Low-Energy Solvents for CO$_2$ Capture Enabled by a Combination of Enzymes and Ultrasonics

Charles Freeman, Kayte Denslow, Joseph Remias, Balraj Ambedkar, David Fitzgerald, Scott Hume, Alan House, Sonja Salmon
Notices

- **ACKNOWLEDGEMENT OF GOVERNMENT SUPPORT.** This material is based upon work supported by the Department of Energy under Award Number DE-FE0007741.

- **DISCLAIMER.** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

- **COPYRIGHT NOTICE.** Copyright, 2013, Novozymes North America, Inc., Pacific Northwest National Laboratory, University of Kentucky Research Foundation, and Doosan Power Systems Ltd.

The use in this report of any copyrighted data owned by any of the above parties is authorized pursuant to the relevant contract between such party and Novozymes North America, Inc., relating to the Department of Energy Award Number DE-FE0007741. For such copyrighted data, the copyright owner has granted to the Government, and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government, for all such data.
Agenda

• Project Overview
• Technology Background
• Progress and Status
 • Schedule and summary
 • Initial techno-economic assessment
 • Supporting lab results
 • Ultrasonic system testing at PNNL
 • University of Kentucky bench-scale system

• Conclusions & Next Steps
Novozymes in Brief – World Leader in Bioinnovation
Producing large volume enzymes for industrial applications

1. **Improving the production host**
 Improving the microorganisms’ ability to produce more enzymes per m3 fermentation tank through genetic engineering

2. **Optimizing industrial production**
 - Process optimization
 - Equipment optimization
 - Input optimization

3. **Improving the enzyme produced**
 Improving the efficacy of the enzymes through protein engineering to meet application conditions and process economy requirements

www.novozymes.com
Project Overview

- **Project Participants**

- **DOE Project Manager:** Andrew Jones
- **Project Number:** DE-FE0007741
- **Total Project Budget:** $2,088,644
 - DOE: $1,658,620
 - Cost Share: $430,024
- **Project Duration:** Oct. 1, 2011 – March 31, 2015

DOE Program Objectives
Develop solvent-based, post-combustion technology that
- Can achieve ≥ 90% CO₂ removal from coal-fired power plants
- Demonstrates progress toward the DOE target of <35% increase in LCOE.
Project Objective

Complete a *bench-scale study* and corresponding full technology assessment to validate the potential in meeting the DOE Program Objectives of a *solvent-based post-combustion carbon dioxide capture* system that integrates:

- a **low-enthalpy**, aqueous potassium carbonate-based solvent
- with an **absorption**-enhancing carbonic anhydrase enzyme catalyst
- and a flow through ultrasonic-enhanced **regenerator**
- in a **re-circulating** absorption-desorption process configuration

\[
\text{CO}_2 + \text{H}_2\text{O} + \text{K}_2\text{CO}_3 \leftrightarrow 2\text{KHCO}_3
\]
Advantages

- Low enthalpy, benign solvent (catalyzed aq. 20% K$_2$CO$_3$)
 - K_2CO_3 ΔH_{rxn} 27 kJ/mol CO$_2$
 - MEA ΔH_{rxn} 83 kJ/mol CO$_2$
- Potential for \sim50% regeneration energy vs. MEA

Challenges

- Demonstrate atmospheric regeneration at 70°C enabled by ultrasonics
- Demonstrate overall techno-economic feasibility
 - energy demand
 - enzyme requirement
Background on Ultrasonic Technology

- **Rectified Diffusion Mechanism:** [1]
 - Bubbles expand and shrink in an ultrasonic field
 - Expanding bubbles = lower pressure/ higher surface area
 - Shrinking bubbles = higher pressure/ lower surface area
 - Rectified diffusion results when expanding bubbles allow for a biased transfer of dissolved gas into the bubble from solution

- **Proposed approach for solvent regeneration:**
 - Create a population of seed bubbles
 - Grow the bubbles via rectified diffusion.
 - Frequency optimization likely required
 - Rapidly remove bubbles before they can dissolve

