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Background 
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• Thermal barrier coatings (TBCs) are required for high-temperature 
metallic components in advance turbine systems to be operated with 
higher efficiency and low emission 

• TBCs have become “prime reliant” material   their condition 
monitoring and lifetime prediction by NDE is important 

• Entire TBC surface should be inspected (by imaging NDE methods) 
because TBC damage can be highly localized 

Metallic substrate 
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TBC Structural Damage in Lifetime 
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• Two characteristics of TBC degradation/failure: 
– (1) Ceramic top coat continuously sinters with minimal structure damage 
– (2) Cracks and delaminations develop and expand near interface 

• Quantitative NDEs are required to detect both changes for life prediction 
– Use material properties: mechanical (+stress/strain), thermal, electrical, etc 
– Structure – property (function) relationship? 
– A “failure structure”? 
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NDE Applications for TBCs 
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• Many NDE technologies have been studied/used for TBCs: thermal 
imaging, optical (reflection/scatter, emission, spectroscopy, etc), 
electrochemical, electromagnetic, ultrasonic, x-ray, etc 
– Most NDE technologies are not suitable for field application 

• NDE for TBC health monitoring and life prediction: 
– A practical NDE method/model has not been well established  
 Spectroscopy methods are not suitable for real component field application 
 Optical methods have some success for thin coatings in lab tests 
 Thermal imaging methods were not very quantitative 

• NDE for detection of coating flaws (eg, delaminations, FOD): 
– Many NDE methods can detect large flaws; those flaws usually appear 

near end of TBC life so their detection is of less value 
– Small and deep flaws are difficult to detect but more important 

• NDE for quality control of fabricated TBC components: 
– Only single-point thickness measurement is used by manufacturer 
– Current NDE methods are not suitable for TBC property/quality 

measurement especially for entire TBC-coated component surface 



Objectives of This Project 

• Develop and evaluate advanced NDE methods for (1) TBC life 
prediction and (2) high-resolution detection of coating flaws 
– (1) For life prediction (quantitative NDE):  

• Optical mid-IR reflectance 
• thermal multilayer analysis (– also for complex TBC systems) 

– (2) For high-resolution flaw detection 
•  thermal tomography 

• Develop NDE methods for functional materials (gas-separation 
membrane, fuel cell, etc) 
– Synchrotron x-ray CT, thermal tomography 
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Recent NDE Developments 

• Continued evaluation of optical (mid-IR reflectance) and thermal 
imaging NDE methods for TBC life prediction 
– Collaborations with Siemens and Stony Brook Univ. 

• Continued development of two thermal imaging methods 
– Thermal multilayer analysis for TBC life prediction 

• Continued calibration for TBC property measurement accuracy 
• Evaluation for testing turbine components 
• Development of theoretical models for translucent TBCs and for multilayer 

TBCs 

– Thermal tomography method (3D imaging) 
• Continued development of new algorithm for high-resolution imaging 
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Presentation Topics 
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• NDE for TBC life prediction 
– Optical mid-IR reflectance (MIRR) method 

– Thermal imaging multilayer analysis method – TBC property 
measurement 

– TBC life prediction model and experimental evaluation 

• Development and application of multilayer analysis method 
– Application for a turbine blade 
– Theoretical development for translucent TBCs 
– Theoretical development for multilayer TBCs 



Mid-IR Reflectance for TBC Life Prediction 
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J.I. Eldridge, et al., 2003 Cocoa Beach Conference 

• Technology developed by Dr. Eldridge 
of NASA 
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Thermal Imaging Method for TBC Life Prediction 
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One-sided experimental setup 

Flash lamp  
IR camera 

Monitor 

Turbine blade 

Thermal conductivity imaging 

0.5 W/m-K 1.4 W/m-K 

• Multilayer analysis method developed at ANL can accurately measure 
TBC thermal properties: 
– Two TBC properties: thermal conductivity and heat capacity (or thickness) 
– Measurement accuracy is typically <3% (likely best among all methods) 
– The only method suitable for field applications (and fully automated) 
– The only method for imaging entire component surface  



TBC already spalled 
Surface contamination 

APS TBC Samples from Siemens 

• Samples were thermal cycled to various % of life 
• Sample courtesy of Dr. Kulkarni 
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Mid-IR Reflectance Data 
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• Mid-IR reflectance correlates well with TBC life 
• Small-range ~1% variation – requires accurate measurement 
• Data affected by surface contaminations 
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Thermal Imaging Data 
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38% 67% 26% 80% 3% 6% 13% 51% 

Thermal conductivity (k) images 

Heat capacity (ρc) images 
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Thermal Imaging Data – cont. 
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• Conductivity k increases till ~40% life and then decreases (~10% change) 
• Heat capacity ρc  increases continuously with time (~10% change) 
• Noises are likely due to TBC thickness error (assumed 0.3mm for all) 
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Modeling TBC Conductivity Change with Life 
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• Overall TBC thermal conductivity k is affected by two factors: 
– (1) Intrinsic TBC material conductivity kTBC increases due to sintering 
– (2) Interface cracking/delamination is filled by air of low conductivity kair 

that reduces overall TBC conductivity (the measured value) 

