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Thermal to Electrical Energy Conversion with High Temperature Thermoelectric Materials:  
Thermoelectric devices offer one way to recover waste heat from SOFCs and other fossil energy 
conversion systems.  Current research is aimed at developing suitable compositions and forms that are 
compatible with high temperatures present in fuel cells and other fossil energy conversion systems.
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Reversible Fuel Cells provide options for energy storage, producing hydrogen fuel during periods of excess grid capacity, and later convert that 
fuel to electricity during periods of greater need.  The purpose of this research is to examine how electrodic processes and materials stability differ 
when operated in the electrolysis (SOEC) versus fuel cell modes.

Enhanced Sintering of LSM at Low Temperature: La(Sr)MnO3+δ previously shown to densify
at low temperature when thermally cycled, an effect which can be suppressed through A- and 
B-site substitutions. The purpose of this research is to investigate possible mechanisms by 
which LSM may be densified under conditions relevant to SOFC operation.

Densification of LSM-10 (62% initial density) is 
enhanced when thermally cycled between 800 
and 1000oC.  The shrinkage rate slows when 
thermal cycling is halted.

Cycling between air and 10 ppm at a constant 
temperature also leads to densification.  
Reversible expansion/shrinkage is due to oxygen 
equilibration.

Shrinkage rates are enhanced by orders of 
magnitude by cycling the oxygen partial pressure 
below ~1100oC compared to rates expected from 
high temperature behavior.

Microstructure of LSM-10 before and after 
exposure to 300 air-10 ppm O2 cycles at 800oC 
(cycle time = 2 hours). 
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Heat balance in a reversible fuel cell.  SOEC 
operation is exothermic above the thermal neutral 
potential of ΔH/2F =1.29 V with pre-heated steam 
and ~1.5 V if steam is produced by resistive heating.

Polarization losses versus current density for an 
anode-supported reversible fuel cell with a Ni-YSZ fuel 
electrode, an LSCoF-6428 air electrode, and 7 μm 
YSZ electrolyte.  Area-specific resistances are 
typically higher in the SOEC direction.
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Nickel-based electrodes show similar cathodic and 
anodic polarization losses at high temperatures, 
whereas losses are smaller in the fuel cell direction at 
low temperatures
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electrode at 800electrode at 800ooC, H2/H2O=50/50, and 0.25 A/cmC, H2/H2O=50/50, and 0.25 A/cm22 (complete cell).  (complete cell).  
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A strontium titanate-ceria composite electrode 
shows symmetric polarization behavior in cathodic
and anodic directions over a range of temperatures
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Cathodic and anodic overpotentials versus current 
density for LSM- 20 on YSZ with a 3 micron-thick 
SDC interlayer.  Higher anodic polarization losses 
are consistent with expected interfacial oxygen 
vacancy concentrations. 
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Cathodic and anodic overpotentials versus current 
density for LSCuF-7319 on YSZ with a 3 micron-thick 
SDC interlayer.  These active compositions also 
show higher losses in the anodic than cathodic
direction.
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Comparison of current densities for a LSCuF-7319 
air electrode at a constant polarization loss of 35 mV.  
Current densities in the cathodic direction are 
consistently higher, while apparent activation 
energies remained unchanged
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P-type calcium cobaltite (Ca3Co4O9) exhibits a 
layered structure, with high Seebeck yields and 
good electrical conductivity

A new n-type indium oxide-based composition has been developed with 
thermoelectric yields considerably higher than the best known n-type oxides

Power output of 
device with 11 p 
and 11 n legs
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Ni-YSZ SrTiO3-ceria

Exchange current density comparison for Ni/YSZ and SrTiO3-ceria composite 
electrodes.  Exchange currents for both electrodes were insensitive to steam 
concentrations.  The ceramic electrode performed similarly in two directions.
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Anodic Polarization (SOEC)

Cathodic Polarization (SOFC)

Hysteresis in performance of LSM-20 electrode at 
800oC at constant overpotential. Cathodic
polarization leads to initially higher anodic 
performance.

Future Directions:
Reversible fuel cells: Investigate mechanisms of degradation, including operation in high steam 
concentrations and repeated cycling between SOFC and SOEC modes.
Fuel electrode interactions with coal gas contaminants:  Coal gas can contain multiple 
compounds that can deactivate the fuel electrode.
Contact paste development:  New contact paste materials are being investigated that show good 
conductivity, good CTE match to 430SS, and form a strong bond to SS at ~900oC.
High temperature electrochemical capacitors:   Investigate charge and energy storage 
phenomena in composite electrodes.  Up to 20 F/g and 15 J/g have been obtained to date.
Low-temperature cathodes:  Evaluate rare earth nickelate materials as possible cathode 
materials.  These form Ruddleson-Popper structures with high mixed conductivity.  
High temperature thermoelectric materials:  Enhance thermoelectric yield through optimization of 
composition and structure of both p- and n-type oxides. 
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