The Thief Process for Mercury Removal from Flue Gas

Evan J. Granite, Mark C. Freeman, Richard A. Hargis, William J. O’Dowd, and Henry W. Pennline

United States Department of Energy
National Energy Technology Laboratory
22nd Annual Pittsburgh Coal Conference
Pittsburgh, PA
September 13, 2005
Thief Process

- Alternative to activated carbon injection (ACI)

- Extraction of partially combusted coal from furnace & re-injection downstream of preheater

- Recent results show similar removals to ACI

- Patent issued February 2003

- Licensed to Mobotec USA May 2005
Regulatory Drivers

- EPA Announcement March 15, 2005
- Clean Air Mercury Rule
- Several States Requiring Stricter Reductions
- 70-90% Removal Requirement
- Phased in Over Several Years
Fossil Energy Program Goals

Develop more effective mercury control options

- Cost-effective and high level of mercury removal
- Meet long-term IEP program goal of 90% mercury reduction at cost reduction of 25-50%
- Must be better than ACI
Technical Challenges

Mercury is Difficult to Capture

- Low concentration
- Can exist as Hg0
- Harsh conditions of coal-derived flue gas
- Competitive adsorption / poisoning
- Low sorbent reactivity
- Hg is semi-noble metal
ACI for Mercury Removal

- Benchmark technology but has drawbacks for flue gas application
- General adsorbent
- Limited temperature range
- Sequestration
- High sorbent to Hg ratio (3,000:1 to 100,000:1)
- Contacting methods
- Expensive: $1,000 - 3,000/ton
- 500 MW_e power plant: $0.5-10 MM/yr
- Potential market of $10 billion/year
Project Objectives

Develop Cost Effective Sorbents

- Alternatives to activated carbon
- Identify novel sorbent candidates
- Commercialization of Thief Process
NETL BENCH-SCALE PACKED BED REACTOR

FLUE GAS IN

ADJUSTABLE THERMOCOUPLE

HEATED QUARTZ REACTOR

SORBENT OR CATALYST

FLUE GAS OUT TO MERCURY CEM
Bench-Scale Packed Bed Reactor

- ½-inch OD by 12-inch long quartz tube
- 100 mg of sorbent
- Temperature: 280°F - 320°F
- Gas Composition: slipstream of PRB or PRB/Bituminous particulate-free flue gas
- Flow-rate: 8 liters/min
- Sir Galahad CEM: inlet/outlet mercury
SCHEMATIC DIAGRAM OF THE NETL 500-LB/HR COAL COMBUSTION TEST FACILITY
Some general guidelines for Hg removal performance for lower levels of sorbent injection at ~ 2 - 4 lb/MMacf

- Typical ~ 30 - 50%
- ~ 30 - 40%
- ~ 80 - 90% Total Hg Removal Goal

Thief Process and ACI Technology
500 LB/HR PILOT COMBUSTOR AND PULSE JET FABRIC FILTER
Lab Results: Commercial Carbons

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>Capacity (mg/g)</th>
<th>Temp (ºF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FluePac AC</td>
<td>0.89</td>
<td>280</td>
</tr>
<tr>
<td>Darco AC</td>
<td>1.60</td>
<td>280</td>
</tr>
<tr>
<td>Insul AC</td>
<td>1.96</td>
<td>280</td>
</tr>
<tr>
<td>Insul AC</td>
<td>0.19</td>
<td>400</td>
</tr>
<tr>
<td>S-AC-1</td>
<td>1.55</td>
<td>280</td>
</tr>
<tr>
<td>S-AC-2</td>
<td>1.39</td>
<td>280</td>
</tr>
</tbody>
</table>

Physical Adsorption Favored By Low Temperature

- Unpromoted carbons display good capacity
- Sulfur promotion does not increase capacity
- Cost of sulfur addition is not justified
Lab Results: Thief Sorbents

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>Capacity (mg/g)</th>
<th>Temp (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thief-1</td>
<td>2.19</td>
<td>280</td>
</tr>
<tr>
<td>Thief-2</td>
<td>1.80</td>
<td>280</td>
</tr>
<tr>
<td>Thief-3</td>
<td>1.38</td>
<td>280</td>
</tr>
</tbody>
</table>

Extraordinary Carbon Sorbents

- Dramatically cheaper than activated carbons
- Large removals displayed in lab and pilot tests
- Partially combusted coal, produced in-situ
- Removal from furnace via lance (“Thief”)
Initial Bench-Scale Results

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>5% Breakthrough (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darco AC</td>
<td>120</td>
</tr>
<tr>
<td>Thief</td>
<td>60</td>
</tr>
<tr>
<td>Thief-HCl</td>
<td>90</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>≤ 10</td>
</tr>
</tbody>
</table>
Coal: Activated Carbon Precursor

- Contains Numerous Reactive Moieties
- Enormous Concentration Relative to Hg
- Conventional AC Manufacture Harsh
- High Temperature and Long Residence Time
- High Surface Area
- Lose or Passivate Reactive Species
- O, S, Se, Te, Cl, Br, I, and Metal Oxides
- Likely Retained on Surface for Thief Carbons
Norit Darco Versus Thief Sample (50 micron)
Initial Mercury Removal Results - Darco FGD versus Thief Sorbent

- Darco FGD
- Desired Optimization with Thief Process
- Initial Results with Thief Sorbent (taken at one furnace location)

- Extracted Sorbent - Average Baghouse Temp=270°F
- Norit Darco FGD Sorbent - Average Baghouse Temp. = 270°F [10]
- Extracted Sorbent - Average Baghouse Temp. = 261°F

Mercury Removal With Evergreen Coal
Mercury Removal Results - Darco FGD versus Thief Sorbent

Mercury Removal With PRB Coal

Thief at 30-35% ash ~ BET 200 m²/g
Thief at 35-50% ash

Duct Injection Rate, lb/MMacf

Sorbent Injection Rate, lb/MMacf

Duct Removal, Thief Sorbent
Overall Removal, Thief Sorbent
Duct Removal, Darco FGD
Overall Removal, Darco FGD
Heat Rate Penalties

- Heating Value Extracted Solids & Gas
- Sensible Heat Loss When Cooling Solids & Gas
- Heat Transfer from Furnace Gas to Small High Temperature Thief Probe
- Can Be Minimized by Use of Heat Exchanger
Parasitic Power Requirements

- Fan Power for Extraction of Sorbent & Gas
- Fan Power for Reinjection of Sorbent
- Pneumatic Injection if Thief Sorbent Stored
- Pulverizer Power for Make-up Coal
- Circulation of Any Heat Exchanger Fluids
- Incremental ID Fan Requirements for Additional Flue Gas Associated With Make-up Coal
Thief Carbons

- High BET Surface Areas
- Large Iodine Numbers
- Between 80-250 m2/g
- Approaching SA of Commercial AC
- Far Cheaper than Commercial AC

Cost Estimate for Thief Carbons

- $90-$200/ton
- $500-$3000/ton for AC
Conclusions: Thief Process
Thief sorbents exhibit high capacity

- Lab, bench, & pilot-scale tests
- Capacities comparable to AC
- Lower cost carbon than AC
- Small parasitic power requirements
- Minor heat rate penalties
- Excellent commercial potential
- Further development by Mobotec USA
Acknowledgements

• Innovations for Existing Power Plants (IEP) Program
• Tom Feeley
• Dave Wildman
• Bob Kleinmann