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* Value of an LCA perspective
Upstream natural gas

* Current natural gas researchig .8
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LCA is well suited for energy analysis

* Draws a more complete picture
than one focused solely on
stack or tailpipe emissions

* Allows direct comparison of
dramatically different options

* Includes methods for

evaluating a wide variety of
burdens
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NETL approaches each LCA systematically to ensure
comparability and transparency

 Compilation and evaluation of the inputs, outputs, and potential
environmental impacts of a product or service throughout its life cycle, from

raw material acquisition to final disposal
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LC Stage #1 LC Stage #2 LC Stage #3 LC Stage #4 LC Stage #5
Raw Material Raw Material Energy Product End Use
Acquisition Transport Conversion Transport (EV)
(RMA) (RMT) Facility (PT)
(ECF)
. J . J . J . J

Upstream Emissions Downstream Emissions

* Ability to compare different options depends on functional unit
(denominator)
— 1 kWh of electricity delivered to the end user

— 1 MJ of fuel combusted
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LCA shows the importance of each portion of the life cycle
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LCA answers are sensitive to the question asked

* How does a given technology
compare to other options?

— Narrow boundaries and
attributional results

— Example: Life cycle emissions
from 1 MWh of electricity from
NGCC vs. SCPC power

* How will a given policy affect an
entire system?

— Broad boundaries and
consequential results

— Example: Changes to global
energy supply and associated

GHG emissions if U.S. exports Potential trade-off between

liquefied natural gas (LNG) usefulness and uncertainty

The more complete the picture, the
more uncertain it becomes
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Unconventional sources of natural gas are changing the
resource profile of the U.S. natural gas supply
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* Total U.S. natural gas consumption was 26 Tcf in 2012 and is projected to grow to 32 Tcf by 20401
* Unconventional sources of natural gas are a growing share of U.S. production

» LCA s well suited to analyze the effect of shale gas growth on the environmental profile of natural gas systems
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Life Cycle of Natural Gas through Power
Comparison of Published Results
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ur upstream natural gas model is an
important component of our power LCAs
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Parameters allow flexibility, which allows

scenario, uncertainty, and sensitivity analysis

Property (Units) Onshore Associated Offshore Tight Gas B:;:rett M::::us CBM

Natural Gas Source

Contribution to 2010 U.S. Domestic Supply 22% 6.6% 12% 27% 21% 2.5% 9.4%
low 46 85 1,960 77 192 201 73

Average Production Rate (Mcf /day) expected 66 121 2,800 110 274 297 105
high 86 157 3,641 143 356 450 136

Expected EUR (Estimated Ultimate Recovery) (BCF) 0.72 1.32 30.7 1.20 3.00 3.25 1.15

Natural Gas Extraction Well

Flaring Rate (%) 51% (41 - 61%) 15% (12 - 18%)

Well Completion (Mcf natural gas/episode) 47 3,600 9,000 9,000 49.6

Well Workover (Mcf natural gas/episode) 3.1 3,600 9,000 9,000 49.6

Lifetime Well Workovers (Episodes/well) 1.1 0.3

Liquid Unloading (Mcf natural gas/episode) 3.57 n/a 3.57 n/a n/a n/a n/a

Lifetime Liquid Unloadings (Episodes/well) 930 n/a 930 n/a n/a n/a n/a

Valve Emissions, Fugitive (Ib CHs/Mcf natural gas) 0.11 0.0001 0.11

Other Sources, Point Source (Ib CH4/Mcf natural gas) 0.003 0.002 0.003

Other Sources, Fugitive (Ib CHs/Mcf natural gas) 0.043 0.01 0.043

* Parameters include expected values and uncertainty/variability ranges
* Similar level of parameterization is used for processing and pipeline transmission
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Our model accounts for natural gas lost as fugitives,
through environmental controls, and as upstream fuel

