Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Date Posted Patent Information Sort ascending Opportunity
Selective Charge-State Dependent Catalytic Activity USPN 10,358,726

Research is active on the technology titled, "Controlling Au25 Charge State for Improved Catalytic Activity." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Novel Method Concentrates Rare Earth Elements Within Coal Byproducts to Facilitate Extraction USPN 10,358,694

This patented technology establishes a novel method for concentrating rare earth elements (REEs) within coal byproducts to facilitate extraction processes. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
REEs are essential components of modern technological devices, such as cell phones and computer hard drives, that support a broad range of vital industries. China provides the bulk of the world’s supply, largely due to environmental and economic challenges associated with extraction. Coal resources used in energy, iron, and steelmaking operations contain quantities of REEs sufficient to meet U.S. needs for years to come, but not as enriched solids. Cost-effective technology that facilitates the recovery of REEs in their most useful form offers the potential to simultaneously boost America’s economy, national security, and independence.

Selective H2 Sensing Through Use of Palladium and Platinum-based Nanoparticle Functional Sensor Layers Integrated with Engineered Filter Layers USPN 10,345,279

The invention is a method for sensing the H2 concentration of a gaseous stream through evaluation of the optical signal of a hydrogen sensing material comprised of Pd- or Pt-based nanoparticles dispersed in a matrix material. The sensing layers can also include engineered filter layers as the matrix or as an additional layer to improve H2 selectivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The ability to selectively sense H2 is critically important for a broad range of applications spanning energy, defense, aviation, and aerospace. One of the most significant needs is for sensors that are capable of leak detection of H2 at levels up to the lower explosive limit. Additional applications of hydrogen sensors requiring operation at elevated temperatures include monitoring of hydrogen in metallurgical processes as well as monitoring the composition of fuel gas streams in power generation technologies such as gas turbines and solid oxide fuel cells. Measurements of H2 levels dissolved in transformer oil can also enable condition-based monitoring to provide early detection of potential failures with large associated economic and environmental impacts.
 

Recovery of Metals from Petroleum Waste Byproducts USPN 10,323,298

Research is active on the development of techniques for the economic recovery of valuable metals from petroleum gasification waste products. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Polymeric Sorbent for Use in CO2 Capture and Separation USPN 10,323,125

Research is active on the design, synthesis, and use of polymeric sorbents for gas separation applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Real-Time Wellbore Monitoring for Kick Detection USPN 10,253,620

Research is currently active on the patented technology titled, "Kick Detection at the Bit Using Wellbore Geophysics." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Laser Induced Breakdown Spectroscopy Probe for Simplified Light Collection and Laser Operation USPN 10,145,737

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a laser induced breakdown spectroscopy (LIBS) probe featuring simplified construction that minimizes the need for optical elements from the probes data collection path, reducing potential interference with the transmission of high quality spectra. By reducing the complexity and cost of the laser head, the invention maximizes the amount and quality of light returned for analysis and increases the usefulness of LIBS research.

Efficient Process for Converting Methane to Syngas USPN 10,106,407

Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.

Improved Pelletized Immobilized Amine Sorbents for CO2 Capture USPN 10,065,174; USPN 10,603,654;

This invention describes basic immobilized amine sorbents (BIAS) with improved pelletization process and formulation for use in CO2 capture processes. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
BIAS sorbents demonstrate high CO2 capture capacity and thermal stability over multiple steam regeneration cycles and represent a promising approach for CO2 removal from a variety of source points, including coal and natural gas combustion power plants. Bench- and pilot-scale testing have demonstrated the feasibility of commercial-scale BIAS sorbents. However, full commercialization of BIAS sorbents requires pelletization. Commercially available silica typically serves as the support for amine-based particle sorbents, yet these materials are not commercially feasible due to their relatively low mechanical strength and difficult management in dynamic reactor systems. Thus, the development of an economical method of fabricating a strong silica-supported BIAS pellet is a primary concern.

Selective CO2 Conversion With Novel Copper Catalyst U.S.Patent Pending

This invention describes the synthesis and application of nanostructured copper (Cu) catalysts that selectively convert carbon dioxide (CO2) into carbon monoxide (CO). This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The electrochemical CO2 reduction reaction (CO2RR) is an appealing strategy for addressing man-made CO2 emissions because it can leverage excess renewable energy to produce carbon-neutral chemicals and fuels. However, the economic viability of large-scale CO2RR systems will depend on the ability to selectively and efficiently form desirable products. Because it is earth-abundant and can produce a variety of products, Cu is a popular CO2RR catalyst. Unfortunately, the wide product distribution of Cu introduces inefficiencies in the form of chemical separation steps.