Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Date Posted Sort descending Patent Information Opportunity
High-Performance Corrosion-Resistant High-Entropy Alloys USPN 11,466,344

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.

Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.

Converting Natural Gas to Valuable Chemicals with Microwave Technology U.S. Patent Pending

This novel patent-pending methane conversion technology employees microwave-assisted catalysis for chemical conversion. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas, primarily composed of methane, is a cheap and abundant domestic resource that can be converted to a wide range of products including liquid transportation fuels and a wide range of chemical intermediates. However, traditional methods of converting methane to valuable chemicals first require it to be converted to synthesis gas.

A direct, one-step, method to convert the methane would have significant advantages over current indirect methods, including reduced costs and increased yields, but several technology barriers must first be overcome. Microwave-assisted catalyst reactions can provide a viable direct method for overcoming these barriers.

Producing Carbon and Hydrogen With NETL’s Novel Iron-based Catalyst USPN 11,427,467

This new Iron-based catalyst will enable a one-step process to produce hydrogen - a promising energy source that is also environmentally benign - by directly converting methane. The catalyst will eliminate the need to first create syngas and then remove carbon dioxide. In addition to creating hydrogen, carbon, which is also a useful commodity is created as a by-product. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The traditional commercial methods of forming hydrogen from methane are based on steam methane reforming, coal or bio-mass gasification, electrolysis, and thermo-chemical processes. Some of these methods are cost-effective, but each requires that syngas first be created and the water gas shift reaction be used to convert syngas to hydrogen and carbon dioxide. From there, the hydrogen must be purified using pressure swing adsorption to separate the hydrogen for the carbon dioxide. Developing a method that avoids these intermediate steps would reduce the cost of producing valuable hydrogen.

Microwave Diagnostics and Passive Sensors for Pipeline, Well-Bore, and Boiler-Tube Monitoring USPN 11,113,594

The invention is a system and method for monitoring the interior of metallic tubular structures like pipelines, well-bores, and boiler-tubes using an integrated wireless system. The technology uses a combination of the pipe or tubular structure as a wave guide, integrated radio frequency (RF) patch antennas, integrated passive surface acoustic wave (SAW) sensors, and data analytic methodologies. The technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Safety and longevity are major concerns in fossil fuel industries and other technologies that use long metallic tubular structures like gas pipelines, well-bores, and boilers. Real time monitoring of the tubular structures for multiple variables within them, including but not limited to corrosion, leaks, and mass flow, is crucial to ensure safety and cost-effective maintenance in timely manner. Conventional techniques for investigating the state-of-health and operational conditions of tubular structures use non-destructive acoustic-based techniques, which are limited by the ability to interpret the data because, as an indirect measurement, requires models to be made of the infrastructure under investigation.

Selective CO2 Conversion With Novel Copper Catalyst U.S.Patent Pending

This invention describes the synthesis and application of nanostructured copper (Cu) catalysts that selectively convert carbon dioxide (CO2) into carbon monoxide (CO). This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The electrochemical CO2 reduction reaction (CO2RR) is an appealing strategy for addressing man-made CO2 emissions because it can leverage excess renewable energy to produce carbon-neutral chemicals and fuels. However, the economic viability of large-scale CO2RR systems will depend on the ability to selectively and efficiently form desirable products. Because it is earth-abundant and can produce a variety of products, Cu is a popular CO2RR catalyst. Unfortunately, the wide product distribution of Cu introduces inefficiencies in the form of chemical separation steps.

Rotational Mechanical Gas Separator USPN 11,185,811

This invention describes a technology for separating liquid and solid phase substances from a gas stream. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The removal and sequestration of carbon dioxide (CO2) from gas streams has been extensively researched, and many methods of separating CO2 have been proposed. These include adsorption monoliths, membrane absorption and cryogenic distillation, but such methods require special materials and/or high maintenance. Other state-of-the-art removal techniques, such as centrifugal stratification, compress CO2 into a liquid or solid phase, then remove it from the gas stream. But during removal, the liquid/solid phases travel through flow fields and their viscous heating effects. This causes the liquid/solid phases to re-vaporize, stymieing separation efforts.

Novel Method Concentrates Rare Earth Elements Within Coal Byproducts to Facilitate Extraction USPN 10,358,694

This patented technology establishes a novel method for concentrating rare earth elements (REEs) within coal byproducts to facilitate extraction processes. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
REEs are essential components of modern technological devices, such as cell phones and computer hard drives, that support a broad range of vital industries. China provides the bulk of the world’s supply, largely due to environmental and economic challenges associated with extraction. Coal resources used in energy, iron, and steelmaking operations contain quantities of REEs sufficient to meet U.S. needs for years to come, but not as enriched solids. Cost-effective technology that facilitates the recovery of REEs in their most useful form offers the potential to simultaneously boost America’s economy, national security, and independence.

Selective H2 Sensing Through Use of Palladium and Platinum-based Nanoparticle Functional Sensor Layers Integrated with Engineered Filter Layers USPN 10,345,279

The invention is a method for sensing the H2 concentration of a gaseous stream through evaluation of the optical signal of a hydrogen sensing material comprised of Pd- or Pt-based nanoparticles dispersed in a matrix material. The sensing layers can also include engineered filter layers as the matrix or as an additional layer to improve H2 selectivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The ability to selectively sense H2 is critically important for a broad range of applications spanning energy, defense, aviation, and aerospace. One of the most significant needs is for sensors that are capable of leak detection of H2 at levels up to the lower explosive limit. Additional applications of hydrogen sensors requiring operation at elevated temperatures include monitoring of hydrogen in metallurgical processes as well as monitoring the composition of fuel gas streams in power generation technologies such as gas turbines and solid oxide fuel cells. Measurements of H2 levels dissolved in transformer oil can also enable condition-based monitoring to provide early detection of potential failures with large associated economic and environmental impacts.
 

Low-Cost Optical Sensor Array to Monitor Temperature and Dissolved Gases in Electrical Assets USPN 11,268,984

The invention is a new low-cost way to form an optical sensor array that monitors multiple parameters such as temperature and hydrogen in essential components of electrical transmission and distribution networks. It uses multi-wavelength interrogation combined with multiple sensor elements using a single optical fiber. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Power transformers are among the most essential components of electrical transmission and distribution networks. To avoid the substantial financial and social expenses caused by catastrophic failures, there is a growing need to develop low-cost and real-time analytical techniques and instruments to detect and diagnose fundamental changes in the operating characteristics of transformers. Key parameters, such as dissolved gases content and temperature, provide valuable information for assessing the condition of transformers. For example, dissolved gas analysis (DGA) identifies electrical or thermal faults in transformers. In addition, temperature information is vital because when the temperature in transformers exceeds 90o C, the aging rate of insulation and tensile strength grows, resulting in a dramatic deterioration of transformer life expectancy. It is therefore of significant value to monitor the temperature under various ambient and loading conditions to identify failures before they result in significant damages. 

Encapsulation Method for More Durable Reactive Materials USPN 11,433,385

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.