Fugitive Emissions
— Cannot be practically recovered by control
technologies
— Examples: pneumatic or flange leaks
Controllable Emissions
— Can be reduced by using capture equipment
— Venting releases CH4 and flaring converts
CH4 to COz
— Examples: flowback emissions or venting
from acid gas removal
Natural Gas Use
— Natural gas is used as a fuel in processing
and transmission equipment
— CO; emissions result from fuel combustion
— Examples: processing reboilers or gas-
powered compressors
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We can model the overall properties of
a mix of gas sources

Methane Methane Methane
Emissions from Emissions from Emissions from
Extraction Processing Transport
4.7 kg 2.6 kg 5.2 kg
Onshore | /
.-"'/;
Offshore
Associated
. Natural Gas
_ __ Processing Transport Product
Tight 1,080 kg 1,015 kg 1,000 kg
99% 93% 92% 1,000 kg
Marcellus Shale
Barnett Shale
CBEM
33 kg 27 kg 36 kg 9.6 kg
Heli_ lane Methane Methane use Methane use
Flaring from Flaringfrom  for Processing for Transport
Extraction Processing

 NETUs cradle-to-delivered leakage rate is 1.2%

* NETLUSs extraction leakage rate is 0.44%, which is close to leakage rates measured
by EDF and University of Texas?
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We can zero in on dynamics of specific
scenarios
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Marcellus Shale Natural Gas GHG Emissions in 2007 IPCC 100-year GWPs (g CO,e/MJ)
Our reduced methane scenario is based on NSPS rules and uses best practices to reduce completion, valve,
and compressor emissions at extraction and processing.
Best practices for natural gas extraction and processing can reduce GHG emissions from new or modified
Marcellus Shale wells by 29%.
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We can calculate results across a performance range

Fleet Gas (42.7% Eff.), 20-yr GWP = = Adv. Gas (50.2% Eff.), 100-yr GWP
= = Adv. Coal (38.6% Eff.), 100-yr GWP Fleet Coal (30.8% Eff.), 20-yr GWP
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CH,4 Leakage Rate (CH4 Leaked/Gas Produced)

* Intersections of natural gas and coal are breakeven points
*  This is a bounding analysis that accounts for extremes
*  Qurcalculated leakage rates are well below the breakeven leakage rates
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We can reconcile our results with other authors and
validate alternative methods

M Fleet Conversion TWP Crossover Range

9% -

8% -

7% -

6% -

5% -

Crossover point for TWP
represents a 1:1 ratio between
the cumulative radiative forcing

4% -

3% -

CH, Leakage Rate (CH4 Leaked/Gas Produced)

2% - .

% . caused by GHG emissions from

1% - two technologies

0% - —rT T T 1 1~ 1. 1. T~ 1o T 1 1 T~ 1 1 1.1 T 11— 1. 1 T 1. 1T 1 [ T T T T [ T T T T T[T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Year

Alvarez! uses technology warming potential (TWP) to compare climate impacts
Applying TWP to NETL's natural gas model yields results similar to Alvarez’s results

If the leakage rate is 3% or less, natural gas power will always have a lower cumulative radiative forcing than coal
power

1 Alvarez et al. “Greater focus needed on methane leakage from natural gas infrastructure.” Proceedings of the National Academy of Sciences (2012)
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Our model has been a key part of the NG
discussion
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Work is ongoing.
NETL released a set
of natural gas
reports in May
2014.
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Top 10 research and data collection needs

Regional variation in gas composition
Estimated ultimate recovery (EUR)

NSPS implementation

Pipeline compressor leakage and efficiency
Completion and workover emissions
Workover frequency

Flaring rates

Fugitive emissions at extraction

Non-GHG emissions (VOCs) from extraction
10 Water use for hydrofracking
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Contact Us

Timothy J. Skone, P.E.

Senior Environmental Engineer e Strategic Energy Analysis and Planning Division ¢ (412) 386-4495 e timothy.skone@netl.doe.gov

Joe Marriott, Ph.D.

Lead Associate ® Booz Allen Hamilton e (412) 386-7557 * joseph.marriott@contr.netl.doe.gov
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