Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Date Posted Patent Information Opportunity Sort descending
Blended Polymer for Gas Separation Membranes USPN 11,219,857

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a new high performance microporous polymeric blend for carbon dioxide (CO2) gas capture and separation applications. This invention is available for licensing and/or further collaborative research from NETL.

NETL Develops Enriched Microbial Biocatalyst Technology to Convert CO2 into Acetate and Other Products Process Reduces Greenhouse Gas Emissions and Costs U.S. Patent Pending (provisional patent application)

22N09NETL has developed a unique biocatalyst that is robust to environmental challenges and adaptable to feedstock and condition variability.

To combat climate change and move towards a circular carbon economy, technologies are needed to capture, store, and/or convert waste carbon. Microbial gas fermentation is one approach that exploits the natural ability of microorganisms to capture and utilize gaseous waste feedstocks. 

The NETL process uses an enriched microbial biocatalyst to convert carbon into acetate and other short-chain fatty acids. The innovation represents an improved way for direct conversion of carbon dioxide (CO2) and CO waste gases into value added products with a lower carbon footprint and energy inputs compared to current methods for production of commercial short-chain fatty acids. 

The global acetic acid market is estimated to be $21.5 billion and projected to reach $34.2 billion by 2030.

The invention is available for license and/or CRADA.

Challenge
To combat climate change, slow CO2 emissions, and move towards a circular carbon economy, technologies are needed to capture, store, and/or convert waste carbon. Microbial gas fermentation is one approach that exploits the natural ability of microorganisms to capture and utilize gaseous one-carbon waste feedstocks.

Hydrophobic Alkyl-Ester Physical Solvents for CO2 Removal from H2 Produced from Synthesis Gas U.S. Patent Pending

Hydrophobic Alkyl-Ester Physical Solvents for CO2 Removal from H2 Produced from Synthesis GasThe invention is a family of hydrophobic, low viscosity, low vapor pressure physical solvents with molecular structures consisting of two or more alkyl-ester functional groups on a central hydrocarbon chain. These solvents have been shown to possess high carbon dioxide (CO2) solubility and absorption selectivity, which make them well suited for the removal of CO2 from hydrogen (H2) produced from synthesis gas. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
Future integrated gasification combined cycle (IGCC) power plants and steam methane reforming (SMR) chemical plants have the potential to reduce the cost of CO2 capture. These power and chemical plants generate high-pressure CO2 gas streams from the in-situ water gas shift reaction when producing H2 used to power the electrical turbines. A variety of methods have been proposed to capture CO2, including solvent, sorbent, and membrane technologies, with continuous solvent looping systems currently considered to be the most advanced. Precombustion capture of CO2 is typically accomplished using physical solvents.

State-of-the-art precombustion CO2 capture processes predominantly employ hydrophilic physical solvents. Current commercial physical solvents touted for IGCC CO2 capture were developed for removing acid gases from raw natural gas streams. Therefore, they were designed to remove significant amounts of water from the process gas. As such, the focus was on the purification of the process gas with less concern for generation of high-purity CO2 streams suitable for pipeline transmission and sequestration. While water removal is important for natural gas pipeline applications, it is not favorable for applications in which the fuel stream is directly combusted on-site, as would be encountered in IGCC systems.

Novel Algorithm Enables Manufacture of Continuous Single-Crystal Fibers of Infinite Length USPN 11,352,712

A patent-pending computer-control algorithm invented by the National Energy Technology Laboratory enables the manufacture of single-crystal optical fibers of potentially infinite length, with improved diameter control and faster growth, using a laser-heated pedestal growth (LHPG) system. These fibers can be used to fabricate sensors that can withstand the harsh environments of advanced energy systems. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Single-crystal optical fibers made of sapphire and other materials are only commercially available in short lengths of less than 2 meters. Using conventional technologies, length is limited by the finite size of the feedstock pedestal and equipment constraints that prevent supplying more feedstock material without compromising crystal quality. A robust technological solution is needed that allows replacement of the feedstock pedestal with minimum crystal defects and more consistent diameter for long single-crystal fibers. Other algorithms have been studied, but none has offered the ability to produce fibers of arbitrary length.

