Back to Top
Skip to main content

Twitter Icon Linkedin Icon Facebook Icon Instagram Icon You Tube Icon Flickr Icon

Available Technologies

Title Date Posted Patent Information Sort ascending Opportunity
Single Step Electrode Infiltration Process USPN 9,960,428

Research is active on the patent pending technology titled, “Method of Forming Catalyst Layer by Single Step Infiltration.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method to Generate Oxygen-Rich Gas from Air Using Water USPN 9,878,280

Research is active on the patent pending technology titled, "A Method of Generating O2-rich Gas from Air Using Water." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Use of Mixed Waste Slags for the Conversion of CO2/H2O TO CO/H2 USPN 9,840,756

Research is active on the patent pending technology titled, "CO/H2 Production from CO2/H2O Gas Using Exothermic Reactions." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas USPN 9,820,526

Research is active on the patented technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Novel Tri-Metallic Ferrite Oxygen Carriers Enhance Chemical Looping Combustion USPN 9,797,594

A patented technology invented at the U.S. Department of Energy’s National Energy Technology Laboratory enhances chemical looping combustion by providing tri-metallic ferrite oxygen carriers that offer greater durability and better reactivity than traditional oxygen carriers. Tri-metallic ferrite oxygen carriers also eliminate agglomeration issues, improve reduction rates, and offer similar costs when compared to traditional oxygen carriers, with convenient preparation using readily available materials. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Chemical looping combustion (CLC) is a promising technology for coal-derived energy production that involves combusting fuel in nearly pure oxygen to simplify carbon capture. In CLC systems, oxygen is introduced to the system via oxidation-reduction cycling of an oxygen carrier. Traditional oxygen carriers such as CuO, Fe2O3, NiO, and CoO have disadvantages including low reactivity (Fe2O3), low melting point and high agglomeration (CuO), and health and environmental concerns (NiO). The development of new oxygen carriers with enhanced performance characteristics is required for successful deployment of coal CLC processes.

Selective Hydrogen Monitoring Using Nanoparticle-Based Functional Sensors USPN 9,696,256

Research is currently active on the patent pending technology titled, “Noble and Precious Metal Nanoparticle-Based Sensor Layers for Selective H2 Sensing.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hydrophobic Carbon Capture Solvent USPN 9,643,123; USPN 9,975,080; U.S. Patent Pending

Research is active on the design and synthesis of a new carbon dioxide (CO2) capture solvent based on PEG-Siloxane. Unlike conventional gas-removal solvents, the NETL’s new solvent technology is hydrophobic and has a low vapor pressure. A hydrophobic solvent with low vapor pressure is highly advantageous because it can reduce the cost and energy-consumption associated with CO2 capture by simplifying solvent regeneration and negating the need to remove water from fuel gas. For example, this solvent operates above room temperature and can be regenerated using low-grade and waste heat, whereas commercially available solvents operate below room temperature and can’t be regenerated using low-grade or waste heat This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hydrophobic Solvent for CO2 Capture Simplifies Gasification Process USPN 9,643,123

Research is active on the patent pending technology titled, "High Performance Hydrophobic Solvent for CO2 Capture." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Oxygen Separation Using Magnetic Membranes USPN 9,636,631

Research is active on the patent pending technology titled, “Mechanical Membrane for the Separation of a Paramagnetic Constituent from a Fluid.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Allyl-Containing Ionic Liquid Solvents for Co2 Capture USPN 9,636,631

Research is active on the patent pending technology titled,“Sulfur Tolerant Ionic Liquid Solvent for Pre-combustion Carbon Capture.” This invention is available for licensing and/or further collaborative research from U.S. Department of Energy’s National Energy Technology Laboratory.