• A TBC conductivity-life model should account for both factors 

Ceramic coating 

Metallic substrate 

Heat conduction direction 
(overall TBC conductivity k) 

Cracks at interface 

(1) Sintering increases 
intrinsic conductivity kTBC 

(2) Crack is filled with 
low conductivity air kair 



Intrinsic Coating Conductivity due to Sintering 

• Intrinsic coating conductivity change due to sintering (annealing) 
is commonly correlated with LMP (Larson-Miller parameter): 
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ln(k/k0) = a + b*LMP, 

LMP = T*(lnt + C), 

k = conductivity (W/m-K),  
k0 = initial conductivity (at t=0),  
T = temperature (K),  
t = time (s),  
a,b,C = fitting constants 

Tan et al. 2009 



Correlation of TBC Conductivity with LMP 
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• Now the question: what value for TBC failure?  
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Estimation of Delamination Gap Thickness 
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Assuming delam starts to initiate here 

• Average delamination gap thickness Lair is estimated from: 
 
 
 
 where L = LTBC+Lair,  k, kair and kTBC are all known 
 
• Cernuschi et al. (2010) used this equation to estimate fraction of 

cracked interface (assumed Lair = 2 µm) 
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• Data seems to suggest 
TBC fails at Lair ~ 2µm 
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Presentation Topics 

• NDE for TBC life prediction 
– Optical mid-IR reflectance (MIRR) method 

– Thermal imaging multilayer analysis method – TBC property 
measurement 

– TBC life prediction model and experimental evaluation 

• Development and application of multilayer analysis method 
– Application for a turbine blade 
– Theoretical development for translucent TBCs 
– Theoretical development for multilayer TBCs 
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TBC: ~0.25mm thick 

0.1mm 0.3mm 

0.7 W/m-K 2 W/m-K 

Thermal conductivity image 

Thickness image 

TBC Property Measurement for a Turbine Blade 
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TBC Translucency (Natural TBCs) 
• Current thermal-imaging model is for opaque coatings (eg, metallic) 

• TBC is translucent, needs surface treatment to make it opaque 
– Method: apply a thin opaque coat on TBC surface (graphite-based paint is 

commonly used because it can be easily burn off at a low temperature) 
 
 
 
 
 

– Essentially all TBC thermal properties are measured this way 
– However, the graphite coat is not desirable to be used on real components, 

and it also increases testing cost (extra processes) 

• A thermal imaging method for thermal property measurement of 
translucent TBCs is needed 

• Note: TBC translucency is not an issue for flaw detection by thermal 
imaging methods 

Thermal  
properties 

Test methods 
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Thermal Imaging Issues for Translucent TBCs 

• Both conduction and radiation heat transfer within coating system 
– Radiation models are usually not very precise and difficult to solve 
– There is no theoretical model for flash thermal imaging at present 

• TBC optical properties are very complex 
– Large change over a wide wavelength band 
– Very little data 
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Theoretical Modeling for Translucent TBCs 

Thermal imaging data for “opaque” and translucent TBCs 

• Thermal imaging data for “opaque” and translucent TBCs are 
significantly different 

• Theoretical model for translucent TBCs is being developed 
– Preliminary study showed that translucent TBCs can be modeled to reproduce 

the observed experimental data 
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From: Dwivedi, Viswanathan, and Sampath (2013) 

NDE Development for Multilayer TBCs 

• A collaboration has been established with Dr. Sampath at Stony Brook 
Univ. for NDE study of multilayer TBCs 

– Dr. Sampath’s group is developing multilayer TBCs under a DOE FE 
project 

• Initial focus will be on measuring TBC property and its change with life 
– Current method can measure average TBC properties 
– Model development is planned to measure properties for individual layers 
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Summary 
• NDE methods were evaluated for TBC life prediction: 

– Mid-IR reflectance: MIRR value increases ~1% during life (from this study) 
• Small change requires very accurate measurement so can be difficult 
• Data are affected by surface contaminations and require scaling (by a reference) 

– Thermal imaging: conductivity changes ~10% during life 
• Onset of TBC damage (crack development) can be determined 
• A complete NDE model for TBC life prediction was developed NDE data alone 

may predict TBC life (with known exposure history) 

• Thermal imaging multilayer analysis method development: 
– Successfully applied for imaging of a 3D turbine blade  
– Theoretical development for translucent TBCs is underway 
– Theoretical development and application for multilayer TBCs is planned 



Planned Future Efforts 
• Continued evaluation of NDEs for TBC lifetime prediction 

– More samples with different thermal exposure conditions  

• Development of thermal multilayer analysis method: 
– For complex coatings: translucency, multilayer 

– Continued evaluation of measurement accuracy due to secondary 
effects, test condition variation, engine component geometry, etc 

• Development of thermal tomography method 
– Correlate NDE data with destructive examination results 

– Develop new high-resolution algorithm for data processing 
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