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[.] Potential emissions by current fossil fuel reserves
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Vi==xe4| CCS ROLE IN TACKLING CLIMATE CHANGE

Energy-related CO, emission reductions by technology
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Key Challenges to Carbon Capture and Storage

Technical Issues Legal/Social Issues
eCapture Technology *Regulatory Framework
— Existing Plants — Permitting
— New Plants (PC) — Treatment of CO,
— IGCC

eLegal Framework

*Cost of CCS — Liability
— Ownership
Sufficient Storage Capacity * pore space
. CO,
ePermanence sInfrastructure

*Best Practices *Human Capital

— Storage Site _
Characterization *Public Acceptance

— Monitoring/Verification ~ (NIMBY > NUMBY)
— Modeling




Source: US Department of Energy Office of Fossil Energy

http://energy.gov/fe/science-innovation/carbon-capture-and-storage-research/overview-carbon-storage-research
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What is Carbon Capture Utilization and Storage?

Capture, utilization and storage of CO, and other greenhouse gases that
would otherwise be emitted to the atmosphere

Terrestrial Point Source Capture
Sequestration

Terrestrial Capture Atmospheric CO;

* Power Plants

CO,absorbed from air
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CO,-Enhanced Oil Recovery

The “Un-Mined Gold” Story for Energy, Jobs, and Sustainability

Domestic Energy Security

p * 60 billion barrels of crude production from domestic EOR resources
» * By 2030 ~15% of U.S. crude oil consumption could be supplied by CO,-

|
I'.'- r'- r . s )
RALF R " EOR
e
A Economic Security
V.
P * $3.5 trillion in reduced expenditures on imported crude oil

. .. *622,000 new jobs
~ = e Cost of captured CO, in 2020: $13 - $22/tonne CO,
w. W e Cost of captured CO, in 2030 : S1/tonne CO,

“ Environmental Sustainability
i e .

e Meeting President’s Goal: 83% reduction in GHG emissions by 2050
¢ [EA: “CCS ...most important technology option”
* CO,-EOR can spur deployment of commercial CCUS




Carbon Storage — How does it work?

Storage mechanisms vary by target class; generally multiple processes

ePhysical trapping
eResidual phase trapping
eSolution/Mineral Trapping

eGas adsorption

*For organic minerals only (coals, oil
shales)

100

Structural &
stratigraphic

trapping
o
g
=]
=2
b=
3 torage Securit
bt torag Y
=
o
[}
©
': Solubility
3= trapping
0

1 . 10 100 1,000 10,000

Time since injection stops (years)

which improve over time

Structural Trap

(b)

space within the cell,
occupied by meniscus

Source: S Benson, LBNL

0.2




Geologic Storage
Monitoring, Verification, Accounting (MVA) Tools
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Geologic Storage
Risk Profile

Plume migration Risk Profile

In early phase?
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The risk timeline for leakage is heavily-laden in early times.




Fossil Energy CO, Capture Options
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===  CCS PROJECTS JUST STARTING TO CONTRIBUTE TO
REDUCING GHG — BUT NEED MORE PROJECTS

Volume of CO, potentially stored by large-scale integrated projects
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PROGRESS MUST BE ACCELERATED

Volume of CO, potentially stored by large-scale integrated projects
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STEADY PROGRESS - OVER 70 PROJECTS
WORLDWIDE AT VARIOUS STAGES OF MATURITY

Large-scale integrated projects by asset lifecycle and year
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NORTH AMERICA HAS 13 OF THE 17 PROJECTS
MESSAGE

EITHER IN CONSTRUCTION OR OPERATION
WORLDWIDE

North America large-scale integrated projects by asset lifecycle and year
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U==5%<= VOLUME OF POTENTIAL CO, STORAGE REPRESENTED
BY LARGE-SCALE CCS PROJECTS IN VARIOUS STAGES

Volume of CO, potentially stored by primary storage type and region

United States

Europe

China

Canada

Australia and New Zealand
Middle East

Other Asia

Africa

0 5 10 15 20 25 30 35 40 45 5 5 60 65 70

Potential volume of CO, (Mtpa)
Note: Data reflects January 2013
LSIP update
I Enhanced oil recovery (EOR) I Deep saline formations
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CCS CHALLENGES

CCS is a capital intensive add-on with high energy
penalty on output capacity of fossil-based plants
unless it is inherent to the process.

The cost of capture is higher than the market price
for CO, (e.g., EOR) absent a carbon valuation policy.

Need to incentivize more large-scale demonstrations
to walk down the learning curve to reduce cost.

Legal/regulatory issues, e.g., long-term liability,
ownership rights, need to be framed in some
countries (like in US and Canada)

Public Understanding and thus Acceptance of CCS
needs to improve.



[.] Challenges to deployment: Revenue

Power/industrial plant and CCS

Power/industrial plant and CCS

Project net present value (NPV)

Capital cost bridge

Forecast CAPEX OPEX CAPEX OPEX  Commercial
revenues base base capture, capture, gap - Capital grants
plant plant transport,  transport, Commercial - Cost reduction/R&D
storage storage gap

Operating period bridge

- Price on CO,

- Premium power

- CO, utilisation revenues
- Regulation

- Tax credits

- Cost reduction/R&D




[9] CCS BENEFITS FROM CCUS (AS CO2-EOR)

= Enables CCS technology improvement and cost
reduction.

" |mproves business case for demonstration and early
mover projects through CO, revenue.

" Helps gain public and policymaker acceptance.
" Builds and sustains a skilled CCS workforce.

= Supports CO, transportation network development
where EOR is an option.



[9] CO2-EOR AS CCUS - CHALLENGES

= CO,-EOR as CCUS although important as an enabler
for CCS, it is geographically and capacity limited in
the long run. North America is fortunate to have the
opportunity.

= CO, revenue currently alone will not bridge gap for
high capture cost scenarios; more needs to be done to
narrow the gap (technology, policy, market).

= Gaps exists between geologic storage permitting and
CO,-EOR regimes (Class 2 vs Class 6 in the US).



e ON AN UNSUBSIDIZED BASIS CCS IS COST
Y==e=] COMPETITIVE RELATIVE TO OTHER CLEAN LOW/NO
CARBON TECHNOLOGIES

Costs of CO, avoided
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U=t CCS competitiveness against other low
carbon alternatives in Europe in 2012-17

CoE Low Carbon technologies — New PP over next 5 years
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Under realistic assumptions and with a conservative variation range, CCS is already in
the “mix” of low carbon alternatives



KEY

v==7he=  REDUCING THE COST OF TECHNOLOGY THROUGH

DEMONSTRATION PROJECTS IS VITAL

Boundry Dam,
Canada

QUeSt, Canada

TCM, Norway
"

Plant Barry, US 25
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FINAL THOUGHTS ON IMPORTANCE AND NEED FOR CCS
AS PART OF A CLIMATE AND ENERGY SECURITY
PORTFOLIO

Fuel switching and EOR not enough to meet global targets.

Absent carbon legislation, use of existing regulations not be
optimum to encourage CCS/CCUS

Need to include CCS in the portfolio of clean technologies
with equitable incentives and treatment - lowering cost of
meeting reduction targets in the long run.

Expertise and learning must be shared to accelerate CCS
progress and reduce costs- part of GCCSI’s mission to help
enable

Need more funding and incentives for CCS projects to
accelerate CCS deployment

Encourage CCS capacity building in developing economies —
potential sources of major future emissions
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