Project Schedule & Status Summary

- Task 1 – Project Management and Planning
 - Task 2 – Process optimization
 - Batch-mode ultrasonics provided modest CO₂ release
 - Enzyme-solvent compatibility and absorption kinetics targets met
 - Integrated Bench-Scale system designed
 - Task 3 – Initial Technical & Economic Feasibility
 - Indicated opportunity for 25% net efficiency improvement vs Case 10
 - Task 4 – Bench Unit Procurement & Fabrication
 - Proto-type flow-through ultrasonic unit built & tested
 - Constructed bench-scale absorber and host rig with vacuum stripper
 - Task 5 – Bench-scale Integration & Shakedown Testing
 - Commissioning and shakedown testing w/vacuum stripping in progress
 - Long-term enzyme stability and reclamation in progress
 - Initiating kinetics-based stripping simulation
 - Task 6 – Bench-scale Testing
 - Task 7 – Full Technology Assessment

Start
10/2011

CCTM
07/2012

BP2
01/2013

CCTM
07/2013

BP3
01/2014
Preliminary Technical and Economic Feasibility

- Aspen Plus® (with Radfrac) used for Process modeling for absorption
- AspenTech’s Capital Cost Estimator® along with budget supplier quotations used for Cost Estimation of the PCC Components
- Preliminary techno-economic evaluation for the process integrated with a subcritical coal-fired power plant was carried out indicating net efficiency improvement of up to 25% versus Case 10:

<table>
<thead>
<tr>
<th></th>
<th>Net efficiency, %</th>
<th>LCOE ($/MWh_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 10</td>
<td>24.9</td>
<td>119.6</td>
</tr>
<tr>
<td>Power Equivalent of 0.0911 kWh/lb of steam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Regeneration</td>
<td>24.3</td>
<td>125.2</td>
</tr>
<tr>
<td>Ultrasonic Regeneration</td>
<td>26.6</td>
<td>117.5</td>
</tr>
<tr>
<td>Power Equivalent of 0.0665 kWh/lb of steam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Regeneration</td>
<td>30.0</td>
<td>112.9</td>
</tr>
<tr>
<td>Ultrasonic Regeneration</td>
<td>31.4</td>
<td>108.9</td>
</tr>
</tbody>
</table>

- Key underlying assumptions were:
 - Acceptable enhancement of CO₂ absorption rate via enzyme
 - Acceptable enzyme longevity in process
 - Ultrasonic regeneration in no more than two stages (1.5 kJe/ kg of solvent)
 - Vacuum regeneration at 6psia and 70°C
Acceptable CO$_2$ Absorption Rate

- Solvent: aq. 20% K$_2$CO$_3$ + carbonic anhydrase
- Demonstrated acceptable kinetics (mass transfer) with enzyme
- Temperature (30-50°C) had minimal impact
Acceptable (Lab Scale) Enzyme-solvent Longevity

- Static incubations demonstrate high robustness at 40°C and limited robustness at 70°C.
- A more representative test (recirculating between 40-70°C) demonstrates high robustness across the temperature range.

Solvent: aq. 22% K$_2$CO$_3$/KHCO$_3$ with 3 g/L enzyme and adjusted to lean pH.
Basis for Ultrasonic Regeneration Energy Projections

► Commercial water sterilization = 0.24 to 0.79 kJe/ kg of water
 ▪ Based on developed applications for ship ballast treatment [2]

► Initial batch testing for CO₂ regeneration = 4.9 kJe/ kg of solvent
 ▪ Laboratory horn used. Poor CO₂ removal (significant re-dissolution)
 ▪ Demonstrated value = 10.3 kJe /mol of CO₂, 0.021 kg of CO₂ removal
 per kg of recirculated solvent recirculation assumed.

► Full-scale CO₂ regeneration system estimate = 1.5 kJe/ kg of solvent
 ▪ Based on (conservative) tube sonication configuration
 ▪ Equates to just over 11 MWe of parasitic power for the ultrasonic
 system in the 500 MWe reference system)

Ultrasonic Testing Platforms

Batch System

Can introduce ultrasonic power while maintaining temperature to within 2°C.

