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FOAs

RD&D

Deployment/ 
Commercialization

FOA = Funding Opportunity Announcement 

NETL’s Office of Program and Performance in the             
Strategic Center for Coal Supports Full Technology 

Development Pathway

• Assessments of potential environmental and economic   
performance of advanced technologies (for both incumbent 
technologies in FE’s R&D portfolio and candidates for inclusion)

• Comparative analyses on the cost and performance of existing, 
competing and advanced coal-based technologies

• Scenario-based forecasts of advanced technology deployment and 
associated societal benefits (economic, environmental and security)
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• Potential plant-level 
benefits of SCO2
cycles:  Coal plant 
example

• Potential power 
sector benefits of 
SCO2 cycles

Preliminary Benefits of SCO2 Power Cycles  
Outline 
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POTENTIAL PLANT-LEVEL BENEFITS FOR 
COAL-BASED INDIRECT SCO2 CYCLES
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• Applicable to multiple coal-based platforms (air and oxygen-fired, 
PC, CFB, PFBC)
– Coal combustor modifications (and associated costs) needed to match 

temperature-enthalpy profile of SCO2 cycles of interest

• Substantial efficiency improvements anticipated as shown in table 
below
– Varies based on temperature, specific cycle configuration and heat 

integration

Potential Benefits for Coal-Based 
Indirect SCO2 Cycles:  Application and Efficiency

1SC = Supercritical 3500 psig/1100°F/1100°F
2AUSC = Advanced ultrasupercritical 5000 psig/1400°F/1400°F consistent with program targets 

Power Cycle 

Net Plant HHV Efficiency 
Improvement 

• in coal plants with 90% capture
• relative to SC steam cycle1

AUSC Steam2 760°C (1400°F) +3.5%pts
SCO2 650°C (1200°F) +3 to 5%pts
SCO2 760°C (1400°F) +5 to 8%pts
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• Minimal information available on SCO2 power island costs
– Turbomachinery expected to have lower costs due to lower pressure 

ratios and greater power density of SCO2 relative to steam cycles
– Configurations achieving high efficiency requires use of recuperators

with large heat transfer areas
– In general, achieving higher efficiencies requires additional cost 

• Modifications to base coal plant anticipated for most 
configurations which will likely increase cost of the                                                        
combustor and associated heat transfer piping

• Cost sensitivity approach for this analysis*:

Coal-Based Supercritical CO2 Cycles
Cost Uncertainties

Adv. System Cost (Power Island + Coal Combustor) 
Ref. System Cost (Power Island + Coal Combustor)

Low 100%

High 140%

*Assumes all cost changes in total plant cost come from power island and coal combustor cost, which represent 32 % of the total plant 
cost of the reference SC oxycombustion system
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Cost-Efficiency Trade-off for Adv. Power Cycles
Cost of Electricity
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• Applicable to multiple coal-based platforms (air and oxygen-fired, PC, 
CFB, PFBC)

• Substantial efficiency improvements anticipated as shown in table below

• Significant cost uncertainties associated with SCO2 power island (eg. 
recuperators) and combustor modifications 

• Result:  SCO2 cycles may provide 5-15% reduction in COE

Potential Benefits for Coal-Based 
Indirect SCO2 Cycles

Power Cycle 

Net Plant HHV Efficiency 
Improvement 

COE Change Attributable to 
Advanced Power Cycle

• in coal plants with 90% capture
• relative to SC steam cycle1 Low Cost3 High Cost3

AUSC Steam2 760°C (1400°F) +3.5%pts -7 to -8% +1 to -0%
SCO2 650°C (1200°F) +3 to 5%pts -6 to -11% +2 to -3%
SCO2 760°C (1400°F) +5 to 8%pts -10 to -16% -2 to -9%

1SC = Supercritical 3500 psig/1100°F/1100°F
2AUSC = Advanced ultrasupercritical 5000 psig/1400°F/1400°F consistent with program targets 
3“Low Cost” assumes combustor + power island costs same as SC steam case; 
“High Cost” assumes these sub-systems cost 40% more than for SC steam

No reduction
0 to 8%

> 8%

Power Cycle 

Net Plant HHV Efficiency 
Improvement 

• in coal plants with 90% capture
• relative to SC steam cycle1

AUSC Steam2 760°C (1400°F) +3.5%pts
SCO2 650°C (1200°F) +3 to 5%pts
SCO2 760°C (1400°F) +5 to 8%pts
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POTENTIAL POWER SECTOR 
BENEFITS FOR SCO2 CYCLES
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SCO2 Power Cycle Preliminary Benefits Assessment: 
Objective

Identify potential national and international benefits 
associated with deployment of SCO2 power cycle 
technology
• Consider reductions in the cost of power generation, 

CO2 emissions and water consumption
• Consider fossil, nuclear and concentrating solar power 

(CSP) applications
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SCO2 Power Cycle Preliminary Benefits Assessment: 
Approach

