Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Sort descending Date Posted Patent Information Opportunity
Conversion of Methane to Hydrogen and Synthesis Gas Using Bimetallic Oxygen Carriers USPN 10,513,436

Research is active on the development of regenerable bimetallic oxygen carriers for use in methane conversion to hydrogen combined with chemical looping combustion systems. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Converting Natural Gas to Valuable Chemicals with Microwave Technology U.S. Patent Pending

This novel patent-pending methane conversion technology employees microwave-assisted catalysis for chemical conversion. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas, primarily composed of methane, is a cheap and abundant domestic resource that can be converted to a wide range of products including liquid transportation fuels and a wide range of chemical intermediates. However, traditional methods of converting methane to valuable chemicals first require it to be converted to synthesis gas.

A direct, one-step, method to convert the methane would have significant advantages over current indirect methods, including reduced costs and increased yields, but several technology barriers must first be overcome. Microwave-assisted catalyst reactions can provide a viable direct method for overcoming these barriers.

Corrosion Detection Sensors for Use in Natural Gas Pipelines U.S. Patent Pending

This invention describes a system and method for detecting corrosion in natural gas pipelines using an optical platform or a wireless platform. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

The U.S. Energy Information Administration states that natural gas accounts for nearly 30 percent of energy consumption in the United States. More than 300,000 miles of natural gas transmission and gathering lines deliver this valuable energy source to consumers. Like any energy infrastructure, this network of pipelines requires significant maintenance costs. In the case of natural gas pipelines, corrosion accounts for around 25 percent of incidents over the last 30 years, 61 percent of which was caused by internal corrosion.

The corrosion-related annual cost for such incidents amounts to $6 to $10 billion in the United States each year. Therefore, a need exists to monitor corrosion inside of the gas pipelines to implement corrosion mitigation and control before any failure.

Creep Resistant Ni-Based Superalloy Casting and Manufacturing USPN 11,453,051

This invention describes an improved casting and manufacturing method for a creep-resistant nickel-based superalloy for advanced high-temperature applications. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
In the future, advanced ultra-supercritical (A-USC) and/or supercritical carbon dioxide (sCO2) power plants are expected to raise efficiencies of coal-fired power plants from around 35 to greater than 50%. However, these advanced systems feature components that operate at high pressures and temperatures exceeding 760 degrees Celsius. These conditions cause gradual permanent deformation, known as creep, in components manufactured with currently used alloys like ferritic-martensitic high-strength steels and austenitic stainless steels.
Certain nickel-based super alloys such as Inconel 740H (IN740H) currently meet requirements for use in A-USC in a wrought version, but using the alloy in a cast form would be valuable in terms of the range of component size, geometries and complexities, and cost.
Previous efforts at casting IN740H have resulted in poor creep performance when compared to wrought versions. Furthermore, several compositions within the nominal specified range for IN740H have been investigated but failed to provide a material in the as-cast form that would withstand long-term, high temperature exposure in creep.
 

Downhole Laser System With an Improved Laser Output Production and Data Collection USPN 11,451,004; U.S. Patent Pending

This patent-pending technology establishes a novel system and method for laser induced breakdown spectroscopy (LIBS) applications. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Low-cost, efficient monitoring of remote locations has and continues to be highly sought in the industry. For example, drilling production or injection wells for oil/gas extraction or carbon dioxide (CO2) storage always has the potential for leakage into the surrounding formations and environment. The ability to measure the subsurface fluids in and around the injection/production area before and after subsurface activities becomes more important when there is a suspected leak. Current downhole monitoring systems rely on bulk parameters such as pH and conductivity. Lab based systems can provide trace element measurements of subsurface fluids but require fluids to be taken from the field and digested prior to measurement. A system that can provide trace element measurements in real time while deployed in the subsurface is potentially of great value.

Current diode pumped solid state (DPSS) laser systems used for laser induced breakdown spectroscopy applications in fluid system measurements have numerous limitations. First, the systems are susceptible to dimensional changes caused by temperature and pressure swings in fluctuating environments in downhole applications. A second issue is the size of the laser spark that is produced in the fluid for measurements affecting signal strength. The third issue is the efficient collection and transmission of the plasma emission for analysis.

Efficient Process for Converting Methane to Syngas USPN 10,106,407

Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.

Efficient Processes for the Conversion of Methane to Syngas USPN 11,059,721

Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Embedded Gas and Temperature Sensors for Extreme Environments USPN 8,411,275; USPN 8,638,440; USPN 8,741,657; USPN 8,836,945; USPN 9,568,377; USPN 9,019,502; USPN 9,964,494

Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. A portfolio of patented technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities.

Encapsulation Method for More Durable Reactive Materials USPN 11,433,385

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.

Fiber Optic pH Sensor for High-Temperature and High-Pressure Environments U.S. Patent Pending

This invention describes a pH sensor comprising an optical fiber coated with metal-oxide based pH sensing materials for use in high-temperature and high-pressure environments such as wellbores and the challenging high pH range relevant for wellbore cement. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
Various fossil energy and carbon management applications require chemical composition monitoring in subsurface environments. Examples of these areas include deep and ultra-deep oil and gas resource recovery through drilling and hydraulic fracturing techniques as well as environmental monitoring in reservoirs for carbon dioxide (CO2) sequestration. Accurate measurement of pH in subsurface wellbores is critical for early corrosion detection and wellbore cement failure prediction.
However, these subsurface environments are extremely challenging for the development and deployment of sensing technologies because of harsh conditions such as high temperatures, high pressures, corrosive chemical species, and potentially high salinity. In such harsh environments, most electrical and electronic components used in sensor applications are not feasible. Additionally, real-time monitoring of pH within cement is challenging because the high-pH range (pH ~13) can cause stability issues of commonly used pH sensing materials at high temperatures. Therefore, it is essential to develop approaches that provide stable pH sensing and that could eliminate the use of electrical components and connections at the sensing locations and avoid the common mode of failure in conventional sensors.