Semi-Continuous System

Large reservoir of solvent recirculated. Gas separated after sonication via hydroclone.
Initial Batch Ultrasonic Experiments

- Pure Water at 70°C – With Sonication
- Loaded Solvent at 70°C – No Sonication
- Loaded Solvent at 70°C – With Sonication

- Significant agitation/ bubbling observed when ultrasonic power added to loaded K₂CO₃ solution at 70°C
Batch Test Results for Ultrasonic Regeneration

- Testing with 20 wt% K$_2$CO$_3$ solvent loaded to 4.6 wt% CO$_2$
- ASPEN (equilibrium) projections of CO$_2$ release at 6 psia = 0.96%
- Total CO$_2$ release observed = 0.67% (0.25% from ultrasonic effect) – likely impacted by re-dissolution of CO$_2$
- Slow CO$_2$ release rates observed – also likely impacted by re-dissolution of CO$_2$
Comparison of Batch-mode Regeneration

- All tests with 20 wt% K$_2$CO$_3$ – temp tests at ~82% (converted to bicarbonate), vacuum and ultrasonic tests at 72%
- Similar kinetic rates (initial part of curves) but higher with enzyme – kinetic limitation?
- Total CO$_2$ release low for ultrasonic test – CO$_2$ re-dissolution suspected
Ultrasonic Flow-Through Results

- CO₂ release rate similar to batch studies – can be explained by temperature increase alone
- Enzyme additions unexpectedly decreased release rate – likely due to foaming
Summary of Regeneration Testing Results

- Multiple passes (5+) required for significant CO₂ release from both vacuum and ultrasonic flow through tests – kinetic limitation suspected
- Ultrasonic flow through results within temperature-driven projections; not in line with 70°C, 6psia vacuum target
- Current ultrasonics configuration delivers insufficient CO₂ release
Bench-scale Demonstration Unit Status

- **Design capabilities:**
 - Dual regeneration sources (vacuum and ultrasonic)
 - Able to assess long-term enzyme stability
 - Able to assess mass transfer

- **Construction complete:**
 - Host rig framework
 - Absorber
 - Vacuum regeneration
 - Heat transfer
 - Instrumentation check and calibrations

- **Unit commissioning for vacuum process in progress**
Key Bench-scale Operational Parameters

- Flow rates
 - Gas: 10-30 SLPM
 - Liquid: 100-300 ml/min
- Liquid temperature
 - Absorber inlet: 30-40 °C
 - Stripper outlet: 70-80 °C
- Stripper pressure: 0.25-0.4 atm
- Enzyme dose: 3-5 g/L

Optimized parameters yield process energy

Add ultrasound, Maintain lean loading

Comparative energy for ultrasound advantage
Conclusions and Next Steps

- Target absorption kinetics and enzyme robustness measured
- Visual evidence of ultrasonic effect shown in batch system
- Preliminary techno-economic evaluation indicated potential for net efficiency improvement of up to 25% versus Case 10
- Construction of bench-scale absorption column with vacuum regeneration completed and commissioning in progress
- Flow-through bench-scale ultrasonic regeneration system was assembled and tested
 - CO₂ release rates below single-pass stripping target for the project
 - Low CO₂ release rates may point toward a kinetic limitation in stripping; enzyme catalyst could help overcome this limitation
 - Ultrasonics in current configuration delivers insufficient CO₂ release
- Project now focuses on validating the potential for low temperature regeneration by developing a rate-based simulation for vacuum stripping corroborated by data from bench-scale testing
Acknowledgements

DOE-NETL
Andrew Jones

Pacific Northwest National Laboratory
Charles Freeman (PM)
Kayte Denslow, Richard Zheng, Mark Bearden

UK-Center for Applied Energy Research
Joe Remias (PM)
Balraj Ambedkar

Doosan Power Systems
David Fitzgerald (PM)
Scott Hume, Vinay Mulgundmath
Saravanan Swaminathan, Agnieszka Kuczynska

Novozymes
Sonja Salmon (PI/PM)
Alan House