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Presentation Outline 

 Benefit to the Program / Stakeholders 
 Project Overview 
 Technical Status 

– Simplifed physics based modeling 
– Statistical learning based modeling 
– Reduced order method based modeling 

 Accomplishments to Date 
 Summary 
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Benefit to the Program 

 Research will develop and validate a portfolio of simplified 
modeling approaches to predict the extent of CO2 plume 
migration, pressure impact and brine movement for a 
semi-confined system with vertical layering   

 These approaches will improve existing simplified models 
in their applicability, performance and cost   

 The technology developed in this project supports the 
following programmatic goals: (1) estimating CO2 storage 
capacity in geologic formations; (2) demonstrating that 99 
percent of injected CO2 remains in the injection zone(s); 
and (3) improving efficiency of storage operations 
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Benefit to Stakeholders 

 Provide project developers with simple tools to 
screen sites and estimate monitoring needs 

 Provide regulators with tools to assess geological 
storage projects quickly without running full-scale 
detailed numerical simulations 

 Enable risk assessors to utilize robust, yet simple 
to implement, reservoir performance models 

 Allow modelers to efficiently analyze various CO2 
injection plans for optimal well design/placement 
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Project Overview   
Goals and Objectives 

 Objective  Develop and validate a portfolio of 
simplified modeling approaches for CO2 sequestration 
in deep saline formations 
o Simplified physics-based modeling - where only the most 

relevant processes are modeled 

o Statistical-learning based modeling - where the simulator 
is replaced with a “response surface” 

o Reduced-order method based modeling - where 
mathematical approximations reduce computational burden 

o Uncertainty and sensitivity analysis – to validate the 
simplified modeling approaches for probabilistic applications 



Simplified Physics Based Models 
Background 

 Useful alternative to 
simulators if “macro”  
behavior is of interest 

 Analytical models of radial 
injection of supercritical  
CO2 into confined aquifers 

– (a) Fractional flow model 
(Burton et al., 2008;  
Oruganti & Mishra; 2013) 

– (b) Sharp interface model 
(Nordbotten & Celia, 2008) 

 Require extension for  
semi-confined systems with 
vertical layering (based on 
detailed simulations) 
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(a) 

(b) 



Simplified Physics Based Models 
Approach (using GEM) 
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Simplified Physics Based Models 
Dimensionless Injectivity 
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Simplified Physics Based Models 
Sweep Efficiency 
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Statistical Learning Based Models 
Background 

 Goal  replace physics-based 
model with statistical equivalent 

 Experimental design   
selection of points in parameter 
space to run limited # of 
computer experiments 

 Response surface   
functional fit to input-output data 
to produce “proxy” model 

 Two common options 
–  Box-Behnken (BB) design  

3-pt + quadratic response surface  
–  Latin Hypercube sampling (LHS) 

multi-point + higher-order model 
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Statistical Learning Based Models 
Example - Metamodel Fits 
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 Data from 2-D STOMP 
simulations of CO2 
injection into closed 
systems (Arches province) 

 36 run full-factorial design 
– 3 stratigraphic columns 

(injection depth) 
– 4 well patterns 
– 3 permeability groups 

 Cross validation using 12 
mutually exclusive subsets 
(33 training + 3 test data 
points) with 100 replicates 

 Similar results for CO2_R 
and PCT_CO2 



Statistical Learning Based Models 
Generation of Experimental Designs 
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Box-Behnken Alternative 

Alternative Space-Filling Designs 



Reduced Order Method Based Models 
Background (1) 

 
 

 
 Proper Orthogonal Decomposition (POD) 
 Represent high-dimensional state vectors (e.g., 

pressure & saturation in every grid block) with small 
number of variables by feature extraction 

 Trajectory Piecewise Linearization (TPWL) 
 Predict results for new simulations by linearizing  

around previous (training) simulations 

 
 

Controls 

Simulator 

POD-TPWL 

Production/ 
Injection Rate 
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POD + TPWL = POD-TPWL 

Order 
reduction 

Nonlinearity 
treatment 

Linear expressions 
w/ 100s of variables 

Reduced Order Method Based Models 
Background (2) 

 Retain the physics of the original problem 

 Overhead is required to build the POD-TPWL model 

 Evaluation of POD-TPWL model takes only seconds 

 Applied previously to oil-water problems for 
optimization and history matching (Cardoso and 
Durlofsky 2010, 2011;   He et al. 2011, 2013 ) 
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AD-GPRS POD-TPWL 
Construction 

POD-TPWL 
(Test) 

Run Time ~120s ~360s ~2s 

Reduced Order Method Based Models 
Example – POD-TPWL Performance 
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Accomplishments to Date 
 Completed sensitivity analyses to identify factors influencing 

reservoir/caprock pressure buildup and CO2 plume migration 

 Identified possible predictive model functional forms for 
dimensionless injectivity and CO2 storage efficiency  

 Completed evaluation of metamodeling techniques  
(2nd order polynomial, kriging, MARS, ACE) 

 Completed Box-Behnken design based simulations for 
generating response surface based simplified models 

 Investigated applicability of POD-TPWL for CO2 injection into 
saline aquifers using a compositional simulator 

 Evaluated different constraint reduction approaches 
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Summary 
 Developed insights into two-phase region injectivity and 

sweep based on detailed simulations 

 Next FY’s work will focus on insights for pressure buildup  
and developing predictive models 

 Evaluated metamodeling techniques and approaches for 
generating experimental designs 

 Next FY’s work will focus on fitting metamodels to BB and 
LHS simulations and comparing their predictions 

 Implemented POD-TPWL for saline aquifer CO2 injection 

 Next FY’s work will focus on improving accuracy, stability 
and robustness of selected POD-TPWL schemes 
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Appendix 
These slides will not be discussed during the 
presentation, but are mandatory 
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Organization Chart 

Project Management (Task1)
Principal Investigator:

Srikanta Mishra (Battelle)

Task 2
Simplified Physics based Modeling

Srikanta Mishra
(Battelle)

Task 3
Statistical Learning based Modeling

Doug Mooney
(Battelle)

Task 4
ROM-based Modeling

Lou Durlofsky
(Stanford)

Task 5
Validation using Uncertainty/Sensitivity Analysis

Srikanta Mishra & Doug Mooney
(Battelle)

Sponsors

DOE      ODOD

Technical
Advisor

Neeraj Gupta 
(Battelle)

Project Team

Project Manager – Michael McMillian (DOE) 



Gantt Chart 
 BP1 BP2 BP3 

Task Name 10/2012-09/2013 10/2013-09/2014 10/2014-09/2015 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Task 1: Project Management             
  1.1  Project Management & Planning             
  1.2  Update Project Mgmt. Plan             
  1.3  Progress Reporting             
  1.4  Project Controls             
  1.5  Deliverables and Reporting             
Task 2: Simplified physics based modeling             
  2.1  Numerical experiments             
  2.2  Models for two-phase region behavior             
  2.3  Models for pressure buildup             
Task 3: Statistical learning based modeling             
  3.1  Design matrix generation             
  3.2  Computer simulations             
  3.3  Analysis of computer experiments             
Task 4: ROM-based modeling              
  4.1  Black-oil ROM procedures             
  4.2  Compositional ROM procedures             
Task 5: Validation using UA/SA             
  5.1  Problem definition             
  5.2  Probabilistic simulation             
  5.3  Analysis of results             
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