• Examine new capacity forecasts for each base plant technology 
using 2 bounding scenarios

• Simplified approach to estimating the cost and performance 
benefits of plants with SCO2 power cycles focuses on 
thermodynamic benefits with limited information on cost of the 
SCO2 power cycle
– Ranges used to represent significant uncertainty in both performance 

and cost creating an “optimistic” and a “pessimistic” case
• Plants with SCO2 power cycles assumed to displace notional 

percentages of new capacity additions of steam-turbine-based 
conventional technologies with the same fuel type (assumed 
values ranging from 25% - 75%)
– Coal displacement of NGCC is a lower notional percentage due to 

geographically-limited CO2 sales (~$40/tonne) for use in EOR; coal 
based sCO2 must compete with NGCC so deployment levels are also 
dependent on technology optimism and natural gas prices.
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SCO2 Power Cycle Preliminary Benefits Assessment: 
Deployments

1AEO 2014 Reference Case except for CSP which is derived from IEA’s ETF 2DS Scenario (CSP as depicted in AEO 2014 does not allow 
for CSP + storage requiring  the use of alternate projections)
2AEO 2014 GHG25 Case  ($25/tonne CO2 tax beginning in 2015, escalating by 5% per year, real) except for CSP which is derived from 
EERE’s SunShot Vision Study 

Potential deployments heavily influenced by the price of 
natural gas and carbon incentives
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Total Capacity
Additions
SCO2 Deployments
(Optimistic)
SCO2 Deployments
(Pessimistic)

Reference Scenario1

New Capacity (GW)
Carbon Tax Scenario2

New Capacity (GW)

*All baseline fossil deployments are NGCC and NGCC with CCS;  SCO2 technology allows for coal with CCS to displace some NGCC deployments  
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SCO2 Power Cycle Preliminary Benefits Assessment: 
Accrued Benefits Through 2040

U.S. Benefits Reference
Case

Carbon 
Tax

Case
Cost of Electricity Reduction 
for Fossil, Nuclear and CSP ~5-15%

sCO2 Capacity Deployed (GW) 13-28 150-160

Power Generation Cost Savings 
($Billions)1 $0.6-$5 $8-$52

IRR Assuming $500M R&D 
Investment over 5 Years 10%-17% 29%-38%

Plant Level CO2 Emissions 
Reduction (million tonnes) 0-172 80-89

International Benefits:
Plant Level CO2 Emissions 
Reduction (million tonnes)

14,700

12012 year dollars discounted at a 3 or 7% rate consistent 
with OMB A-94. 

Results
• The ranges reflect uncertainties with technology 

performance, capital costs and natural gas price.
• U.S. GHG reductions are constrained by limited 

fossil displacement.  Globally the CO2 reduction is 
significant.

• Increased efficiency/reduced cost with sCO2
enables coal with CCS (and EOR) to displace natural 
gas combined cycle w/o CCS.

SCO2 power cycles are ideally suited for dry cooling:
• Each GW of coal with sCO2 with dry cooling 

displacing NGCC with wet cooling saves ~2 billion 
gals/year of water.

• If 4 of the 17 GW projected coal systems shifted to 
dry cooling, water consumption would be reduced 
by ~75 billion gallons through 2040 (9 billion 
gals/year in 2040).
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QUESTIONS?
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BACK UP:
SCREENING OF FOSSIL-BASED HEAT 
SOURCES FOR INDIRECT SCO2 CYCLES
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Matching Heat Sources to Power Cycles
Minimizing Bottoming Cycles

• An objective with combined 
cycle power plants is to design 
the system to maximize the 
fraction of input heat going to 
the higher efficiency topping 
cycle such as a sCO2 Brayton
cycle

• The ultimate goal is to use all 
of the input heat in the topping 
cycle but this is often difficult 
without wasting lower level 
heat
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Matching Heat Sources to Power Cycles
T-Q Diagram for Conventional Coal-Based Systems 

and example indirect SCO2 cycle

Source: NETL

• sCO2 cycle requires a relatively 
constant temperature heat source 
for maximum plant efficiency.

• Conventional PC, CFB, and 
conventional oxy-combustion heat 
sources provide a heat source with 
a large slope of T versus Q.  Steam 
Rankine cycles have been tuned to 
maximize the use of this heat 
source temperature profile.

• Pairing theses heat sources and 
SCO2 power cycle does not meet 
the objective of minimizing the 
bottoming cycle.
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Matching Heat Sources and Power Cycles
T-Q Profiles of Modified Coal-Based Systems

• Adding enhanced 
preheat for combustion 
air or CO2 recycle 
enables conventional PC, 
CFB, and PFBC air and 
oxy heat sources to be 
tailored to match the T 
versus Q profile required 
for a sCO2 cycle.

• Modifications allow 
multiple coal-based 
systems (air, oxy, CFB, 
etc) to serve as a heat 
source for indirect SCO2
power cycles while 
meeting the objective of 
minimizing the 
bottoming cycle.
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