Back to Top
Skip to main content
 
 
 

Available Technologies

Title Sort descending Date Posted Patent Information Opportunity
High Capacity Immobilized Amine Sorbents USPN 7,288,136

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 titled "High Capacity Immobilized Amine Sorbents."

Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO2) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO2 capture systems.

High Efficiency Electrocatalytic Conversion of CO2 to CO USPN 9,139,920; U.S. Patent Pending

Research is in progress on the development of ligand-protected gold (Au25) cluster nanocatalysts for the electrocatalytic conversion of carbon dioxide (CO2) to carbon monoxide (CO). A few patent pending technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High Speed Particle Image Velocimetry USPN 8,391,552

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing U.S. Patent No. 8,391,552 titled "Method of Particle Trajectory Recognition in Particle Flows of High Particle Concentration Using a Candidate Trajectory Tree Process with Variable Search Areas.

High-Performance Corrosion-Resistant High-Entropy Alloys U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.

Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.

High-Temperature Sensors for Monitoring and Control of Solid Oxide Fuel Cells U.S. Patent Pending

Research is active on the application of embedded optical fiber based sensors to an operational solid oxide fuel cell (SOFC) in conjunction with high-temperature stable distributed interrogation approaches to allow for local monitoring of the absolute value and spatial gradient of the chemical composition and temperature of an anode or cathode stream.

Hybrid Process for Post-Combustion CO2 Capture U.S. Patent Pending

Research is active on the patent pending technology titled, "Method for the Separation of a Gaseous Component Using a Solvent-Membrane Capture Process.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hydrophobic Carbon Capture Solvent USPN 9,643,123; USPN 9,975,080; U.S. Patent Pending

Research is active on the design and synthesis of a new carbon dioxide (CO2) capture solvent based on PEG-Siloxane. Unlike conventional gas-removal solvents, the NETL’s new solvent technology is hydrophobic and has a low vapor pressure. A hydrophobic solvent with low vapor pressure is highly advantageous because it can reduce the cost and energy-consumption associated with CO2 capture by simplifying solvent regeneration and negating the need to remove water from fuel gas. For example, this solvent operates above room temperature and can be regenerated using low-grade and waste heat, whereas commercially available solvents operate below room temperature and can’t be regenerated using low-grade or waste heat This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hydrophobic Solvent for CO2 Capture Simplifies Gasification Process USPN 9,643,123

Research is active on the patent pending technology titled, "High Performance Hydrophobic Solvent for CO2 Capture." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Improved Martensitic Steel for High Temperature Applications USPN 8,246,767; USPN 8,317,944

Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Integration of Thermal Energy Storage into Solid Oxide Fuel Cell Systems U.S. Patent Pending

Research is active on the design and development of solid oxide fuel cell (SOFC) systems featuring thicker interconnects for increased thermal energy storage. A large amount of heat can then be extracted from the interconnects and used to quickly increase the electric load in a hybrid power system. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).