Novel Tri-Metallic Ferrite Oxygen Carriers Enhance Chemical Looping Combustion USPN 9,797,594

A patented technology invented at the U.S. Department of Energy’s National Energy Technology Laboratory enhances chemical looping combustion by providing tri-metallic ferrite oxygen carriers that offer greater durability and better reactivity than traditional oxygen carriers. Tri-metallic ferrite oxygen carriers also eliminate agglomeration issues, improve reduction rates, and offer similar costs when compared to traditional oxygen carriers, with convenient preparation using readily available materials. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Chemical looping combustion (CLC) is a promising technology for coal-derived energy production that involves combusting fuel in nearly pure oxygen to simplify carbon capture. In CLC systems, oxygen is introduced to the system via oxidation-reduction cycling of an oxygen carrier. Traditional oxygen carriers such as CuO, Fe2O3, NiO, and CoO have disadvantages including low reactivity (Fe2O3), low melting point and high agglomeration (CuO), and health and environmental concerns (NiO). The development of new oxygen carriers with enhanced performance characteristics is required for successful deployment of coal CLC processes.

Spheroid-Encapsulated Ionic Liquids for Gas Separation USPN 9,050,579

An innovative approach has been developed allowing the use of high viscosity for gas separations. The method involves the encapsulation of ionic liquids (ILs) into polymer spheroids, taking advantage of the gas-absorbing properties and cost-effectiveness of ILs, while circumventing known IL viscosity issues. Significantly, the process permits optimization or ‘tuning’ of the IL-containing spheroids for specific gas separation applications. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Thin Ionic Liquid Film Deposition within Porous Substrates USPN 9,186,854

NETL researchers are currently developing ionic liquid technologies for application to carbon capture or other separation processes. Ionic liquids can function as a platform for an amazingly diverse set of applications, including batteries, processing of polymers and cellulose, waste water treatment, and gas separation. These technologies are available for licensing and/or collaborative research opportunities between interested parties and the U.S. Department of Energy’s National Energy Technology Laboratory.

Metal-Loaded Basic Immobilized Amine Sorbents for the Removal of Metal Contaminants from Wastewater U.S. Patent Pending

NETL's basic immobilized amine sorbents (BIAS) have previously been shown effective at removing heavy metals and radioactive ions from aqueous sources. Chelating the amines with metals such as iron or copper significantly increases the heavy metal capture affinity of the sorbents, up to 50% over the non-metal chelated amines. In this invention, the metal-chelated polyamine is chemically tethered to a solid silica support (SiO2) via a crosslinker. The sorbents resist leaching by H2O in an aqueous stream containing heavy oxyanion-based (and other) metals and demonstrate stability over a pH range of 5 - 14. Cationic heavy metals are captured by the amine functional groups (-NH2, -NH, -N) from the polymeric network while oxyanionic metal species bind readily to the metal loaded sites. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Capture of contaminants from water flowing through sorbent.
Capture of contaminants from water flowing through sorbent.

Challenge

Heavy metals are common in industrial wastewater streams such as those associated with flue gas desulfurization (FGD), acid mine drainage, hydraulic fracturing, and nuclear fission. As heavy metals pose health and environmental hazards, there is a critical need to remediate them, i.e., safely and efficiently remove them from the aqueous sources. The US Resource Conservation and Recovery Act (RCRA) gave the US Environmental Protection Agency the authority to establish and enforce regulatory policies and toxicity limits arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium (Se), and other metals. Many of these metals present a distinct challenge for capture because they are most commonly present in the polyatomic oxy-anion form. Sources for most of these contaminant metals result from the treatment of fossil fuel-derived, post-combustion flue gas with aqueous-based technologies. The well-known and widespread contamination of RCRA metals in drinking water and other terrestrial water sources either through natural processes or resulting from human activity, demands remediation.

Efficient Processes for the Conversion of Methane to Syngas USPN 11,059,721

Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Efficient Process for Converting Methane to Syngas USPN 10,106,407

Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.