for input in formulating the analysis assumptions,
- And to numerous others for feedback
- Carried out under a DOE subcontract to RDS (#41817M2846)

Thank You!

